Skip to main content
Log in

Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Compared to the first-order shear deformation theory and other classical shell theories, the higher-order shear theory is deemed more accurate due to its superior ability to capture transverse shear effects, especially vital for precision in modeling thicker, doubly curved shell panels. Additionally, the third-order shear deformation theory (TSDT) is acknowledged for its computational efficiency compared to the 3D solution striking a balance between result precision and computational efficiency. This paper explores the static bending and free vibration analysis of a porous bi-directional functionally graded doubly curved sandwich shell. For the first time, a combination of TSDT theory with the p-version finite element method is applied, demonstrated for the analysis of bi-directional functionally graded doubly curved sandwich shell. In the initial phase, the mathematical formulation has been meticulously derived. Four models of sandwich FGM distributions, taking into account the porosity effect and comprising a blend of two ceramic materials and a metallic material, have been thoroughly explored. Subsequently, the study evaluates the effectiveness and accuracy of the formulation implemented in FORTRAN CODE through benchmark results, showcasing its adaptability for different shell panel geometries by adjusting the values of the radius of curvature. The latter part of the research delves into new findings related to bi-directional functionally graded porous sandwich FGM shell panels, investigating the effects of gradient indexes and porosity distribution on their behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. Zhang, C., et al.: Additive manufacturing of functionally graded materials: a review. Mater. Sci. Eng. A 764, 138209 (2019). https://doi.org/10.1016/J.MSEA.2019.138209

    Article  Google Scholar 

  2. Zhang, N., Khan, T., Guo, H., Shi, S., Zhong, W., Zhang, W.: Functionally graded materials: an overview of stability, buckling, and free vibration analysis. Adv. Mater. Sci. Eng. (2019). https://doi.org/10.1155/2019/1354150

    Article  Google Scholar 

  3. Ghatage, P.S., Kar, V.R., Sudhagar, P.E.: On the numerical modelling and analysis of multi-directional functionally graded composite structures: a review. Compos. Struct. 236, 111837 (2020). https://doi.org/10.1016/J.COMPSTRUCT.2019.111837

    Article  Google Scholar 

  4. Alipour, M.M., Shariyat, M., Shaban, M.: A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations. Int. J. Mech. Mater. Des. 6(4), 293–304 (2010). https://doi.org/10.1007/S10999-010-9134-2

    Article  Google Scholar 

  5. Nie, G., Zhong, Z.: Dynamic analysis of multi-directional functionally graded annular plates. Appl. Math. Model. 34(3), 608–616 (2010). https://doi.org/10.1016/J.APM.2009.06.009

    Article  MathSciNet  Google Scholar 

  6. Kermani, I.D., Ghayour, M., Mirdamadi, H.R.: Free vibration analysis of multi-directional functionally graded circular and annular plates. J. Mech. Sci. Technol. 26(11), 3399–3410 (2013). https://doi.org/10.1007/S12206-012-0860-2

    Article  Google Scholar 

  7. Shariyat, M., Alipour, M.M.: A power series solution for vibration and complex modal stress analyses of variable thickness viscoelastic two-directional FGM circular plates on elastic foundations. Appl. Math. Model. 37(5), 3063–3076 (2013). https://doi.org/10.1016/J.APM.2012.07.037

    Article  MathSciNet  Google Scholar 

  8. Mahinzare, M., Barooti, M.M., Ghadiri, M.: Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment. Microsyst. Technol. 24(3), 1695–1711 (2017). https://doi.org/10.1007/S00542-017-3544-0

    Article  Google Scholar 

  9. Lieu, Q.X., Lee, S., Kang, J., Lee, J.: Bending and free vibration analyses of in-plane bi-directional functionally graded plates with variable thickness using isogeometric analysis. Compos. Struct. 192, 434–451 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.03.021

    Article  Google Scholar 

  10. Shojaeefard, M.H., Saeidi-Googarchin, H., Mahinzare, M., Ghadiri, M.: Free vibration and critical angular velocity of a rotating variable thickness two-directional FG circular microplate. Microsyst. Technol. 24(3), 1525–1543 (2017). https://doi.org/10.1007/S00542-017-3557-8

    Article  Google Scholar 

  11. Wu, C.P., Yu, L.T.: Free vibration analysis of bi-directional functionally graded annular plates using finite annular prism methods. J. Mech. Sci. Technol. 33(5), 2267–2279 (2019). https://doi.org/10.1007/S12206-019-0428-5

    Article  Google Scholar 

  12. Thai, S., Nguyen, V.X., Lieu, Q.X.: Bending and free vibration analyses of multi-directional functionally graded plates in thermal environment: a three-dimensional Isogeometric analysis approach. Compos. Struct. 295, 115797 (2022). https://doi.org/10.1016/J.COMPSTRUCT.2022.115797

    Article  Google Scholar 

  13. Wang, C., Koh, J.M., Yu, T., Xie, N.G., Cheong, K.H.: Material and shape optimization of bi-directional functionally graded plates by GIGA and an improved multi-objective particle swarm optimization algorithm. Comput. Methods Appl. Mech. Eng. 366, 113017 (2020). https://doi.org/10.1016/J.CMA.2020.113017

    Article  MathSciNet  Google Scholar 

  14. Hashemi, S., et al.: Nonlinear free vibration analysis of in-plane bi-directional functionally graded plate with porosities resting on elastic foundations. Int. J. Appl. Mech. (2022). https://doi.org/10.1142/S1758825121501313

    Article  Google Scholar 

  15. Dehshahri, K.M.Z.S.A.A.: Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates. Adv. Nano Res. 8(2), 115–134 (2020). https://doi.org/10.12989/ANR.2020.8.2.115

    Article  Google Scholar 

  16. Ahlawat, N., Lal, R.: Effect of Winkler foundation on radially symmetric vibrations of bi-directional FGM non-uniform Mindlin’s circular plate subjected to in-plane peripheral loading. J. Solid Mech. 12(2), 455–475 (2020). https://doi.org/10.22034/JSM.2019.1873720.1466

    Article  Google Scholar 

  17. Esmaeilzadeh, M., Kadkhodayan, M.: Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping. Aerosp. Sci. Technol. 93, 105333 (2019). https://doi.org/10.1016/J.AST.2019.105333

    Article  Google Scholar 

  18. Ahlawat, N.: Numerical solution for buckling and vibration of bi-directional FGM circular plates. AIP Conf. Proc. 2061(1), 020020 (2019). https://doi.org/10.1063/1.5086642

    Article  Google Scholar 

  19. Sharma, P., Khinchi, A.: On frequency investigation of bi-directional FGM beam under thermal effect. Mater. Today Proc. 47, 6089–6092 (2021). https://doi.org/10.1016/J.MATPR.2021.05.022

    Article  Google Scholar 

  20. Tang, Y., Lv, X., Yang, T.: Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration. Compos. Part B Eng. 156, 319–331 (2019). https://doi.org/10.1016/J.COMPOSITESB.2018.08.140

    Article  Google Scholar 

  21. Barati, A., Hadi, A., Nejad, M.Z., Noroozi, R.: On vibration of bi-directional functionally graded nanobeams under magnetic field. Mech. Based Des. Struct. Mach. 50(2), 468–485 (2020). https://doi.org/10.1080/15397734.2020.1719507

    Article  Google Scholar 

  22. Zhao, L., Zhu, J., Wen, X.D.: Exact analysis of bi-directional functionally graded beams with arbitrary boundary conditions via the symplectic approach. Struct. Eng. Mech. 59(1), 101–122 (2016). https://doi.org/10.12989/SEM.2016.59.1.101

    Article  Google Scholar 

  23. Şimşek, M.: Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Compos. Struct. 133, 968–978 (2015). https://doi.org/10.1016/J.COMPSTRUCT.2015.08.021

    Article  Google Scholar 

  24. Lezgy-Nazargah, M.: Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerosp. Sci. Technol. 45, 154–164 (2015). https://doi.org/10.1016/J.AST.2015.05.006

    Article  Google Scholar 

  25. Tang, Y., Ding, Q.: Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads. Compos. Struct. 225, 111076 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2019.111076

    Article  Google Scholar 

  26. Truong, T.T., Nguyen-Thoi, T., Lee, J.: Isogeometric size optimization of bi-directional functionally graded beams under static loads. Compos. Struct. 227, 111259 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2019.111259

    Article  Google Scholar 

  27. Ohab-Yazdi, S.M.K., Kadkhodayan, M.: Free vibration of bi-directional functionally graded imperfect nanobeams under rotational velocity. Aerosp. Sci. Technol. 119, 107210 (2021). https://doi.org/10.1016/J.AST.2021.107210

    Article  Google Scholar 

  28. Nejad, M.Z., Hadi, A.: Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams. Int. J. Eng. Sci. 105, 1–11 (2016). https://doi.org/10.1016/J.IJENGSCI.2016.04.011

    Article  MathSciNet  Google Scholar 

  29. Zhao, L., Chen, W.Q., Lü, C.F.: Symplectic elasticity for bi-directional functionally graded materials. Mech. Mater. 54, 32–42 (2012). https://doi.org/10.1016/J.MECHMAT.2012.06.001

    Article  Google Scholar 

  30. Fariborz, J., Batra, R.C.: Free vibration of bi-directional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius. Compos. Struct. 210, 217–230 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2018.11.036

    Article  Google Scholar 

  31. Yang, T., Tang, Y., Li, Q., Yang, X.D.: Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams. Compos. Struct. 204, 313–319 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.07.045

    Article  Google Scholar 

  32. Pydah, A., Batra, R.C.: Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams. Compos. Struct. 172, 45–60 (2017). https://doi.org/10.1016/J.COMPSTRUCT.2017.03.072

    Article  Google Scholar 

  33. Ramteke, P.M., Panda, S.K.: Free vibrational behaviour of multi-directional porous functionally graded structures. Arab. J. Sci. Eng. 46(8), 7741–7756 (2021). https://doi.org/10.1007/S13369-021-05461-6/METRICS

    Article  Google Scholar 

  34. Nguyen-Ngoc, H., Cuong-Le, T., Nguyen, K.D., Nguyen-Xuan, H., Abdel-Wahab, M.: Three-dimensional polyhedral finite element method for the analysis of multi-directional functionally graded solid shells. Compos. Struct. 305, 116538 (2023). https://doi.org/10.1016/J.COMPSTRUCT.2022.116538

    Article  Google Scholar 

  35. Eroğlu, M., Esen, İ, Koç, M.A.: Thermal vibration and buckling analysis of magneto-electro-elastic functionally graded porous higher-order nanobeams using nonlocal strain gradient theory. Acta Mech. (2023). https://doi.org/10.1007/S00707-023-03793-Y

    Article  Google Scholar 

  36. Al-Osta, M.A., Al-Osta, M.A.: Wave propagation investigation of a porous sandwich FG plate under hugrothermal environments via a new first-order shear deformation theory. Steel Compos. Struct. 43(1), 117 (2022). https://doi.org/10.12989/SCS.2022.43.1.117

    Article  Google Scholar 

  37. Nabawy, A.E., et al.: Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements methods. Steel Compos. Struct. 45(5), 697 (2022). https://doi.org/10.12989/SCS.2022.45.5.697

    Article  Google Scholar 

  38. Kumar, H.S.N., Kattimani, S., Kumar, H.S.N., Kattimani, S.: Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities. Struct. Eng. Mech. 82(4), 477 (2022). https://doi.org/10.12989/SEM.2022.82.4.477

    Article  Google Scholar 

  39. Shan, X., Huang, A., Shan, X., Huang, A.: Intelligent simulation of the thermal buckling characteristics of a tapered functionally graded porosity-dpependent rectangular small-scale beam. Adv. Nano Res. 12(3), 281 (2022). https://doi.org/10.12989/ANR.2022.12.3.281

    Article  MathSciNet  Google Scholar 

  40. Zhou, J., et al.: Intelligent modeling to investigate the stability of two-dimensional functionally graded porosity-dependent nanobeam. Comput. Concr. 30(2), 85 (2022). https://doi.org/10.12989/CAC.2022.30.2.085

    Article  Google Scholar 

  41. Zanjanchi, M., Ghadiri, M., Sabouri-Ghomi, S.: Dynamic stability and bifurcation point analysis of FG porous core sandwich plate reinforced with graphene platelet. Acta Mech. 234(10), 5015–5037 (2023). https://doi.org/10.1007/S00707-023-03638-8/METRICS

    Article  MathSciNet  Google Scholar 

  42. Chorfi, S.M., Houmat, A.: Non-linear free vibration of a functionally graded doubly-curved shallow shell of elliptical plan-form. Compos. Struct. 92(10), 2573–2581 (2010). https://doi.org/10.1016/J.COMPSTRUCT.2010.02.001

    Article  Google Scholar 

  43. Belalia, S.A.: A curved hierarchical finite element method for the nonlinear vibration analysis of functionally graded sandwich elliptic plates. Mech. Adv. Mater. Struct. 26(13), 1115–1129 (2018). https://doi.org/10.1080/15376494.2018.1430277

    Article  Google Scholar 

  44. Houmat, A.: Three-dimensional free vibration analysis of variable stiffness laminated composite rectangular plates. Compos. Struct. 194, 398–412 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.04.028

    Article  Google Scholar 

  45. Stoykov, S., Ribeiro, P.: Vibration analysis of rotating 3D beams by the p-version finite element method. Finite Elem. Anal. Des. 65, 76–88 (2013). https://doi.org/10.1016/J.FINEL.2012.10.008

    Article  MathSciNet  Google Scholar 

  46. Van Vinh, P.: Analysis of bi-directional functionally graded sandwich plates via deformation theory and finite element method. J. Sandwich Struct. Mater. (2021). https://doi.org/10.1177/10996362211025811

    Article  Google Scholar 

  47. Daikh, A.A., Zenkour, A.M.: Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory. Mater. Res. Express 6(11), 115707 (2019). https://doi.org/10.1088/2053-1591/AB48A9

    Article  Google Scholar 

  48. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745–752 (1984). https://doi.org/10.1115/1.3167719

    Article  Google Scholar 

  49. Panda, S.K., Singh, B.N.: Nonlinear free vibration of spherical shell panel using higher order shear deformation theory—a finite element approach. Int. J. Press. Vessel. Pip. 86(6), 373–383 (2009). https://doi.org/10.1016/J.IJPVP.2008.11.023

    Article  Google Scholar 

  50. Belalia, S.A.: Investigation of the mechanical properties on the large amplitude free vibrations of the functionally graded material sandwich plates. J. Sandwich Struct. Mater. 21(3), 895–916 (2017). https://doi.org/10.1177/1099636217701299

    Article  Google Scholar 

  51. Houmat, A.: Mapped infinite p-element for two-dimensional problems of unbounded domains. Comput. Geotech. 35(4), 608–615 (2008). https://doi.org/10.1016/J.COMPGEO.2007.09.007

    Article  Google Scholar 

  52. Reddy, J.N.: Energy principles and variational methods in applied mechanics (2017). Accessed: Feb. 14, 2024. https://www.wiley.com/en-gb/Energy+Principles+and+Variational+Methods+in+Applied+Mechanics%2C+3rd+Edition-p-9781119087397

  53. Singh, V.K., Panda, S.K.: Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin-Walled Struct. 85, 341–349 (2014). https://doi.org/10.1016/J.TWS.2014.09.003

    Article  Google Scholar 

  54. Hosseini-Hashemi, S., Fadaee, M.: On the free vibration of moderately thick spherical shell panel—a new exact closed-form procedure. J. Sound Vib. 330(17), 4352–4367 (2011). https://doi.org/10.1016/J.JSV.2011.04.011

    Article  Google Scholar 

  55. Fan, S.C., Luah, M.H.: Free vibration analysis of arbitrary thin shell structures by using spline finite element. J. Sound Vib. 179(5), 763–776 (1995). https://doi.org/10.1006/JSVI.1995.0051

    Article  Google Scholar 

  56. Chern, Y.C., Chao, C.C.: Comparison of natural frequencies of laminates by 3-D theory, part II: curved panels. J. Sound Vib. 230(5), 1009–1030 (2000). https://doi.org/10.1006/JSVI.1999.2454

    Article  Google Scholar 

  57. Rachid, A., et al.: Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs. Thin-Walled Struct. 172, 108783 (2022). https://doi.org/10.1016/J.TWS.2021.108783

    Article  Google Scholar 

  58. Sayyad, A.S., Ghugal, Y.M.: Static and free vibration analysis of doubly-curved functionally graded material shells. Compos. Struct. 269(May), 114045 (2021). https://doi.org/10.1016/j.compstruct.2021.114045

    Article  Google Scholar 

  59. Zenkour, A.M.: A comprehensive analysis of functionally graded sandwich plates: part 2—buckling and free vibration. Int. J. Solids Struct. 42(18–19), 5243–5258 (2005). https://doi.org/10.1016/J.IJSOLSTR.2005.02.016

    Article  Google Scholar 

  60. Nguyen, V.H., Nguyen, T.K., Thai, H.T., Vo, T.P.: A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates. Compos. Part B Eng. 66, 233–246 (2014). https://doi.org/10.1016/J.COMPOSITESB.2014.05.012

    Article  Google Scholar 

  61. Zenkour, A.M.: Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory. J. Sandwich Struct. Mater. 15(6), 629–656 (2013). https://doi.org/10.1177/1099636213498886

    Article  Google Scholar 

  62. Neves, A.M.A., et al.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B Eng. 44(1), 657–674 (2013). https://doi.org/10.1016/J.COMPOSITESB.2012.01.089

    Article  Google Scholar 

  63. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R., Bedia, E.A.A.: A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets. J. Sandwich Struct. Mater. 15(6), 671–703 (2013). https://doi.org/10.1177/1099636213498888

    Article  Google Scholar 

Download references

Acknowledgements

The Authors extend their appreciation to the Deanship Scientific Research at King Khalid University for funding this work through large group Research Project under Grant Number: RGP2/422/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adbelouahed Tounsi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhdar, Z., Chorfi, S.M., Belalia, S.A. et al. Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03909-y

Navigation