Skip to main content
Log in

Fractional gradient system and generalized Birkhoff system

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

New fractional gradient representation of generalized Birkhoff system is studied. New definition of fractional gradient system for generalized Birkhoff system is given. New condition for generalized Birkhoff system transforms into arbitrary fractional-order (integer or non-integer) gradient system is deduced. The fractional dynamical modelling method by fractional gradient system is also discussed. We apply our results into several classical nonlinear models, such as van der Pol equation, Hénon–Heiles equation and four-order generalized Birkhoff’s equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential equations, dyanmical systems, and an introduction to chaos (in Chinese), 3rd edition, J C Fu. H Y L translate. Harbin Institute of Technology Press, Heilongjiang (2020)

    Google Scholar 

  2. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. Lond. A 357, 1021–1045 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Mei, F.X., Wu, H.B.: Gradient Representations of Constrained Mechancial Systems (I, II) (in Chinese). Science Press, Beijing (2015)

    Google Scholar 

  4. Mei, F.X., Wu, H.B.: The generalized Birkhoff system and a type of combined gradient system. Acta Phys. Sin. 64, 184501–184505 (2015)

    Article  Google Scholar 

  5. Chen, X.W., Mei, F.X.: Constrained mechanical systems and gradient systems with strong Lyapunov functions. Mech. Res. Commun. 76, 91–95 (2016). https://doi.org/10.1016/j.mechrescom.2016.07.003

    Article  Google Scholar 

  6. Liu, C., Liu, S.X., Mei, F.X.: Stability analysis of a simple rheonomic nonholonomic constrained system. Chin. Phys. B 25, 124501 (2016)

    Article  ADS  Google Scholar 

  7. Birkhoff, G.D.: Dynamical Systems. AMS College Publications, Providence (1927)

    Google Scholar 

  8. Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulations of nonholonomic constrained system. Rep. Math. Phys. 47, 313–322 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  10. Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems, UFN, Moscow (1997)

  11. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian Systems (in Chinese). BIT Press, Beijing (1996)

    Google Scholar 

  12. Mei, F.X.: The Noether’s theory of Birkhoffian systems. Sci. China Ser. A 36, 1456–1467 (1993)

    MathSciNet  Google Scholar 

  13. Mei, F.X.: The Generalized Birkhoff System Dynamics. Science Press, Beijing (2013)

    Google Scholar 

  14. Mei, F.X., Xie, J., Gang, T.: A conformal invariance for generalized Birkhoff equations. Acta Mech. Sin. 24, 583–585 (2008). https://doi.org/10.1007/s10409-008-0176-8

    Article  ADS  MathSciNet  Google Scholar 

  15. Min, L.Y., Mei, F.X.: Stability for manifolds of equilibrium states of generalized Birkhoff system. Chin. Phys. B 19, 080302 (2010). https://doi.org/10.1088/1674-1056/19/8/080302

    Article  Google Scholar 

  16. Wang, P., Fang, J.H., Wang, X.M.: A generalized Mei conserved quantities and Mei symmetry for Birkhoff systems. Chin. Phys. B 18, 1312–1315 (2009)

    Article  ADS  Google Scholar 

  17. Zhang, Y.: Lie symmetry and invariants for a generalized Birkhoffian system on time scales. Chaos Solitons Fractals 128, 306–312 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mei, F.X., Wu, H.B.: Bifurcation for the generalized Birkhoffian system. Chin. Phys. B 24, 054501 (2015). https://doi.org/10.1088/1674-1056/24/5/054501

    Article  ADS  Google Scholar 

  19. Jiang, W.A., Li, L., Li, Z., et al.: Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems. Nonlinear Dyn. 67, 1075–1081 (2012). https://doi.org/10.1007/s11071-011-0051-1

    Article  MathSciNet  Google Scholar 

  20. Chen, X.W., Li, Y.M.: Equilibrium points and periodic orbits of higher order autonomous generalized Birkhoff system. Acta Mech. 224, 1593–1599 (2013). https://doi.org/10.1007/s00707-013-0810-9

    Article  MathSciNet  Google Scholar 

  21. Liu, S.X., Liu, C., Hua, W., Guo, Y.X.: Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm. Chin. Phys. B 25, 114501 (2016)

    Article  ADS  Google Scholar 

  22. Wang, P.: Conformal invariance and conserved quantities of mechanical system with unilateral constraints. Commun. Nonlinear Sci. Numer. Simul. 59, 463–471 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wang, P.: Perturbation to symmetry and adiabatic invariants of discrete nonholonomicnonconservative mechanical system. Nonlinear Dyn. 68(1–2), 53–62 (2012)

    Article  Google Scholar 

  24. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York-London (1974)

    Google Scholar 

  25. Samko, S.G., Killbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and applications, Gordon and Breach (1993)

  26. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  27. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  Google Scholar 

  29. Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, 67–74 (2008)

    Article  MathSciNet  Google Scholar 

  30. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Caculus to Dynamics Of Particles, Fields and Media. Higer Education Press, Beijing (2010)

    Book  Google Scholar 

  31. El-Nabulsi, R.A., Anukool, W.: Fractal dimensions in fluid dynamics and their effects on the Rayleigh problem, the Burger's vortex and the Kelvin–Helmholtz instability. Acta Mech. 233, 363–381 (2022)

  32. Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. 226, 829–844 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zhang, H.B., Chen, H.B.: Generalized variational problems and Birkhoff equations. Nonlinear Dyn. 83, 347–354 (2016)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Y., Jia, Y.D.: Generalization of Mei symmetry approach to fractional Birkhoffian mechanics. Chaos Solitons Fractals 166, 112971 (2023)

    Article  MathSciNet  Google Scholar 

  35. Song, C.J., Agrawal, O.P.: Hamiltonian formulation of systems described using fractional singular Lagrangian. Acta Appl. Math. 172, 9 (2021)

    Article  MathSciNet  Google Scholar 

  36. Wang, P.: Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane. Chin. Phys. B 32, 074501 (2023)

    Article  ADS  Google Scholar 

  37. Wang, P.: Euler–Lagrange equations and Noether’s theorem of multi-scale mechano-electrophysiological coupling model of neuron membrane dynamics. J. Theor. Appl. Mech. 61(4), 847–856 (2023)

  38. Tarasov, V.E.: Fractional generalization of gradient system. Lett. Math. Phys. 73, 49–58 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  39. Tarasov, V.E.: Fractional generalization of gradient and Hamiltonian systems. J. Phys. A 38, 5929–5943 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  40. Mei, F.X., Cui, J.C., Wu, H.B.: A gradient representation and a fractional gradient representation of Birkhoff system. Trans. Beijing Inst. Technol. 32, 1290–1300 (2012)

    MathSciNet  Google Scholar 

  41. Chen, X.W., Zhao, G.L., Mei, F.X.: A fractional gradient representation of the Poincaré equations. Nonlinear Dyn. 73, 579–582 (2013)

    Article  Google Scholar 

  42. Lou, Z.M., Mei, F.X.: A second gradient representation of constrained mechanical system. Acta Phys. Sin. 61, 024502 (2012)

    Article  Google Scholar 

  43. Luo, S.K., Li, L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. 73, 339–346 (2013)

    Article  MathSciNet  Google Scholar 

  44. Wang, P.: A new fractional gradient representation of Birkhoff systems. Math. Probl. Eng. 2022, 4493270 (2022). https://doi.org/10.1155/2022/4493270

    Article  Google Scholar 

  45. Wang, P., Gao, F.: Generalized Hamilton system and fractional gradient system. AIP Adv. 13, 125112 (2023)

  46. Cottrill-Shepherd, K., Naber, M.: Fractional differential forms. J. Math. Phys. 42, 2203–2212 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  47. Luo, S.K., Xin, B., He, J.M.: A new method of fractional dynamics fractional generalized Hamilton method with additional term, and its applications to physics. Int. J. Theor. Phys. 60, 3578–3598 (2021)

Download references

Acknowledgements

P Wang thanks to anonymous reviewers’ constructive comments to improve our paper and the fund support of National Natural Science foundation of China (NSFC, Nos. 12272148, 11772141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liu, Bq. Fractional gradient system and generalized Birkhoff system. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03900-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03900-7

Navigation