Skip to main content
Log in

A generalized supercell model of defect-introduced phononic crystal microplates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A generalized supercell model is established to predict band structures of phononic crystals (PnCs) microplate with or without defects. Microstructure effect in elastic flexural waves is described by the modified couple stress theory. The plane-wave expansion (PWE) method and the supercell technique are applied to solve the wave equations. The generalized supercell model contains P × Q square inclusions that can be adjusted according to different situations. The current model can be used to solve various defect state problems of multiphase materials (arbitrary) composite PnCs microplates. Single-point defect and multiple defects cases are calculated. The results demonstrate that the current model can well predict defect states of the PnCs microplates whether there is coupling between defects and supercell or not. This new model can provide help for the design and application of PnCs with multiple defects at the microscale in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aly, A.H., Mehaney, A., Abdel-Rahman, E.: Study of physical parameters on the properties of phononic band gaps. Int. J. Mod. Phys. B 27(11), 1350047 (2013)

    ADS  MathSciNet  Google Scholar 

  2. Zhang, X., Xing, J., Liu, P., Luo, Y., Kang, Z.: Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials. Extreme Mech. Lett. 42, 101126 (2021)

    Google Scholar 

  3. Ma, T.-X., Fan, Q.-S., Zhang, C., Wang, Y.-S.: Acoustic flatbands in phononic crystal defect lattices. J. Appl. Phys. 129(14), 145104 (2021)

    ADS  CAS  Google Scholar 

  4. Jo, S.-H., Yoon, H., Shin, Y.C., Choi, W., Park, C.-S., Kim, M., Youn, B.D.: Designing a phononic crystal with a defect for energy localization and harvesting: supercell size and defect location. Int. J. Mech. Sci. 179, 105670 (2020)

    Google Scholar 

  5. Jiang, W., Feng, D., Xu, D., Xiong, B., Wang, Y.: Experimental investigation of energy localization in line-defect resonator based on silicon locally resonant phononic crystal. Appl. Phys. Lett. 109(16), 161102 (2016)

    ADS  Google Scholar 

  6. Ma, K.-J., Tan, T., Liu, F.-R., Zhao, L.-C., Liao, W.-H., Zhang, W.-M.: Acoustic energy harvesting enhanced by locally resonant metamaterials. Smart Mater. Struct. 29(7), 075025 (2020)

    ADS  CAS  Google Scholar 

  7. Park, C.-S., Shin, Y.C., Jo, S.-H., Yoon, H., Choi, W., Youn, B.D., Kim, M.: Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting. Nano Energy 57, 327–337 (2019)

    CAS  Google Scholar 

  8. Lee, T.-G., Jo, S.-H., Seung, H.M., Kim, S.-W., Kim, E.-J., Youn, B.D., Nahm, S., Kim, M.: Enhanced energy transfer and conversion for high performance phononic crystal-assisted elastic wave energy harvesting. Nano Energy 78, 105226 (2020)

    CAS  Google Scholar 

  9. Mehaney, A., Ahmed, A.M.: Theoretical design of porous phononic crystal sensor for detecting CO2 pollutions in air. Physica E 124, 114353 (2020)

    CAS  Google Scholar 

  10. Shao, H., Chen, G., He, H.: Elastic wave localization and energy harvesting defined by piezoelectric patches on phononic crystal waveguide. Phys. Lett. A 403, 127366 (2021)

    CAS  Google Scholar 

  11. He, Z., Zhang, G., Chen, X., Cong, Y., Gu, S., Hong, J.: Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates. Int. J. Mech. Sci. 239, 107892 (2023)

    Google Scholar 

  12. Bae, M.H., Choi, W., Ha, J.M., Kim, M., Seung, H.M.: Extremely low frequency wave localization via elastic foundation induced metamaterial with a spiral cavity. Sci. Rep. 12(1), 1–13 (2022)

    Google Scholar 

  13. Lv, H., Tian, X., Wang, M.Y., Li, D.: Vibration energy harvesting using a phononic crystal with point defect states. Appl. Phys. Lett. 102(3), 034103 (2013)

    ADS  Google Scholar 

  14. Jo, S.-H., Youn, B.D.: Enhanced ultrasonic wave generation using energy-localized behaviors of phononic crystals. Int. J. Mech. Sci. 228, 107483 (2022)

    Google Scholar 

  15. Hosseinkhani, A., Ebrahimian, F., Younesian, D., Moayedizadeh, A.: Defected meta-lattice structures for the enhanced localized vibrational energy harvesting. Nano Energy 100, 107488 (2022)

    CAS  Google Scholar 

  16. Jo, S.-H., Yoon, H., Shin, Y.C., Kim, M., Youn, B.D.: Elastic wave localization and harvesting using double defect modes of a phononic crystal. J. Appl. Phys. 127(16), 164901 (2020)

    ADS  CAS  Google Scholar 

  17. Ghasemi Baboly, M., Raza, A., Brady, J., Reinke, C., Leseman, Z.C., El-Kady, I.: Demonstration of acoustic waveguiding and tight bending in phononic crystals. Appl. Phys. Lett. 109(18), 183504 (2016)

    ADS  Google Scholar 

  18. Ma, T.-X., Li, X.-S., Tang, X.-L., Su, X.-X., Zhang, C., Wang, Y.-S.: Three-dimensional acoustic circuits with coupled resonators in phononic crystals. J. Sound Vib. 536, 117115 (2022)

    Google Scholar 

  19. Fleck, N., Muller, G., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    CAS  Google Scholar 

  20. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    ADS  Google Scholar 

  21. Xu, Y., Wei, P., Zhao, L.: Flexural waves in nonlocal strain gradient high-order shear beam mounted on fractional-order viscoelastic Pasternak foundation. Acta Mech. 233(10), 4101–4118 (2022)

    MathSciNet  Google Scholar 

  22. Kurpa, L., Awrejcewicz, J., Mazur, O., Morachkovska, I.: Free vibrations of small-scale plates with complex shape based on the nonlocal elasticity theory. Acta Mech. 233(11), 5009–5019 (2022)

    MathSciNet  Google Scholar 

  23. Thai, C.H., Ferreira, A., Tran, T., Phung-Van, P.: A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Compos. Struct. 234, 111695 (2020)

    CAS  Google Scholar 

  24. Zhang, G., Gao, X.-L.: A new Bernoulli-Euler beam model based on a reformulated strain gradient elasticity theory. Math. Mech. Solids 25(3), 630–643 (2020)

    MathSciNet  Google Scholar 

  25. Li, Y., Wei, P., Wang, C.: Propagation of thermoelastic waves across an interface with consideration of couple stress and second sound. Math. Mech. Solids 24(1), 235–257 (2019)

    MathSciNet  Google Scholar 

  26. Zhao, Z., Zhu, J., Chen, W.: Size-dependent vibrations and waves in piezoelectric nanostructures: a literature review. Int. J. Smart Nano Mater. 13(3), 391–431 (2022)

    ADS  Google Scholar 

  27. Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Google Scholar 

  28. Park, S., Gao, X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59(5), 904–917 (2008)

    MathSciNet  Google Scholar 

  29. Ma, H., Gao, X.-L., Reddy, J.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220(1), 217–235 (2011)

    Google Scholar 

  30. Li, Z., He, Y., Lei, J., Guo, S., Liu, D., Wang, L.: A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205 (2018)

    Google Scholar 

  31. Kim, J., Żur, K.K., Reddy, J.: Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888 (2019)

    Google Scholar 

  32. Farokhi, H., Ghayesh, M.H.: Modified couple stress theory in orthogonal curvilinear coordinates. Acta Mech. 230, 851–869 (2019)

    MathSciNet  Google Scholar 

  33. Rao, R., Sahmani, S., Safaei, B.: Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch. Civ. Mech. Eng. 21(3), 98 (2021)

    Google Scholar 

  34. Thanh, C.-L., Ferreira, A., Wahab, M.A.: A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis. Thin-Walled Struct. 145, 106427 (2019)

    Google Scholar 

  35. Al-Furjan, M., Samimi-Sohrforozani, E., Habibi, M., Won Jung, D., Safarpour, H.: Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory. Composite Struct. 257, 113152 (2021)

    Google Scholar 

  36. Zhang, G., Gao, X.-L.: Elastic wave propagation in 3-D periodic composites: band gaps incorporating microstructure effects. Compos. Struct. 204, 920–932 (2018)

    Google Scholar 

  37. Zhang, G., Gao, X.-L., Ding, S.: Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mech. 229(10), 4199–4214 (2018)

    MathSciNet  Google Scholar 

  38. Zhang, G., Gao, X.-L.: Band gaps for flexural elastic wave propagation in periodic composite plate structures based on a non-classical Mindlin plate model incorporating microstructure and surface energy effects. Continuum Mech. Thermodyn. 31(6), 1911–1930 (2019)

    ADS  MathSciNet  Google Scholar 

  39. Lai, P., He, Z., Cong, Y., Gu, S., Zhang, G.: Bandgap Analysis of Periodic Composite Microplates with Curvature-Based Flexoelectricity: A Finite Element Approach. Acta Mech. Solida Sin. 35(6), 996–1003 (2022)

    Google Scholar 

  40. Huang, Z.-G.,Wu, T.-T. Analysis of wave propagation in phononic crystals with channel using the plane-wave expansion and supercell techniques. in Ultrasonics Symposium. 2005.

  41. Sigalas, M.: Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. J. Appl. Phys. 84(6), 3026–3030 (1998)

    ADS  CAS  Google Scholar 

  42. Han, X., Zhang, Z.: Topological optimization of phononic crystal thin plate by a genetic algorithm. Sci. Rep. 9(1), 1–13 (2019)

    ADS  MathSciNet  Google Scholar 

  43. Bortot, E., Amir, O., Shmuel, G.: Topology optimization of dielectric elastomers for wide tunable band gaps. Int. J. Solids Struct. 143, 262–273 (2018)

    Google Scholar 

  44. Zhang, G., Gao, X.-L.: Elastic wave propagation in a periodic composite plate structure: band gaps incorporating microstructure, surface energy and foundation effects. J. Mech. Mater. Struct. 14(2), 219–236 (2019)

    MathSciNet  Google Scholar 

  45. Zhang, G., Gao, X.-L.: Band gaps for wave propagation in 2-D periodic three-phase composites with coated star-shaped inclusions and an orthotropic matrix. Compos. B Eng. 182, 107319 (2020)

    Google Scholar 

  46. Zhang, G., Shen, W., Gu, S., Gao, X.-L., Xin, Z.-Q.: Band gaps for elastic flexural wave propagation in periodic composite plate structures with star-shaped, transversely isotropic, magneto-electro-elastic inclusions. Acta Mech. 232(11), 4325–4346 (2021)

    MathSciNet  Google Scholar 

  47. Jo, S.-H., Youn, B.D.: A phononic crystal with differently configured double defects for broadband elastic wave energy localization and harvesting. Crystals 11(6), 643 (2021)

    CAS  Google Scholar 

  48. Fang, T.-Y., Sun, X.-W., Wen, X.-D., Li, Y.-X., Liu, X.-X., Song, T., Song, Y.-Z., Liu, Z.-J.: High-performance phononic crystal sensing structure for acetone solution concentration sensing. Sci. Rep. 13(1), 7057 (2023)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

GYZ acknowledges the support by the National Natural Science Foundation of China [Grant # 12002086] and the Fundamental Research Funds for the Central Universities [Grant nos # 2242020R10027 and 2242022R40040]. STG acknowledges the support by the National Natural Science Foundation of China [Grant # 11672099]. The authors also would like to thank Prof. Shaofan Li and two anonymous reviewers for their encouragement and helpful comments on an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuitao Gu or Gongye Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

For J-phase PnCs, \(\alpha _{{\mathbf{G}(M,N)}}\) can be expressed as follows:

$$\alpha_{{{\mathbf{G}}_{(M,N)} }} = \frac{1}{A}\iint_{\Omega } \alpha ({\mathbf{r}})e^{{ - i{\mathbf{G}}_{(M,N)} {\mathbf{r}}}} {\text{d}}{\mathbf{r}} = \frac{1}{A}\sum\limits_{j = 1}^{J} {\left( {\iint_{{\Omega_{\left( j \right)} }} {\alpha_{\left( j \right)} }e^{{ - i{\mathbf{G}}_{(M,N)} {\mathbf{r}}}} {\text{d}}{\mathbf{r}}} \right)}$$
(A.1)

when G = 0,

$$\begin{aligned} \alpha_{{{\mathbf{G}}_{(M,N)} }} & = \frac{1}{A}\sum\limits_{j = 1}^{J} {\left( {\iint_{{\Omega_{\left( j \right)} }} {\alpha_{\left( j \right)} }{\text{d}}{\mathbf{r}}} \right)} = \frac{1}{A}\sum\limits_{j = 1}^{J} {A^{\left( j \right)} \alpha_{\left( j \right)} } \\ & = \sum\limits_{j = 1}^{J} {\frac{{A^{\left( j \right)} }}{A}\alpha_{\left( j \right)} } = \sum\limits_{j = 1}^{J} {V_{f}^{\left( j \right)} \alpha_{\left( j \right)} } \\ & = \sum\limits_{j = 1}^{J - 1} {V_{f}^{\left( j \right)} \alpha_{\left( j \right)} } + \left( {1 - \sum\limits_{j = 1}^{J - 1} {V_{f}^{\left( j \right)} } } \right)\alpha_{\left( J \right)} \\ \end{aligned}$$
(A.2)

when G ≠ 0,

$$\begin{aligned} \alpha_{{{\mathbf{G}}_{(M,N)} }} & = \frac{1}{A}\sum\limits_{j = 1}^{J} {\left( {\iint_{{\Omega_{\left( j \right)} }} {\alpha_{\left( j \right)} }e^{{ - i{\mathbf{G}}_{(M,N)} {\mathbf{r}}}} {\text{d}}{\mathbf{r}}} \right)} \\ & = \frac{1}{A}\sum\limits_{j = 1}^{J - 1} {\left[ {\iint_{{\Omega_{\left( j \right)} }} {\left( {\alpha_{\left( j \right)} - \alpha_{\left( J \right)} } \right)}e^{{ - i{\mathbf{G}}_{(M,N)} {\mathbf{r}}}} {\text{d}}{\mathbf{r}}} \right]} + \alpha_{\left( J \right)} \iint_{{\Omega_{\left( 1 \right)} + \Omega_{\left( 2 \right)} + \cdots \Omega_{\left( J \right)} }} {e^{{ - i{\mathbf{G}}_{(M,N)} {\mathbf{r}}}} {\text{d}}{\mathbf{r}}} \\ & = \sum\limits_{j = 1}^{J - 1} {\left( {\alpha_{\left( j \right)} - \alpha_{\left( J \right)} } \right)F_{j} \left( {{\mathbf{G}}_{{\left( {M,N} \right)}} } \right)} + \alpha_{\left( J \right)} \iint_{\Omega } {e^{{ - i{\mathbf{G}}_{(M,N)} {\mathbf{r}}}} {\text{d}}{\mathbf{r}}} \end{aligned}$$
(A.3)

according to Zhang and Gao[45],

$$\iint_{\Omega } {e^{{ - i{\mathbf{G}}_{(M,N)} {\mathbf{r}}}} {\text{d}}{\mathbf{r}}} = \int_{{ - {\text{P}}a/2}}^{{{\text{P}}a/2}} {e^{{ - iG_{x} x}} } dx\int_{{ - {\text{Q}}a/2}}^{{{\text{Q}}a/2}} {e^{{ - iG_{y} y}} } dy = 0$$
(A.4)

thus, when G ≠ 0,

$$\alpha_{{G_{(M,N)} }} = \sum\limits_{j = 1}^{J - 1} {\left( {\alpha_{\left( j \right)} - \alpha_{\left( J \right)} } \right)F_{j} \left( {G_{{\left( {M,N} \right)}} } \right)} .$$
(A.5)

Appendix B

For the inclusion at position (p, q), the shape function can be expressed as follows:

$$\begin{aligned} & F_{(p,q)} \left( {{\text{G}}_{(M,N)} ,d_{{\left( {p,q} \right)}} } \right) = \frac{1}{A}\iint_{{\Omega_{{\rm I}} (p,q)}} {e^{{ - i{\mathbf{G}}_{{\left( {M,N} \right)}} \cdot {\mathbf{r}}}} }{\text{d}}{\mathbf{r}} \hfill \\ &\;\;\;\;\;\;\;\;\; = \frac{1}{{{\text{PQ}}a^{2} }}\int_{{q^{*} a - d_{{\left( {p,q} \right)}} /2}}^{{q^{*} a + d_{{\left( {p,q} \right)}} /2}} {e^{{ - iG_{y} y}} {\text{d}}y} \int_{{p^{*} a - d_{{\left( {p,q} \right)}} /2}}^{{p^{*} a + d_{{\left( {p,q} \right)}} /2}} {e^{{ - iG_{x} x}} } {\text{d}}x \hfill \\ &\;\;\;\;\;\;\;\;\; = \frac{1}{{{\text{PQ}}a^{2} }}e^{{iG_{x} }} \int_{{q^{*} a - d_{{\left( {p,q} \right)}} /2}}^{{q^{*} a + d_{{\left( {p,q} \right)}} /2}} {\left\{ {e^{{ - i\left[ {G_{x} (p^{*} a + d_{{\left( {p,q} \right)}} /2) + G_{y} y} \right]}} - e^{{ - i\left[ {G_{x} (p^{*} a - d_{{\left( {p,q} \right)}} /2) + G_{y} y} \right]}} } \right\}} {\text{ d}}y \hfill \\ &\;\;\;\;\;\;\;\;\; = \frac{1}{{{\text{PQ}}a^{2} }}e^{{iG_{x} }} e^{{ - iG_{x} p^{*} a}} \int_{{q^{*} a - d_{{\left( {p,q} \right)}} /2}}^{{q^{*} a + d_{{\left( {p,q} \right)}} /2}} {\left\{ {e^{{ - i\left[ {G_{x} \cdot \left( {d_{{\left( {p,q} \right)}} /2} \right) + G_{y} y} \right]}} - e^{{ - i\left[ {G_{x} \cdot \left( { - d_{{\left( {p,q} \right)}} /2} \right) + G_{y} y} \right]}} } \right\}} {\text{ d}}y \hfill \\ & \;\;\;\;\;\;\;\;\; = \frac{1}{{{\text{PQ}}a^{2} }}e^{{ - iG_{x} p^{*} a}} \int_{{q^{*} a - d_{{\left( {p,q} \right)}} /2}}^{{q^{*} a + d_{{\left( {p,q} \right)}} /2}} {{\text{d}}y} \int_{{ - d_{{\left( {p,q} \right)}} /2}}^{{d_{{\left( {p,q} \right)}} /2}} {e^{{ - i{\mathbf{G}}_{{\left( {M,N} \right)}} \cdot {\mathbf{r}}}} } {\text{d}}x \hfill \\ & \;\;\;\;\;\;\;\;\; = \frac{1}{{{\text{PQ}}a^{2} }}e^{{ - i\left( {G_{x} p^{*} + G_{y} q^{*} } \right) \cdot a}} \int_{{ - d_{{\left( {p,q} \right)}} /2}}^{{d_{{\left( {p,q} \right)}} /2}} {{\text{d}}y} \int_{{ - d_{{\left( {p,q} \right)}} /2}}^{{d_{{\left( {p,q} \right)}} /2}} {e^{{ - i{\mathbf{G}}_{{\left( {M,N} \right)}} \cdot {\mathbf{r}}}} } {\text{d}}x \hfill \\ &\;\;\;\;\;\;\;\;\; = \left[ {\cos \left( {G_{x} p^{*} a + G_{y} q^{*} a} \right) - i\sin \left( {G_{x} p^{*} a + G_{y} q^{*} a} \right)} \right]F_{{\left( {0,0} \right)}} \left( {{\mathbf{G}}_{{\left( {M,N} \right)}} ,d_{{\left( {p,q} \right)}} } \right) \hfill \\ \end{aligned}$$
(B.1)

where

$$p^{*} = \left\{ {\begin{array}{*{20}l} {p{\mkern 1mu} {\mkern 1mu} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\text{for}}\;{\text{P}}\;{\text{is}}\;{\text{odd}},} \hfill \\ {p - 0.5p/\left| p \right|{\mkern 1mu} {\mkern 1mu} \;\;\;\;\;{\text{for}}\;{\text{P}}\;{\text{is}}\;{\text{even}},} \hfill \\ \end{array} } \right.{\mkern 1mu} {\mkern 1mu}$$
(B.2)
$$q^{*} = \left\{ {\begin{array}{*{20}l} {q{\mkern 1mu} {\mkern 1mu} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\text{for Q is}}\;{\text{odd}},} \hfill \\ {q - 0.5q/\left| q \right|{\mkern 1mu} {\mkern 1mu} \;\;\;\;\;\;{\text{for}}\;{\text{Q}}\;{\text{is}}\;{\text{even}}.} \hfill \\ \end{array} } \right.{\mkern 1mu} {\mkern 1mu}$$
(B.3)

Appendix C

The matrices [K] and [M] in Eq. (11) are given by

$$\left[ {\mathbf{K}} \right] = \left[ {\begin{array}{c@{\quad}c@{\quad}c} {\left( {K_{11} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } & {\left( {K_{12} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } & {\left( {K_{13} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } \\ {\left( {K_{21} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } & {\left( {K_{22} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } & {\left( {K_{23} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } \\ {\left( {K_{31} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } & {\left( {K_{32} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } & {\left( {K_{33} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } \\ \end{array} } \right]$$
(C.1)
$$\left[ {\mathbf{M}} \right] = \left[ {\begin{array}{*{20}c} { - \left( {m_{0} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } & {} & {} \\ {} & { - \left( {m_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } & {} \\ {} & {} & { - \left( {m_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } \\ \end{array} } \right]$$
(C.2)

where

$$\begin{aligned} \left( {K_{11} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} &= - \left( {S_{1} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) - \left( {S_{1} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad - \left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad - \frac{1}{4}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad + \frac{1}{4}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y} } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad + \frac{1}{4}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{x} + G_{x} } \right) \\ &\quad - \frac{1}{4}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{x} + G_{x} } \right) \\ \end{aligned}$$
(C.3)
$$\begin{gathered} \left( {K_{12} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} = - i\left( {S_{1} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x} } \right) + \frac{1}{2}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{y} + G_{y} } \right) \\ - \frac{1}{4}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y} } \right)\left( {k_{y} + G_{y} } \right) \\ + \frac{1}{4}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{x} + G_{x} } \right) \\ \end{gathered}$$
(C.4)
$$\begin{gathered} \left( {K_{13} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} = - i\left( {S_{1} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y} } \right) + \frac{1}{2}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{y} + G_{y} } \right) \\ + \frac{1}{4}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right)\left( {k_{y} + G_{y} } \right) \\ - \frac{1}{4}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{x} + G_{x} } \right) \\ \end{gathered}$$
(C.5)
$$\begin{gathered} \left( {K_{21} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} = i\left( {S_{1} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right) - \frac{1}{2}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) \\ + \frac{1}{4}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) \\ - \frac{1}{4}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) \\ \end{gathered}$$
(C.6)
$$\begin{aligned} \left( {K_{22} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} &= - \left[ {\left( {S_{3} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} + 2\left( {S_{4} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } \right]\left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) \\ &\quad - \left( {S_{4} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) - \left( {S_{1} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \\ &\quad - \frac{1}{2}\left( {S_{5} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad - \frac{1}{2}\left( {S_{5} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad - \left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) - \frac{1}{4}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) \\ \end{aligned}$$
(C.7)
$$\begin{aligned} \left( {K_{23} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} &= - \left( {S_{3} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) - \left( {S_{4} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad + \frac{1}{2}\left( {S_{5} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad + \frac{1}{2}\left( {S_{5} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad + \frac{1}{2}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) + \frac{1}{4}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) \\ \end{aligned}$$
(C.8)
$$\begin{aligned} \left( {K_{31} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} &= i\left( {S_{1} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right) - \frac{1}{2}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) \\ &\quad - \frac{1}{4}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad + \frac{1}{4}i\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) \\ \end{aligned}$$
(C.9)
$$\begin{aligned} \left( {K_{32} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} & = - \left( {S_{3} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) - \left( {S_{4} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) \\ &\quad + \frac{1}{2}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) \\ &\quad + \frac{1}{2}\left( {S_{5} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{x} + G_{x} } \right) \\ &\quad + \frac{1}{2}\left( {S_{5} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad + \frac{1}{4}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) \\ \end{aligned}$$
(C.10)
$$\begin{aligned} \left( {K_{33} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} & = - \left[ {\left( {S_{3} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} + 2\left( {S_{4} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} } \right]\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad - \left( {S_{4} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) - \left( {S_{1} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \\ &\quad - \frac{1}{2}\left( {S_{5} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{x} + G_{x} } \right) \\ &\quad - \frac{1}{2}\left( {S_{5} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{x} + G_{x} } \right)\left( {k_{y} + G_{y} } \right) \\ &\quad - \left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{x} + G_{x}^{\prime } } \right)\left( {k_{x} + G_{x} } \right) - \frac{1}{4}\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}} \left( {k_{y} + G_{y}^{\prime } } \right)\left( {k_{y} + G_{y} } \right) \\ \end{aligned}$$
(C.11)

in which

$$\alpha_{{{\mathbf{G}} - {\mathbf{G}}^{\prime } }} = \frac{1}{A}\iint_{\Omega } \alpha e^{{ - i\left( {{\mathbf{G}}_{(M,N)} - {\mathbf{G}}_{(m,n)}^{\prime } } \right) \cdot {\mathbf{r}}}} {\text{d}}{\mathbf{r}}$$
(C.12)

where \(\alpha_{{{\mathbf{G}} - {\mathbf{G}}^{\prime } }}\) represents \(\left( {S_{1} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}}\), \(\left( {S_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}}\), \(\left( {S_{3} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}}\), \(\left( {S_{4} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}}\), \(\left( {S_{5} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}}\), \(\left( {m_{0} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}}\) and \(\left( {m_{2} } \right)_{{{\mathbf{G}} - {\mathbf{G^{\prime}}}}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Cong, Y., Gu, S. et al. A generalized supercell model of defect-introduced phononic crystal microplates. Acta Mech 235, 1345–1360 (2024). https://doi.org/10.1007/s00707-023-03804-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03804-y

Navigation