Skip to main content
Log in

On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this article, the nonlinear free and forced vibration analysis of multi-scale hybrid nano-composites (multi-scale HNC) annular plate (multi-scale HNCAP) under hygro-thermal environment and subjected to mechanical loading is presented. The material of matrix composite is enhanced by either carbon fibers (CF) or carbon nanotubes (CNTs) at the small or macro-scale. The multi-scale laminated annular plate’s displacement fields are determined using third-order shear deformation theory (third-order SDT) and nonlinearity of vibration behavior of this structure is taken into account considering Von Karman nonlinear shell model. Energy method known as Hamilton principle is applied to create the motion equations governed to the multi-scale HNCAP, while they are solved using generalized differential quadrature method (GDQM) as well as multiple scale method. The results created from finite-element simulation illustrates a close agreement with the semi-numerical method results. Ultimately, the research’s outcomes reveal that increasing value of the moisture change (\(\Delta H\)) and orientation angle parameter (\(\theta\)), and the rigidity of the boundary conditions lead to an increase in the structure’s frequency. Besides, whenever the values of the nonlinear parameter (\(\gamma\)) are positive or negative, the dynamic behavior of the plate tends to have hardening or softening behaviors, respectively. Also, there are not any effects from \(\gamma\) parameter on the maximum amplitudes of resonant vibration of the multi-scale HNCAP. Last but not least, by decreasing the structure’s flexibility, the plate can be susceptible to have unstable responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

h, a, and b :

Thickness, annular plate’s outer and inner radius, respectively

F and NCM:

Fiber and nanocomposite matrix, respectively

\(\rho ,\,\,E,\,\nu \,\,\,and\,\,\,G\) :

Density, Young’s modules, Poisson’s ratio, and shear parameter (Kirchhoff modules), respectively

V F , V NCM :

Volume fractions of fiber and matrix, respectively

l CNT , t CNT , d CNT , E CNT and V CNT :

Indicate the length, thickness, diameter, Younge’s modules, and volume fraction of carbon nanotubes, respectively.

\({V}_{\text{CNT}}^{*}\) , W CNT :

Effective volume fraction and weight fraction of the CNTs, respectively

N t , V CNT :

Layer number and CNTs’ volume fraction

\(\alpha_{11} \,\,\,{\text{and}}\,\,\,\alpha_{22}\) :

Thermal expansion coefficients of the multi-scale hybrid nanocomposite

\(\alpha_{{{\text{NCM}}}}\) :

Thermal expansion coefficient of the nanocomposite matrix

\(\beta_{11} \,\,\,{\text{and}}\,\,\,\beta_{22}\) :

Moisture coefficients of the multi-scale hybrid nanocomposite

β M :

Moisture coefficients of the matrix

\(\tilde{E}_{11}\), \(\tilde{E}_{22}\), \(\tilde{G}_{12}\), \(\tilde{\rho }\) :

Young's modules of CNT, shear modules, and mass density, respectively

U, V, W :

Displacement fields of an annular plate

w, u and \(\phi\) :

Mid-surface’s displacements in orientations of Z and R, as well as rotations of the transverse normal in the orientation of θ, respectively

\(\varepsilon_{RR}\) and \(\varepsilon_{\theta \theta }\) :

Normal strains in \(R\) and θ directions, respectively

\(\gamma_{RZ}\) :

Shear strain in the RZ plane

U, T, W, \(\dot{D}\) :

Plate’s strain energy, kinetic energy, the work which is done by thermal loading, and work due to damping energy, respectively

C :

Damping parameter

q dynamic and F :

Dynamical force and force, respectively

I i :

Mass inertias

\(\sigma_{RR} ,\,\,\sigma_{\theta \theta } \,\,{\text{and}}\,\,\tau_{RZ}\) :

Normal stress in R and \(\theta\) directions, and shear stress in the RZ plane, respectively

N H and N T :

Applied forces imposed by variation of moisture and temperature

ΔT and ΔH :

Temperature and moisture changes, respectively.

\({Q}_{ij}\), \({\stackrel{-}{Q}}_{ij}\) \(\mathrm{and} \theta\) :

Stiffness elements, stiffness elements relates to orientation angle, and the orientation angle, respectively

\(\omega_{\text{L}} ,\,\,\overline{\omega }_{\text{L}}\) :

Linear non-dimensional linear natural frequencies, respectively

\(\omega_{\text{NL}} ,\,\,\overline{\omega }_{\text{NL}}\) :

Nonlinear non-dimensional nonlinear natural frequencies, respectively

P 1, P 2 and \(\gamma\) :

The linear part of the frequency, nonlinear part (order one) of the frequency, and nonlinear part (order two) of the frequency, respectively

\(a\) :

Dimensionless deflection

\(\Omega ,\,\,\,\sigma \,\,and\,\,\varepsilon\) :

Excitation frequency, detuning parameter, and perturbation parameter, respectively

T 0 and T 1 :

Excitation terms

\(\overline{q}\) :

The weak form of the external force

\(\overline{A}\,\,\) and \(A\) :

Unknown complex conjugate and complex functions, respectively

A* :

Amplitude ratio

\(\omega_{0}\) :

Primary resonance

\(\alpha\) and \(\beta\) :

Amplitude and phase, respectively

M :

Magnification factor

References

  1. Chakrapani SK, Barnard DJ, Dayal V. Nonlinear forced vibration of carbon fiber/epoxy prepreg composite beams: theory and experiment. Compos B Eng. 2016;91:513–21.

    Article  CAS  Google Scholar 

  2. Emam S, Eltaher M. Buckling and postbuckling of composite beams in hygrothermal environments. Compos Struct. 2016;152:665–75.

    Article  Google Scholar 

  3. Maghamikia S, Jam J. Buckling analysis of circular and annular composite plates reinforced with carbon nanotubes using FEM. J Mech Sci Technol. 2011;25:2805–10.

    Article  Google Scholar 

  4. Tahouneh V, Yas M. Influence of equivalent continuum model based on the Eshelby-Mori-Tanaka scheme on the vibrational response of elastically supported thick continuously graded carbon nanotube-reinforced annular plates. Polym Compos. 2014;35:1644–61.

    Article  CAS  Google Scholar 

  5. Tahouneh V, Eskandari-Jam J. A semi-analytical solution for 3-D dynamic analysis of thick continuously graded carbon nanotube-reinforced annular plates resting on a two-parameter elastic foundation. Mech Adv Compos Struct. 2014;1:113–30.

    Google Scholar 

  6. Ansari R, Torabi J, Shojaei MF. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos B Eng. 2017;109:197–213.

    Article  CAS  Google Scholar 

  7. Keleshteri M, Asadi H, Aghdam M. Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation. Thin Walled Struct. 2019;135:453–62.

    Article  Google Scholar 

  8. Ansari R, Torabi J. Nonlinear free and forced vibration analysis of FG-CNTRC annular sector plates. Polym Compos. 2019;40:E1364–77.

    Article  CAS  Google Scholar 

  9. Keleshteri M, Asadi H, Wang Q. Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method. Comput Methods Appl Mech Eng. 2017;325:689–710.

    Article  ADS  MathSciNet  Google Scholar 

  10. Mohammadzadeh-Keleshteri M, Asadi H, Aghdam M. Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers. Compos Struct. 2017;171:100–12.

    Article  Google Scholar 

  11. Keleshteri M, Asadi H, Wang Q. Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation. Thin Walled Struct. 2017;120:203–14.

    Article  Google Scholar 

  12. Torabi J, Ansari R. Nonlinear free vibration analysis of thermally induced FG-CNTRC annular plates: Asymmetric versus axisymmetric study. Comput Methods Appl Mech Eng. 2017;324:327–47.

    Article  ADS  MathSciNet  Google Scholar 

  13. Ansari R, Torabi J, Hasrati E. Axisymmetric nonlinear vibration analysis of sandwich annular plates with FG-CNTRC face sheets based on the higher-order shear deformation plate theory. Aerosp Sci Technol. 2018;77:306–19.

    Article  Google Scholar 

  14. Gholami R, Ansari R. Asymmetric nonlinear bending analysis of polymeric composite annular plates reinforced with graphene nanoplatelets. Int J Multiscale Comput Eng. 2019;17. https://doi.org/10.1615/IntJMultCompEng.2019029156

  15. Borjalilou V, Asghari M. Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory. Int J Appl Mech. 2019;11:1950007.

    Article  Google Scholar 

  16. Shaterzadeh A, Foroutan K, Ahmadi H. Nonlinear static and dynamic thermal buckling analysis of spiral stiffened functionally graded cylindrical shells with elastic foundation. Int J Appl Mech. 2019;11:1950005.

    Article  Google Scholar 

  17. Li Z, He Y, Zhang B, Lei J, Guo S, Liu D. On the internal resonances of size-dependent clamped–hinged microbeams: Continuum modeling and numerical simulations. Int J Appl Mech. 2019;11:1950022.

    Article  Google Scholar 

  18. Truong-Thi T, Vo-Duy T, Ho-Huu V, Nguyen-Thoi T. Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CS-DSG3. Int J Comput Methods. 2020;17:1850133.

    Article  MathSciNet  Google Scholar 

  19. Karimiasl M, Ebrahimi F, Akgöz B. Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading. Compos Struct. 2019;223:110988.

    Article  Google Scholar 

  20. Ebrahimi F, Dabbagh A. Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model. Compos B Eng. 2019;173:106955.

    Article  CAS  Google Scholar 

  21. Ansari R, Hasrati E, Torabi J. Nonlinear vibration response of higher-order shear deformable FG-CNTRC conical shells. Compos Struct. 2019;222:110906.

    Article  Google Scholar 

  22. Ebrahimi F, Habibi S. Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments. Mech Adv Mater Struct. 2018;25:425–38.

    Article  CAS  Google Scholar 

  23. Ebrahimi F, Dabbagh A. On thermo-mechanical vibration analysis of multi-scale hybrid composite beams. J Vib Control. 2019;25:933–45.

    Article  MathSciNet  Google Scholar 

  24. Ghadiri M, Shafiei N, Safarpour H. Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst Technol. 2017;23:1045–65.

    Article  CAS  Google Scholar 

  25. Reddy, Junuthula N. A simple higher-order theory for laminated composite plates. 1984;745-752.

  26. Al-Furjan M, Safarpour H, Habibi M, Safarpour M, Tounsi A. A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput. 2020:1–18. https://doi.org/10.1007/s00366-020-01088-7

  27. Al-Furjan M, Habibi M, Won Jung D, Sadeghi S, Safarpour H, Tounsi A, et al. A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng Comput. 2020:1–18. https://doi.org/10.1007/s00366-020-01130-8

  28. Shahgholian-Ghahfarokhi D, Safarpour M, Rahimi A. Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mech Based Design Struct Mach. 2019:1–22. https://doi.org/10.1080/15397734.2019.1666723

  29. Guo H, Zhuang X, Rabczuk T. A deep collocation method for the bending analysis of Kirchhoff plate. CMC-Comput Mater Continua. 2019;59:433–56.

    Article  Google Scholar 

  30. Bellman R, Casti J. Differential quadrature and long-term integration. J Math Anal Appl. 1971;34:235–8.

    Article  MathSciNet  Google Scholar 

  31. Bellman R, Kashef B, Casti J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys. 1972;10:40–52.

    Article  ADS  MathSciNet  Google Scholar 

  32. Shu C. Differential quadrature and its application in engineering. Springer Science & Business Media; 2012.

  33. Al-Furjan MS, Oyarhossein MA, Habibi M, Safarpour H, Jung DW. Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis. Thin-Walled Structures. 2020;157:107111. https://doi.org/10.1016/j.tws.2020.107111

  34. Al-Furjan M, Habibi M, Safarpour H. Vibration control of a smart shell reinforced by graphene nanoplatelets. Int J Appl Mech. 2020. https://doi.org/10.1142/S1758825120500660

  35. Al-Furjan M, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A. Chaotic simulation of the multi-phase reinforced thermoelastic disk using GDQM. Eng Comput. 2020:1–24. https://doi.org/10.1007/s00366-020-01144-2

  36. SafarPour H, Mohammadi K, Ghadiri M, Rajabpour A. Influence of various temperature distributions on critical speed and vibrational characteristics of rotating cylindrical microshells with modified lengthscale parameter. Eur Phys J Plus. 2017;132:281.

    Article  Google Scholar 

  37. Al-Furjan MS, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A. Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM. Composite Structures. 2020;252:112737. https://doi.org/10.1016/j.compstruct.2020.112737

  38. Al-Furjan MS, Habibi M, won Jung D, Chen G, Safarpour M, Safarpour H. Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel. Eur J Mech A Solids.2020;85:104091. https://doi.org/10.1016/j.euromechsol.2020.104091

  39. Safarpour M, Rahimi A, NoormohammadiArani O, Rabczuk T. Frequency characteristics of multiscale hybrid nanocomposite annular plate based on a Halpin-Tsai homogenization model with the aid of GDQM. Appl Sci. 2020;10:1412.

    Article  CAS  Google Scholar 

  40. Habibi M, Ghazanfari A, Assempour A, Naghdabadi R, Hashemi R. Determination of forming limit diagram using two modified finite element models. Mech Eng. 2017;48:141–4.

    Google Scholar 

Download references

Funding

The Open Foundation of the State Key Lab of Silicon Materials (SKL2020-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafa Habibi or Hamed Safarpour.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Eqs. (31a31c), Lij and Mij are expressed as follows:

$$\begin{aligned} &\delta u_{o} : \hfill \\ &\quad L_{11} = A_{11} \frac{{\partial^{2} u}}{{\partial R^{2} }} - \frac{{A_{22} }}{{R^{2} }}u, \hfill \\ &\quad L_{12} = - D_{11} c_{1} \frac{{\partial^{3} w}}{{\partial R^{3} }} + \frac{{D_{22} c_{1} }}{{R^{2} }}\frac{\partial w}{{\partial R}} \hfill \\ &\quad L_{13} = B_{11} \frac{{\partial^{2} \phi }}{{\partial R^{2} }} - D_{11} c_{1} \frac{{\partial^{2} \phi }}{{\partial R^{2} }} - \frac{{B_{22} }}{{R^{2} }}\phi + \frac{{D_{22} c_{1} }}{{R^{2} }}\phi \hfill \\& \quad M_{11} = I_{0} \frac{{\partial^{2} u}}{{\partial t^{2} }},\,\,M_{12} = - I_{3} c_{1} \frac{{\partial^{3} w}}{{\partial R\partial t^{2} }},\,\,\,M_{13} = \left( {I_{1} - I_{3} c_{1} } \right)\frac{{\partial^{2} \phi }}{{\partial t^{2} }} \hfill \\ \end{aligned}$$
(70)
$$\begin{aligned}& \delta w_{0} : \hfill \\ &\quad L_{21} = c_{1} D_{11} \frac{{\partial^{3} u}}{{\partial R^{3} }} - \frac{{c_{1} D_{22} }}{{R^{2} }}\frac{\partial u}{{\partial R}}, \hfill \\ &\quad L_{22} = - G_{11} c_{1}^{2} \frac{{\partial^{4} w}}{{\partial R^{4} }} + \frac{{G_{22} c_{1}^{2} }}{{R^{2} }}\frac{{\partial^{2} w}}{{\partial R^{2} }} + \left( {A_{55} - 3C_{55} c_{1} } \right)\frac{{\partial^{2} w}}{{\partial R^{2} }} \hfill \\ &\quad - 3c_{1} \left( {C_{55} - 3E_{55} c_{1} } \right)\frac{{\partial^{2} w}}{{\partial R^{2} }} - q \, - (N^{T} + N^{H} )\frac{{\partial^{2} w}}{{\partial R^{2} }} \hfill \\&\quad L_{23} = {\text{C}}\frac{\partial w}{{\partial t}},\,\,\,\,\,\,\,\,L_{24} = \frac{3}{2}{\text{A}}_{11} \frac{{\partial^{2} w}}{{\partial R^{2} }}\left( {\frac{\partial w}{{\partial R}}} \right)^{2} \hfill \\&\quad L_{25} = c_{1} E_{11} \frac{{\partial^{3} \phi }}{{\partial R^{3} }} - G_{11} c_{1}^{2} \frac{{\partial^{3} \phi }}{{\partial R^{3} }} - \frac{{c_{1} }}{R}\frac{{E_{22} \partial \phi }}{R\partial R} - \frac{{c_{1} }}{R}\frac{{G_{22} c_{1} }}{R}\frac{\partial \phi }{{\partial R}} \hfill \\&\quad + \left( {A_{55} - 3C_{55} c_{1} } \right)\frac{\partial \phi }{{\partial R}} - 3c_{1} \left( {C_{55} - 3E_{55} c_{1} } \right)\frac{\partial \phi }{{\partial R}} \hfill \\&\quad M_{21} = c_{1} I_{3} \frac{{\partial^{3} u}}{{\partial R\partial t^{2} }},\,\,M_{22} = I_{0} \frac{{\partial^{2} w}}{{\partial t^{2} }} - c_{1}^{2} I_{6} \frac{{\partial^{4} w}}{{\partial R^{2} \partial t^{2} }}, \hfill \\&\quad M_{23} = \left( {c_{1} I_{4} - c_{1}^{2} I_{6} } \right)\frac{{\partial^{3} \phi }}{{\partial R\partial t^{2} }}, \hfill \\ \, \hfill \\ \end{aligned}$$
(71)
$$\begin{aligned} &\delta \phi : \hfill \\&\quad L_{31} = B_{11} \frac{{\partial^{2} u}}{{\partial R^{2} }} - c_{1} D_{11} \frac{{\partial^{2} u}}{{\partial R^{2} }} - \frac{{B_{22} }}{{R^{2} }}u + \frac{{D_{22} }}{{R^{2} }}u, \hfill \\&\quad L_{32} = - E_{11} c_{1} \frac{{\partial^{3} w}}{{\partial R^{3} }} + G_{11} c_{1}^{2} \frac{{\partial^{3} w}}{{\partial R^{3} }} + \frac{{E_{22} c_{1} }}{{R^{2} }}\frac{\partial w}{{\partial R}} + \frac{{G_{22} c_{1}^{2} }}{{R^{2} }}\frac{\partial w}{{\partial R}} \hfill \\&\quad - \frac{\partial w}{{\partial R}}\left( {A_{55} - 3c_{1} C_{55} } \right) + 3\frac{\partial w}{{\partial R}}\left( {C_{55} - 3c_{1} E_{55} } \right)c_{1} \hfill \\&\quad L_{33} = C_{11} \frac{{\partial^{2} \phi }}{{\partial R^{2} }} - E_{11} c_{1} \frac{{\partial^{2} \phi }}{{\partial R^{2} }} - c_{1} E_{11} \frac{{\partial^{2} \phi }}{{\partial R^{2} }} + G_{11} c_{1}^{2} \frac{{\partial^{2} \phi }}{{\partial R^{2} }} \hfill \\&\quad - \frac{1}{{R^{2} }}\left\{ {C_{22} - E_{22} c_{1} } \right\}\phi + \frac{{c_{1} }}{{R^{2} }}\left\{ {E_{22} - G_{22} c_{1} } \right\}\phi \hfill \\ &\quad - \left( {A_{55} - 3c_{1} C_{55} } \right)\phi + 3c_{1} \left( {C_{55} - 3c_{1} E_{55} } \right)\phi \hfill \\&\quad M_{31} = \left( {I_{1} - c_{1} I_{3} } \right)\frac{{\partial^{2} u}}{{\partial t^{2} }},\,\,\,M_{32} = \left( {I_{6} c_{1}^{2} - I_{4} c_{1} } \right)\frac{{\partial^{3} w}}{{\partial R\partial t^{2} }}, \hfill \\&\quad M_{33} = \left( {I_{6} c_{1}^{2} - 2c_{1} I_{4} + I_{2} } \right)\frac{{\partial^{2} \phi }}{{\partial t^{2} }}. \hfill \\ \end{aligned}$$
(72)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Furjan, M.S.H., Dehini, R., Paknahad, M. et al. On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment. Archiv.Civ.Mech.Eng 21, 4 (2021). https://doi.org/10.1007/s43452-020-00151-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00151-w

Keywords

Navigation