Skip to main content
Log in

A numerical-analytical model of elasto-plastic deformation of matrix composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the first-order Mori–Tanaka secant model, a numerical-analytical model of elasto-plastic deformation of matrix composites is developed. The calculation results of the analytical model are "fitted" to the results of numerical simulation. The fitting parameter of the model is the ratio of the constrained equivalent strain of the matrix in the numerical model to the constrained equivalent strain of the matrix in the Mori–Tanaka model. Identification of the fitting parameter is performed using a reference stress–strain curve calculated numerically for a basic composite composition. For an arbitrary composition composite, a linear dependence of the fitting parameter on the inclusion volume fraction is used. A good agreement was obtained between the results of the calculation by the numerical-analytical model and the numerical data for isotropic and transversely isotropic composites with different contents, morphology, and contrast properties of the phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agoras, M., Avazmohammadi, R., Ponte Castaneda, P.: Incremental variational procedure for elasto-viscoplastic composites and application to polymer- and metal-matrix composites reinforced by spheroidal elastic particles. Int. J. Solid Struct. 97–98, 668–686 (2016). https://doi.org/10.1016/j.ijsolstr.2016.04.008

    Article  Google Scholar 

  2. Berveiller, M., Zaoui, A.: An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids 26, 325–344 (1978). https://doi.org/10.1016/0022-5096(78)90003-0

    Article  Google Scholar 

  3. Tandon, G.P., Weng, G.J.: A theory of particle-reinforced plasticity. J. Appl. Mech. 55, 126–135 (1988). https://doi.org/10.1115/1.3173618

    Article  Google Scholar 

  4. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965). https://doi.org/10.1016/0022-5096(65)90010-4

    Article  Google Scholar 

  5. Molinari, A., Canova, G.R., Ahzi, S.: A self consistent approach at the large deformation polycrystal viscoplasticity. Acta Metall. 35, 2983–2994 (1987). https://doi.org/10.1016/0001-6160(87)90297-5

    Article  Google Scholar 

  6. Masson, R., Bornert, M., Suquet, P., Zaoui, A.: An affine formulation for the prediction of the effective properties of non linear composites and polycrystals. J. Mech. Phys. Solids 48(6–7), 1203–1227 (2000). https://doi.org/10.1016/S0022-5096(99)00071-X

    Article  MathSciNet  Google Scholar 

  7. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973). https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  8. Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987). https://doi.org/10.1016/0167-6636(87)90005-6

    Article  Google Scholar 

  9. Gilormini, P.: A critical evaluation for various nonlinear extensions of the self-consistent model. In: Proceedings of the IUTAM Symposium Held in Sevres. Paris, 29 August–1 September pp. 67–74 (1995). https://doi.org/10.1007/978-94-009-1756-9_9

  10. Suquet, P.: Overall properties of nonlinear composites: remarks on secant and incremental formulations. In: Proceedings of the IUTAM Symposium Held in Sevres. Paris, 29 August–1 September pp. 149–156 (1995). https://doi.org/10.1007/978-94-009-1756-9_19

  11. Hu, G.: A method of plasticity for general aligned spheroidal void of fiber-reinforced composites. Int. J. Plast. 12, 439–149 (1996). https://doi.org/10.1016/S0749-6419(96)00015-0

    Article  Google Scholar 

  12. Buryachenko, V.: The overall elastoplastic dehavior of multiphase materials with isotropic components. Acta Mech. 119, 93–117 (1996). https://doi.org/10.1007/bf01274241

    Article  Google Scholar 

  13. Doghri, I., Brassart, L., Adam, L., Gerard, J.-S.: A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. Int. J. Plast. 27(3), 352–371 (2011). https://doi.org/10.1016/j.ijplas.2010.06.004

    Article  Google Scholar 

  14. Wu, L., Noels, L., Adam, L., Doghri, I.: A combined incremental-secant mean-field homogenization scheme with per-phase residual strains for elasto-plastic composites. Int. J. Plast. 51, 80–102 (2013). https://doi.org/10.1016/j.ijplas.2013.06.006

    Article  Google Scholar 

  15. Wu, L., Doghri, I., Noels, L.: An incremental-secant mean-field homogenization method with second statistical moments for elasto-plastic composite materials. Philos. Mag. 95, 3348–3384 (2015). https://doi.org/10.1080/14786435.2015.1087653

    Article  Google Scholar 

  16. Kanouté, P., Boso, D.P., Chaboche, J.L., Schrefler, B.: Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16, 31–75 (2009). https://doi.org/10.1007/s11831-008-9028-8

    Article  Google Scholar 

  17. Noels, L., Wu, L., Adam, L.: Review of homogenization methods for heterogeneous materials. In: Ulrich, P., Schmitz, G.J. (eds.) Handbook of Software Solutions for ICME, pp. 433–441. Wiley-VCH, Weinheim (2016)

    Chapter  Google Scholar 

  18. Wang, Y., Huang, Z.-M.: Analytical micromechanics models for elastoplastic behavior of long fibrous composites: a critical review and comparative study. Materials 11, 1919 (2018). https://doi.org/10.3390/ma11101919

    Article  Google Scholar 

  19. Wu, L., Adam, L., Doghri, I., Noels, L.: An incremental-secant mean-field homogenization method with second statistical moments for elasto-visco-plastic composite materials. Mech. Mater. 114, 180–200 (2017). https://doi.org/10.1016/j.mechmat.2017.08.006

    Article  Google Scholar 

  20. Pierard, O., Gonzalez, C., Segurado, J., Llorca, J., Doghri, I.: Micromechanics of elasto-plastic materials reinforced with ellipsoidal inclusions. Int. J. Solids Struct. 44(21), 6945–6962 (2007). https://doi.org/10.1016/j.ijsolstr.2007.03.019

    Article  Google Scholar 

  21. Brassart, L., Doghri, I., Delannay, L.: Homogenization of elasto-plastic composites coupled with a nonlinear finite element analysis of the equivalent inclusion problem. Int. J. Solid Struct. 47, 716–729 (2010). https://doi.org/10.1016/j.ijsolstr.2009.11.013

    Article  Google Scholar 

  22. González, C., Segurado, J., Llorca, J.: Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models. J. Mech. Phys. Solids 52(7), 1573–1593 (2004). https://doi.org/10.1016/j.jmps.2004.01.002

    Article  Google Scholar 

  23. Ortolano, J.M., Hernandez, J.A., Oliver, J.: A comparative study on homogenization strategies for multi-scale analysis of materials. Barcelona, Spain, (2013). https://www.scipedia.com/public/Ortolano_et_al_2013a

  24. Segurado, J.: Micromecanica computacional de materiales compuestos reforzados conpartıculas. Tesis doctoral, Madrid (2004)

    Google Scholar 

  25. Ghossein, E., Lévesque, M.: A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites. Int. J. Solids Struct. 49(11–12), 1387–1398 (2012). https://doi.org/10.1016/j.ijsolstr.2012.02.021

    Article  Google Scholar 

  26. Ma, H., Xu, W., Li, Y.: Random aggregate model for mesoscopic structures and mechanical analysis of fully-graded concrete. Comput. Struct. 177, 103–113 (2016). https://doi.org/10.1016/j.compstruc.2016.09.005

    Article  Google Scholar 

  27. Wang, X., Zhang, M., Jivkov, A.P.: Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete. Int. J. Solids Struct. 80, 310–333 (2016). https://doi.org/10.1016/j.ijsolstr.2015.11.018

    Article  Google Scholar 

  28. Rekik, A., Auslender, F., Bornert, M., Zaoui, A.: Objective evaluation of linearization procedures in nonlinear homogenization: a methodology and some implications on the accuracy of micromechanical schemes. Int. J. Solid Struct. 44, 3468–3496 (2007). https://doi.org/10.1016/j.ijsolstr.2006.10.001

    Article  MathSciNet  Google Scholar 

  29. Matouš, K., Geers, M.G.D., Kouznetsova, V.G., Gillman, A.: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 330(1), 192–220 (2017). https://doi.org/10.1016/j.jcp.2016.10.070

    Article  MathSciNet  Google Scholar 

  30. Fedotov, A.F.: Quasi-numerical model for predicting the elastic moduli of matrix composites. Compos. Struct. 308, 116679 (2023). https://doi.org/10.1016/j.compstruct.2023.116679

    Article  Google Scholar 

  31. Llorca, J., Needleman, A., Suresh, S.: An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites. Acta Metal. Mater. 39, 2317–2335 (1991). https://doi.org/10.1016/0956-7151(91)90014-R

    Article  Google Scholar 

  32. Brassart, L., Stainier, L., Doghri, I., Delannay, L.: Homogenization of elasto-(visco) plastic composites based on an incremental variational principle. Int. J. Plast. 36, 86–112 (2012). https://doi.org/10.1016/j.ijplas.2012.03.010

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Fedotov.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, A. A numerical-analytical model of elasto-plastic deformation of matrix composites. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03918-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03918-x

Navigation