Skip to main content
Log in

Dispersion and thermo-acoustoelastic effects of guided waves in the laminated cylindrical shells with SMA-reinforced core and nanocomposite surfaces

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, dispersion properties of guided waves in multilayer composite cylindrical shells are studied, which is composed of the inner and outer hybrid nanocomposite (MHC) layers and the middle composite core layer reinforced with shape memory alloy (SMA) fibers. According to the Hamiltonian principle and the thermoelastic theory, wave equations of the composite structure at different ambient temperatures are derived and discretized with spectral elements. By combing the thermal effects and the acoustoelastic effects, the modified semi-analytical finite element method is proposed here for the thermo-acoustoelastic effects of wave characteristics in laminated composite shells. The influence of important parameters on the dispersion characteristics of the structure is explored. The results show that the coupling of SMA fiber reinforced composite layer and MHC layers can significantly improve wave propagation characteristics of the composite cylindrical shells. The frequency of modal conversion increases with the increase of CNT volume fraction. Smaller radius-to-thickness ratios are favorable for internal wave propagation in the structure. This work is of great significance for the regulation of elastic wave propagation in multilayered cylindrical shell structures, and provides a valuable guide for the design and optimization of shell structures in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Soni, S.K., Thomas, B., Kar, V.R.: A comprehensive review on cnts and cnt-reinforced composites: syntheses, characteristics and applications. Mater. Today Commun. 25, 101546 (2020)

    Article  CAS  Google Scholar 

  2. Kanu, N.J., Vates, U.K., Singh, G.K., Chavan, S.: Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: a state-of-the-art review including smart fgms. Part. Sci. Technol. 37(5), 583–608 (2019)

    Article  CAS  Google Scholar 

  3. Liew, K., Lei, Z., Zhang, L.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Article  Google Scholar 

  4. Sofiyev, A.: On the vibration and stability behaviors of heterogeneous-CNTRC-truncated conical shells under axial load in the context of fsdt. Thin-Walled Struct. 151, 106747 (2020)

    Article  Google Scholar 

  5. Mehar, K., Panda, S.K.: Geometrical nonlinear free vibration analysis of fg-cnt reinforced composite flat panel under uniform thermal field. Compos. Struct. 143, 336–346 (2016)

    Article  Google Scholar 

  6. Mehar, K., Panda, S.K.: Numerical investigation of nonlinear thermomechanical deflection of functionally graded cnt reinforced doubly curved composite shell panel under different mechanical loads. Compos. Struct. 161, 287–298 (2017)

    Article  Google Scholar 

  7. Bisheh, H., Civalek, O.: Vibration of smart laminated carbon nanotube-reinforced composite cylindrical panels on elastic foundations in hygrothermal environments. Thin-Walled Struct. 155, 106945 (2020)

    Article  Google Scholar 

  8. Bisheh, H., Wu, N., Rabczuk, T.: Free vibration analysis of smart laminated carbon nanotube-reinforced composite cylindrical shells with various boundary conditions in hygrothermal environments. Thin-Walled Struct. 149, 106500 (2020)

    Article  Google Scholar 

  9. Bisheh, H., Rabczuk, T., Wu, N.: Effects of nanotube agglomeration on wave dynamics of carbon nanotube-reinforced piezocomposite cylindrical shells. Compos. B Eng. 187, 107739 (2020)

    Article  CAS  Google Scholar 

  10. Bisheh, H.K., Wu, N.: Analysis of wave propagation characteristics in piezoelectric cylindrical composite shells reinforced with carbon nanotubes. Int. J. Mech. Sci. 145, 200–220 (2018)

    Article  Google Scholar 

  11. Bisheh, H., Wu, N.: Wave propagation in smart laminated composite cylindrical shells reinforced with carbon nanotubes in hygrothermal environments. Compos. B Eng. 162, 219–241 (2019)

    Article  CAS  Google Scholar 

  12. Yahia, S.A., Atmane, H.A., Houari, M.S.A., Tounsi, A.: Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech.: Int. J. 53(6), 1143–1165 (2015)

    Article  Google Scholar 

  13. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E., Mahmoud, S.: An efficient shear deformation theory for wave propagation of functionally graded material plates. Struct. Eng. Mech.: Int. J. 57(5), 837–859 (2016)

    Article  Google Scholar 

  14. Li, C., Han, Q.: Guided waves propagation in sandwich cylindrical structures with functionally graded graphene-epoxy core and piezoelectric surface layers. J. Sandwich Struct. Mater. 23(8), 3878–3901 (2021)

    Article  ADS  CAS  Google Scholar 

  15. Singh, A.K., Rajput, P., Guha, S., Singh, S.: Propagation characteristics of love-type wave at the electro-mechanical imperfect interface of a piezoelectric fiber-reinforced composite layer overlying a piezoelectric half-space. Eur. J. Mech.-A/Solids 93, 104527 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  16. Park, J.-S., Kim, J.-H., Moon, S.-H.: Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers. Compos. Struct. 63(2), 179–188 (2004)

    Article  Google Scholar 

  17. Tsukamoto, H.: Mechanical behavior of shape memory alloy fiber reinforced aluminum matrix composites. Mater. Today Commun. 29, 102750 (2021)

    Article  CAS  Google Scholar 

  18. Al-Furjan, M., Habibi, M., Shan, L., Tounsi, A., et al.: On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method. Compos. Struct. 257, 113150 (2021)

    Article  Google Scholar 

  19. Karimiasl, M., Ebrahimi, F., Mahesh, V.: Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell. Thin-Walled Struct. 143, 106152 (2019)

    Article  Google Scholar 

  20. Ebrahimi, F., Dabbagh, A.: Vibration analysis of multi-scale hybrid nanocomposite plates based on a halpin-tsai homogenization model. Compos. B Eng. 173, 106955 (2019)

    Article  CAS  Google Scholar 

  21. Mehar, K., Mishra, P.K., Panda, S.K.: Thermal buckling strength of smart nanotube-reinforced doubly curved hybrid composite panels. Comput. Math. Appl. 90, 13–24 (2021)

    MathSciNet  Google Scholar 

  22. Al-Furjan, M., Dehini, R., Paknahad, M., Habibi, M., Safarpour, H.: On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment. Arch. Civ. Mech. Eng. 21(1), 4 (2021)

    Article  Google Scholar 

  23. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H., Jung, D.W., Tounsi, A.: On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel. Compos. Struct. 255, 112947 (2021)

    Article  CAS  Google Scholar 

  24. Samaratunga, D., Jha, R., Gopalakrishnan, S.: Wavelet spectral finite element for wave propagation in shear deformable laminated composite plates. Compos. Struct. 108, 341–353 (2014)

    Article  Google Scholar 

  25. Nanda, N.: Wave propagation analysis of laminated composite shell panels using a frequency domain spectral finite element model. Appl. Math. Model. 89, 1025–1040 (2021)

    Article  MathSciNet  Google Scholar 

  26. Sahoo, B., Mehar, K., Sahoo, B., Sharma, N., Panda, S.K.: Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings. Eng. Comput. 1–17 (2021)

  27. Liu, X., Karami, B., Shahsavari, D., Civalek, O.: Elastic wave characteristics in damped laminated composite nano-scaled shells with different panel shapes. Compos. Struct. 267, 113924 (2021)

    Article  Google Scholar 

  28. Yu, J., Wang, X., Zhang, X.: An analytical integration Legendre polynomial series approach for Lamb waves in fractional order thermoelastic multilayered plates. Math. Methods Appl. Sci. 45(12), 7631–7651 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zheng, M., Ma, H., Lyu, Y.: Derivation of circumferential guided waves equations for a multilayered laminate composite hollow cylinder by state-vector and Legendre polynomial hybrid formalism. Compos. Struct. 255, 112950 (2020)

    Article  Google Scholar 

  30. Dodson, J., Inman, D.: Thermal sensitivity of lamb waves for structural health monitoring applications. Ultrasonics 53(3), 677–685 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Kolahchi, R., Safari, M., Esmailpour, M.: Dynamic stability analysis of temperature-dependent functionally graded cnt-reinforced visco-plates resting on orthotropic elastomeric medium. Compos. Struct. 150, 255–265 (2016)

    Article  Google Scholar 

  32. Hajmohammad, M.H., Azizkhani, M.B., Kolahchi, R.: Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: dynamic buckling analysis. Int. J. Mech. Sci. 137, 205–213 (2018)

    Article  Google Scholar 

  33. Wang, X., Ren, X., Zhou, H.: Dynamics of thermoelastic Lamb waves in functionally graded nanoplates based on the modified nonlocal theory. Appl. Math. Model. 117, 142–161 (2023)

    Article  MathSciNet  Google Scholar 

  34. Wan, P., Al-Furjan, M., Kolahchi, R., Shan, L.: Application of DGHFEM for free and forced vibration, energy absorption, and post-buckling analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming cnts waviness and agglomeration. Mech. Syst. Signal Process. 189, 110064 (2023)

    Article  Google Scholar 

Download references

Funding

The authors wish to acknowledge the support from National Natural Science Foundation of China (12372357), Guangdong Basic and Applied Basic Research Foundation (2022A1515010143), Young Talent Support Project of Guangzhou Association for Science and Technology (QT2023013), and Science and Technology Program of Guangzhou (2023A04J1302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlei Li.

Ethics declarations

Conflict on interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Han, Q. & Li, C. Dispersion and thermo-acoustoelastic effects of guided waves in the laminated cylindrical shells with SMA-reinforced core and nanocomposite surfaces. Acta Mech 235, 1125–1146 (2024). https://doi.org/10.1007/s00707-023-03801-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03801-1

Navigation