Skip to main content

Advertisement

Log in

The effects of the foam and FGM distributions on thermomechanical buckling response of sandwich plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study investigates the thermomechanical buckling properties of sandwich plates containing functionally graded layers, isotropic layers, and foam core layers. The sinusoidal high order shear theory is employed as a modeling tool to accomplish this objective. The energy equation of the sandwich plate is utilized by incorporating the displacement and strain of each layer into the equations of motion. Moreover, the equation accounts for the nonlinearity of temperature escalation. The sandwich plate is created by layering functional grading and/or applying ceramic Si3N4 (silicon nitride) and metal Inconel718 material in an isotropic manner. This approach is used to analyze five distinct plate behaviors. This study examines five symmetrical sandwich plates, which is a departure from previous research. Some models include a foam core layer with a void fraction of 60%. The analysis findings suggest that the foam void ratio, foam distribution within the layer height, and the materials used for different layer types have a significant impact on the buckling behavior of the sandwich plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lawn, B.R., Bhowmick, S., Bush, M.B., Qasim, T., Rekow, E.D., Zhang, Y.: Failure modes in ceramic-based layer structures: A basis for materials design of dental crowns. J. Am. Ceram. Soc. (2007). https://doi.org/10.1111/j.1551-2916.2007.01585.x

    Article  Google Scholar 

  2. Chedad, A., Elmeiche, N., Hamzi, S., Abbad, H.: Effect of porosity on the thermal buckling of functionally graded material (FGM) sandwich plates under different boundary conditions. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2148691

    Article  Google Scholar 

  3. Hamza Madjid, B., Bouderba, B.: Buckling analysis of FGM plate exposed to different loads conditions. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2068576

    Article  Google Scholar 

  4. Zenkour, A.M.: Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory. J. Sandw. Struct. Mater. (2013). https://doi.org/10.1177/1099636213498886

    Article  Google Scholar 

  5. Mei, S.: On the origin of preferred-basis and evolution pattern of wave function. (2013). https://doi.org/10.48550/arxiv.1311.4405

  6. Dong, D.T., Van Dung, D.: nonlinear vibration of functionally graded material sandwich doubly curved shallow shells reinforced by FGM stiffeners. Part 1: governing equations. Vietnam J. Mech. (2017). https://doi.org/10.15625/0866-7136/9692

    Article  Google Scholar 

  7. Singh, D.K., Banerjee, A., Datta, D.: Numerical investigation of ballistic impact on multilayered ceramic/metal target plate with or without air gap. Proc. Inst. Mech. Eng. Part L Mater. Des. Appl. (2022). https://doi.org/10.1177/14644207221144371

    Article  Google Scholar 

  8. Yang, J., Hao, Y.X., Zhang, W., Kitipornchai, S.: nonlinear dynamic response of a functionally graded plate with a through-width surface crack. Nonlinear Dyn. (2009). https://doi.org/10.1007/s11071-009-9533-9

    Article  Google Scholar 

  9. Chen, L., Zhuo, Y., Xu, R., Wang, H.: Buckling and post-buckling characteristics of stiffened panels under compression-shear load. J. Phys. Conf. Ser. (2022). https://doi.org/10.1088/1742-6596/2403/1/012008

    Article  Google Scholar 

  10. Royer, F., Pellegrino, S.: Experimentally probing the stability of thin-shell structures under pure bending. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. (2023). https://doi.org/10.1098/rsta.2022.0024

    Article  Google Scholar 

  11. Czajkowski, J., Bruinderink, L.G., Hülsing, A., Schaffner, C., Unruh, D.: Post-quantum security of the sponge. Construction (2018). https://doi.org/10.1007/978-3-319-79063-3\_9

    Article  Google Scholar 

  12. Pandey, S., Pradyumna, S., Gupta, S.K.: Static and dynamic analyses of functionally graded sandwich skew shell panels. J. Sandw. Struct. Mater. (2021). https://doi.org/10.1177/1099636220983653

    Article  Google Scholar 

  13. Fazzolari, F.A.: Modal characteristics of P- And S-FGM plates with temperature-dependent materials in thermal environment. J. Therm. Stress. (2016). https://doi.org/10.1080/01495739.2016.1189772

    Article  Google Scholar 

  14. Shahraki, H., Riahi, H., Izadinia, M., Talaeitaba, S.B.: Mindlin’s strain gradient theory for vibration analysis of FG-CNT-reinforced composite nanoplates resting on Kerr foundation in thermal environment. J. Thermoplast. Compos. Mater. (2019). https://doi.org/10.1177/0892705719843175

    Article  Google Scholar 

  15. Li, D., Zhu, H., Gong, X.: Buckling analysis of functionally graded sandwich plates under both mechanical and thermal loads. Materials (Basel) (2021). https://doi.org/10.3390/ma14237194

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ansari, R., Gholami, R., Rouhi, H.: Geometrically nonlinear free vibration analysis of shear deformable magneto-electro-elastic plates considering thermal effects based on a novel variational approach. Thin-Walled Struct. 135, 12–20 (2019). https://doi.org/10.1016/j.tws.2018.10.033

    Article  Google Scholar 

  17. Huang, C.-S., Lee, H.P., Li, P.-Y., Chang, M.J.: Three-dimensional free vibration analyses of preloaded cracked plates of functionally graded materials via the MLS-Ritz method. Materials (Basel) (2021). https://doi.org/10.3390/ma14247712

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bao, S., Zhang, Y., Zeng, K., Zhang, W.: Optimization design of functionally graded ultra-high performance cementitious composite on flexural behavior. Struct. Concr. (2022). https://doi.org/10.1002/suco.202200669

    Article  Google Scholar 

  19. Cong, P.H., Duc, N.D.: Nonlinear dynamic response of ES-FGM plates under blast load. Vietnam J. Mech. (2018). https://doi.org/10.15625/0866-7136/9840

    Article  Google Scholar 

  20. Patnaik, S.: Post-buckling analysis of a simply supported compound beams made of two symmetrically distributed materials under uniform thermal loading. Iosr J. Mech. Civ. Eng. (2013). https://doi.org/10.9790/1684-0927080

    Article  Google Scholar 

  21. Khoa, N.L.D., Tung, H.V.: Nonlinear thermo-mechanical stability of shear deformable FGM sandwich shallow spherical shells with tangential edge constraints. Vietnam J. Mech. (2017). https://doi.org/10.15625/0866-7136/9810

    Article  Google Scholar 

  22. Fani, M., Taheri-Behrooz, F.: Analytical study of thermal buckling and post-buckling behavior of composite beams reinforced with SMA by reddy bickford theory. J. Intell. Mater. Syst. Struct. (2021). https://doi.org/10.1177/1045389x211011668

    Article  Google Scholar 

  23. Paspasan, M.N.S., Canoy, S.R.: Edge domination and total edge domination in the join of graphs. Appl. Math. Sci. (2016). https://doi.org/10.12988/ams.2016.6130

    Article  Google Scholar 

  24. Lee, A., Jiménez, F.J., Marthelot, J., Hutchinson, J.W., Reis, P.M.: The geometric role of precisely engineered imperfections on the critical buckling load of spherical elastic shells. J. Appl. Mech. (2016). https://doi.org/10.1115/1.4034431

    Article  Google Scholar 

  25. Uzun, B., Civalek, Ö., Yaylı, M.Ö.: Critical buckling loads of embedded perforated microbeams with arbitrary boundary conditions via an efficient solution method. Zeitschrift für Naturforsch. A. 78, 195–207 (2023). https://doi.org/10.1515/zna-2022-0230

    Article  ADS  CAS  Google Scholar 

  26. Civalek, Ö., Uzun, B., Yaylı, M.Ö.: Thermal buckling analysis of a saturated porous thick nanobeam with arbitrary boundary conditions. J. Therm. Stress. 46, 1–21 (2023). https://doi.org/10.1080/01495739.2022.2145401

    Article  Google Scholar 

  27. Yayli, M.Ö., Asa, E.: Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics. Microsyst. Technol. 26, 499–508 (2020). https://doi.org/10.1007/s00542-019-04512-1

    Article  CAS  Google Scholar 

  28. Deng, Y., Miranda, P.M.A., Pajares, A., Guiberteau, F., Lawn, B.R.: Fracture of ceramic/ceramic/polymer trilayers for biomechanical applications. J. Biomed. Mater. Res. (2003). https://doi.org/10.1002/jbm.a.10161

    Article  Google Scholar 

  29. Mesmoudi, S., Askour, O., Rammane, M., Bourihane, O., Tri, A., Braikat, B.: Spectral chebyshev method coupled with a high order continuation for nonlinear bending and buckling analysis of functionally graded sandwich beams. Int. J. Numer. Methods Eng. (2022). https://doi.org/10.1002/nme.7105

    Article  MathSciNet  Google Scholar 

  30. Rahimabadi, A.A., Bordas, S., Bordas, S.: Vibration of functionally graded material plates with Cutouts & Cracks in thermal environment. Key Eng. Mater. (2013). https://doi.org/10.4028/www.scientific.net/kem.560.157

    Article  Google Scholar 

  31. Cong, P.H., Chien, T.M., Khoa, N.D., Duc, N.D.: Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerosp. Sci. Technol. 77, 419–428 (2018). https://doi.org/10.1016/j.ast.2018.03.020

    Article  Google Scholar 

  32. Tung, H.V.: Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties. Compos. Struct. 131, 1028–1039 (2015). https://doi.org/10.1016/j.compstruct.2015.06.043

    Article  Google Scholar 

  33. Adhikari, B., Dash, P., Singh, B.N.: Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory. Compos. Struct. 251, 112597 (2020). https://doi.org/10.1016/j.compstruct.2020.112597

    Article  Google Scholar 

  34. Chaabani, H., Mesmoudi, S., Boutahar, L., Bikri, K.E.: A high-order finite element continuation for buckling analysis of porous FGM plates. Eng. Struct. 279, 115597 (2023). https://doi.org/10.1016/j.engstruct.2023.115597

    Article  Google Scholar 

  35. Chaabani, H., Mesmoudi, S., Boutahar, L., El Bikri, K.: A high-order continuation for bifurcation analysis of functionally graded material sandwich plates. Acta Mech. 233, 2125–2147 (2022). https://doi.org/10.1007/s00707-022-03216-4

    Article  MathSciNet  Google Scholar 

  36. Yaghoobi, H., Taheri, F.: Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos. Struct. 252, 112700 (2020). https://doi.org/10.1016/j.compstruct.2020.112700

    Article  Google Scholar 

  37. Hong Cong, P., Anh, V.M., Dinh Duc, N.: Nonlinear dynamic response of eccentrically stiffened FGM plate using Reddy’s TSDT in thermal environment. J. Therm. Stress. 40, 704–732 (2017). https://doi.org/10.1080/01495739.2016.1261614

    Article  Google Scholar 

  38. Hao, Y.X., Zhang, W., Yang, J.: Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Compos. Part B Eng. 42, 402–413 (2011). https://doi.org/10.1016/j.compositesb.2010.12.010

    Article  Google Scholar 

  39. Zhang, W., Hao, Y.X., Yang, J.: Nonlinear dynamics of FGM circular cylindrical shell with clamped–clamped edges. Compos. Struct. 94, 1075–1086 (2012). https://doi.org/10.1016/j.compstruct.2011.11.004

    Article  Google Scholar 

  40. Wang, A., Chen, H., Hao, Y., Zhang, W.: Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results Phys. 9, 550–559 (2018). https://doi.org/10.1016/j.rinp.2018.02.062

    Article  ADS  Google Scholar 

  41. Mao, J.-J., Zhang, W.: Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos. Struct. 216, 392–405 (2019). https://doi.org/10.1016/j.compstruct.2019.02.095

    Article  Google Scholar 

  42. Wang, Y., Zhang, W.: On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams. Compos. Struct. 296, 115880 (2022). https://doi.org/10.1016/j.compstruct.2022.115880

    Article  CAS  Google Scholar 

  43. Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo, R., Mukhopadhyay, T.: Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core. Acta Mech. Solida Sin. 35, 1–16 (2022). https://doi.org/10.1007/s10338-021-00295-z

    Article  Google Scholar 

  44. Özmen, R., Kılıç, R., Esen, I.: Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2124000

    Article  Google Scholar 

  45. Wattanasakulpong, N., Ungbhakorn, V.: Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp. Sci. Technol. 32, 111–120 (2014). https://doi.org/10.1016/j.ast.2013.12.002

    Article  Google Scholar 

  46. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21, 593–626 (1998). https://doi.org/10.1080/01495739808956165

    Article  Google Scholar 

  47. Keibolahi, A., Kiani, Y., Eslami, M.R.: Nonlinear dynamic snap-through and vibrations of temperature-dependent FGM deep spherical shells under sudden thermal shock. Thin-Walled Struct. 185, 1620–1633 (2023). https://doi.org/10.1016/j.tws.2023.110561

    Article  Google Scholar 

  48. Kiani, Y., Eslami, M.R.: An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos. Part B Eng. 45, 101–110 (2013). https://doi.org/10.1016/j.compositesb.2012.09.034

    Article  Google Scholar 

  49. Zhang, D.G.: Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica 49, 283–293 (2014). https://doi.org/10.1007/s11012-013-9793-9

    Article  MathSciNet  Google Scholar 

  50. Radwan, A.F.: Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory. J. Sandw. Struct. Mater. 21, 289–319 (2019). https://doi.org/10.1177/1099636217693557

    Article  Google Scholar 

  51. Zenkour, A.M., Sobhy, M.: Thermal buckling of various types of FGM sandwich plates. Compos. Struct. 93, 93–102 (2010). https://doi.org/10.1016/j.compstruct.2010.06.012

    Article  Google Scholar 

  52. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000). https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3c663::AID-NME787%3e3.0.CO;2-8

    Article  Google Scholar 

  53. Seo, S., Min, O., Yang, H.: Constitutive equation for Ti–6Al–4V at high temperatures measured using the SHPB technique. Int. J. Impact Eng 31, 735–754 (2005). https://doi.org/10.1016/J.IJIMPENG.2004.04.010

    Article  Google Scholar 

  54. Sobhy, M.: Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct. 99, 76–87 (2013). https://doi.org/10.1016/j.compstruct.2012.11.018

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Eren.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ismail Esen: Supervisor of the study

Appendix

Appendix

The shape functions or all boundary conditions is presented in below table: See Table 4.

Table 4 \(x\)m and \(y\)n functions for different boundary conditions [54] (Sobhy 2013)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esen, I., Garip, Z.S. & Eren, E. The effects of the foam and FGM distributions on thermomechanical buckling response of sandwich plates. Acta Mech 235, 1319–1343 (2024). https://doi.org/10.1007/s00707-023-03808-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03808-8

Navigation