Skip to main content
Log in

Generalized variational problems and Birkhoff equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a generalized fractional Birkhoffian equations in terms of Agrawal’s new operators. By choosing different parameter set, we may obtain six kinds of Birkhoffian equations in terms of Riemann–Liouville, Caputo, Riesz and Riesz–Caputo fractional derivatives, respectively. The previous results can be obtained as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lanczos, C.: The Variational Principles of Mechanics. Oxford University Press, London (1957)

    MATH  Google Scholar 

  2. Logan, J.D.: Invariant Variational Principles. Academic Press, New York (1977)

    Google Scholar 

  3. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  4. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  5. Gao, X.Y.: Comment on “Solitons, Bäcklund transformation, and Lax pair for the \((2+1)\)-dimensional Boiti–Leon–Pempinelli equation for the water waves” [J. Math. Phys. 51, 093519 (2010)]. J. Math. Phys. 56, 014101 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, X.Y.: Variety of the cosmic plasmas: general variable-coefficient Korteweg–de Vries–Burgers equation with experimental/observational support. EPL 110, 15002 (2015)

    Article  Google Scholar 

  7. Gao, X.Y.: Bäcklund transformation and shock-wave-type solutions for a generalized \((3+1)\)-dimensional variable-coefficient B-type Kadomtsev–Petviasvili equation in fluid mechanics. Ocean Eng. 96, 245–247 (2015)

    Article  Google Scholar 

  8. Zhen, H.L., Tian, B., Wang, Y.F., Liu, D.Y.: Soliton solutions and chaotic motions of the Zakharov equations for the Langmuir wave in the plasma. Phys. Plasmas 22, 032307 (2015)

    Article  Google Scholar 

  9. Sun, W.R., Tian, B., Jiang, Y., Zhen, H.L.: Optical rogue waves associated with the negative coherent coupling in an isotropic medium. Phys. Rev. E 91, 023205 (2015)

    Article  Google Scholar 

  10. Wang, Y.F., Tian, B., Wang, M., Zhen, H.L.: Solitons via an auxiliary function for an inhomogeneous higher-order nonlinear Schrödinger equation in optical fiber communications. Nonlinear Dyn. 79, 721–729 (2015)

    Article  MathSciNet  Google Scholar 

  11. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, Longhorne (1993)

    MATH  Google Scholar 

  12. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Eqautions of Fractional orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)

    Google Scholar 

  13. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  14. Hilfer, R.: Applications of Fractals and Fractional Calculus in Physics. World Scientific Publishing Company, Singapore (2002)

    Google Scholar 

  15. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2004)

    Google Scholar 

  17. EI-Nabulsi, A.R.: A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 14(4), 289–298 (2005)

    Google Scholar 

  18. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publisher Inc, Connecticut (2006)

    Google Scholar 

  19. Frederico, G.S.F., Torres, D.F.M.: Constants of motion for fractional action-like variational problems. Int. J. Appl. Math. 19(1), 97–104 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Tarasov, V.E., Zaslavsky, G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A Math. Gen. 39, 9797–9815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cresson, J.: Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48, 033504 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Atanacković, T.M.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A Math. Theor. 41, 095201 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, S., Fu, H., Fu, J.L.: Symetries of Hamiltonian systems with fractional derivatives. Sci. China Ser. E 54(10), 1847–1853 (2011)

    Google Scholar 

  25. Li, L., Luo, S.K.: Fractional generalized Hamiltonian systems. Acta Mech. (2013). doi:10.1007/s00707-013-0826-1

  26. Zhang, Y.: Fractional differential equations of motion in terms of combined Riemann–Liouville derivatives. Chin. Phys. 21(8), 084502 (2012)

    Article  Google Scholar 

  27. Kong, X.L., Wu, H.B., Mei, F.X.: Discrete optimal control for Birkhoffian systems. Nonlinear Dyn. 74, 711–719 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, X.W., Zhao, G.L., Mei, F.X.: A fractional gradient representation of the Poincare equations. Nonlinear Dyn. 73, 579–582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  30. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  31. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  32. Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 40, 6287–6303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Agrawal, O.P.: Generalized Euler–Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J. Vib. Control 13(9–10), 1217–1237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Almeida, R.: Fractional variational problems with the Riesz–Caputo derivative. Appl. Math. Lett. 25, 142–148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Birkhoff, G.D.: Dynamical Systems. AMS College Publisher, Providence (1927)

    MATH  Google Scholar 

  36. Santilli, R.M.: Foundations of Theoretical Mechanics I. Springer, New York (1978)

  37. Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)

    Book  MATH  Google Scholar 

  38. Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems. UFN, Moscow (1997). (in Russian)

    Google Scholar 

  39. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian Systems. Beijing Institute of Technology Press, Beijing (1999). (in Chinese)

    Google Scholar 

  40. Mei, F.X.: Noether theory of Birkhoffian system. Sci. China Ser. A 36(12), 1456–1467 (1993)

    MathSciNet  MATH  Google Scholar 

  41. Mei, F.X.: On the Birkhoffian mechanics. Int. J. Non-linear Mech. 36(5), 817–834 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulations of nonholonomic constrained systems. Rep. Math. Phys. 47(3), 313–322 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Y.: Poisson theory and integration method of Birkhoffian systems in the event space. Chin. Phys. B 19(8), 080301 (2010)

    Article  Google Scholar 

  44. Wu, H.B., Mei, F.X.: Type of integral and reduction for a generalized Birkhoffian system. Chin. Phys. B 20(10), 104501 (2011)

    Article  Google Scholar 

  45. Zhang, H.B., Chen, L.Q., Gu, S.L., Liu, C.Z.: The discrete variational principle and the first integrals of Birkhoff systems. Chin. Phys. 16(3), 582–587 (2007)

    Article  Google Scholar 

  46. Zhang, H.B., Gu, S.L.: Lie symmetries and conserved quantities of Birkhoff systems with unilateral constraints. Chin. Phys. 11(8), 765–770 (2002)

    Article  Google Scholar 

  47. Zhang, H.B.: Noether theory of Birkhoff systems with unilateral constraints. Acta Phys. Sin. 54(10), 1837–1841 (2001) (in Chinese)

  48. Zhang, Y., Zhou,Y.: Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0831-x

  49. Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. (2014). doi:10.1007/s00707-014-1230-1

  50. Agrawal, O.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. (2010). doi:10.1006/j.camwa.2009.08.029

Download references

Acknowledgments

We express our sincere thinks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 10872037, 11742063 and the Natural Science Foundation of Anhui Province under Grant No. 070416226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HB., Chen, HB. Generalized variational problems and Birkhoff equations. Nonlinear Dyn 83, 347–354 (2016). https://doi.org/10.1007/s11071-015-2331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2331-7

Keywords

Navigation