Skip to main content
Log in

Nonlinear vibration of geometrically imperfect CNT-reinforced composite cylindrical panels exposed to thermal environments with elastically restrained edges

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper deals with the nonlinear free vibration of carbon nanotube (CNT)-reinforced composite cylindrical panels exposed to thermal environments. All boundary edges are assumed to be simply supported and tangentially restrained. CNTs are reinforced into isotropic matrix in such a way that their volume is uniform or varied across the thickness direction according to functional rules. In order to capture size effects, the effective properties of CNT-reinforced composite are estimated using an extended version of linear rule of mixture. Motion and compatibility equations are established within the framework of classical shell theory including von Kármán–Donnell nonlinearity, initial geometric imperfection and interactive pressure from elastic foundations. Analytical solutions are assumed, and Galerkin procedure is applied to derive a time differential equation containing quadratic and cubic nonlinear terms. Fourth-order Runge–Kutta integration scheme is employed to determine the frequencies of nonlinear vibration of the panels. Through a parametric study, numerous influences of CNT distribution, size of imperfection, degree of in-plane edge constraint, foundation stiffness and elevated temperature on the natural frequencies and nonlinear-to-linear frequency ratio are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    CAS  Google Scholar 

  2. Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)

    CAS  Google Scholar 

  3. Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Google Scholar 

  4. Zghal, S., Frikha, A., Dammak, F.: Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Compos. Struct. 176, 1107–1123 (2017)

    Google Scholar 

  5. Frikha, A., Zghal, S., Dammak, F.: Finite rotation three and four nodes shell elements for functionally graded carbon nanotubes-reinforced thin composite shell analysis. Comput. Methods Appl. Mech. Eng. 329, 289–311 (2018)

    ADS  MathSciNet  Google Scholar 

  6. Zghal, S., Frikha, A., Dammak, F.: Nonlinear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement. Eng. Struct. 158, 95–109 (2018)

    Google Scholar 

  7. Zghal, S., Frikha, A., Dammak, F.: Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes. Appl. Math. Mech. 41, 1227–1250 (2020)

    MathSciNet  Google Scholar 

  8. Kiani, Y.: Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. J. Therm. Stresses 39(9), 1098–1110 (2016)

    Google Scholar 

  9. Khosravi, S., Arvin, H., Kiani, Y.: Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams. Compos. B 175, 107178 (2019)

    CAS  Google Scholar 

  10. Lei, Z.X., Liew, K.M., Yu, J.L.: Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Compos. Struct. 98, 160–168 (2013)

    Google Scholar 

  11. Mirzaei, M., Kiani, Y.: Thermal buckling of temperature dependent FG-CNT reinforced composite plates. Meccanica 51, 2185–2201 (2016)

    MathSciNet  Google Scholar 

  12. Wang, M., Li, Z.M., Qiao, P.: Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates. Compos. Struct. 144, 33–43 (2016)

    CAS  Google Scholar 

  13. Karami, B., Shahsavari, D., Janghorban, M.: A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates. Aerosp. Sci. Technol. 82–83, 499–512 (2018)

    Google Scholar 

  14. Haghighi, S.M., Alibeigloo, A.: Thermal buckling and vibrational analysis of carbon nanotube reinforced rectangular composite plates based on third-order shear deformation theory. J. Eng. Mech. 149(6), 04023026 (2023)

    Google Scholar 

  15. Zghal, S., Frikha, A., Dammak, F.: Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos. B 150, 165–183 (2018)

    CAS  Google Scholar 

  16. Trabelsi, S., Frikha, A., Zghal, S., Dammak, F.: A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng. Struct. 178, 444–459 (2019)

    Google Scholar 

  17. Tung, H.V.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates resting on elastic foundations with tangential edge restraints. J. Therm. Stresses 40(5), 641–663 (2017)

    Google Scholar 

  18. Trang, L.T.N., Tung, H.V.: Thermally induced postbuckling of thin CNT-reinforced composite plates under nonuniform in-plane temperature distributions. J. Thermoplast. Compos. Mater. 35(12), 2331–2353 (2022)

    CAS  Google Scholar 

  19. Trang, L.T.N., Tung, H.V.: Tangential edge constraint sensitivity of nonlinear stability of CNT-reinforced composite plates under compressive and thermomechanical loadings. J. Eng. Mech. 144(7), 04018056 (2018)

    Google Scholar 

  20. Kiani, Y.: Thermal post-buckling of FG-CNT reinforced composite plates. Compos. Struct. 159, 299–306 (2017)

    Google Scholar 

  21. Tung, H.V., Trang, L.T.N.: Thermal postbuckling of shear deformable CNT-reinforced composite plates with tangentially restrained edges and temperature-dependent properties. J. Thermoplast. Compos. Mater. 33(1), 97–124 (2020)

    Google Scholar 

  22. Long, V.T., Tung, H.V.: Thermal postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with tangentially restrained edges and temperature-dependent properties. J. Thermoplast. Compos. Mater. 33(10), 1396–1428 (2020)

    Google Scholar 

  23. Long, V.T., Tung, H.V.: Thermomechanical postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with elastically restrained unloaded edges. J. Therm. Stresses 42(5), 658–680 (2019)

    Google Scholar 

  24. Shen, H.S., Zhang, C.L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31(7), 3403–3411 (2010)

    CAS  Google Scholar 

  25. Trang, L.T.N., Tung, H.V.: Thermomechanical postbuckling of higher order shear deformable CNT-reinforced composite plates with elastically restrained unloaded edges. Polym. Polym. Compos. 29(9S), S857–S875 (2021)

    CAS  Google Scholar 

  26. Tung, H.V., Trang, L.T.N.: Imperfection and tangential edge constraint sensitivities of thermomechanical nonlinear response of pressure-loaded carbon nanotube-reinforced composite cylindrical panels. Acta Mech. 229(5), 1949–1969 (2018)

    MathSciNet  Google Scholar 

  27. Trang, L.T.N., Tung, H.V.: Thermomechanical nonlinear analysis of axially compressed carbon nanotube-reinforced composite cylindrical panels resting on elastic foundations with tangentially restrained edges. J. Therm. Stresses 41(4), 418–438 (2018)

    Google Scholar 

  28. Trang, L.T.N., Tung, H.V.: Thermoelastic stability of thin CNT-reinforced composite cylindrical panels with elastically restrained edges under nonuniform in-plane temperature distribution. J. Thermoplast. Compos. Mater. 36(2), 768–793 (2023)

    CAS  Google Scholar 

  29. Trang, L.T.N., Tung, H.V.: Nonlinear stability of CNT-reinforced composite cylindrical panels with elastically restrained straight edges under combined thermomechanical loading conditions. J. Thermoplast. Compos. Mater. 33(2), 153–179 (2020)

    Google Scholar 

  30. Trang, L.T.N., Tung, H.V.: Thermally induced postbuckling of higher order shear deformable CNT-reinforced composite flat and cylindrical panels resting on elastic foundations with elastically restrained edges. Mech. Based Des. Struct. Mach. 50(8), 2812–2835 (2022)

    Google Scholar 

  31. Shen, H.S.: Postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments. Eng. Struct. 122, 174–183 (2016)

    ADS  Google Scholar 

  32. Shen, H.S., Xiang, Y.: Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Compos. B Eng. 67, 50–61 (2014)

    CAS  Google Scholar 

  33. Shen, H.S., Xiang, Y.: Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations. Compos. Struct. 123, 383–392 (2015)

    Google Scholar 

  34. Zghal, S., Trabelsi, S., Dammak, F.: Post-buckling behavior of functionally graded and carbon nanotubes based structures with different mechanical loadings. Mech. Based Des. Struct. Mach. 50(9), 2997–3039 (2022)

    Google Scholar 

  35. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformable plate theory. Compos. Struct. 94, 1450–1460 (2012)

    Google Scholar 

  36. Lei, Z.X., Liew, K.M., Yu, J.L.: Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos. Struct. 106, 128–138 (2013)

    ADS  Google Scholar 

  37. Selim, B.A., Zhang, L.W., Liew, K.M.: Vibration analysis of CNT-reinforced functionally graded composite plates in thermal environment based on Reddy’s higher-order shear deformation theory. Compos. Struct. 156, 276–290 (2016)

    Google Scholar 

  38. Kiani, Y.: Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers. Comput. Math. Appl. 72(9), 2433–2449 (2016)

    MathSciNet  Google Scholar 

  39. Kiani, Y.: Free vibration of FG-CNT reinforced composite skew plates. Aerosp. Sci. Technol. 58, 178–188 (2016)

    Google Scholar 

  40. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Dimitri, R.: Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Compos. B Eng. 115, 384–408 (2017)

    CAS  Google Scholar 

  41. Mehar, K., Panda, S.K., Dehengia, A., Kar, V.R.: Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment. J. Sandwich Struct. Mater. 18(2), 151–173 (2016)

    CAS  Google Scholar 

  42. Shi, P.: Three-dimensional isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates. Arch. Appl. Mech. 92, 3033–3063 (2022)

    ADS  Google Scholar 

  43. Zhang, L.W., Lei, Z.X., Liew, K.M., Yu, J.L.: Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos. Struct. 111, 205–212 (2014)

    Google Scholar 

  44. Mirzaei, M., Kiani, Y.: Free vibration of functionally graded carbon nanotube-reinforced composite cylindrical panels. Compos. Struct. 142, 45–56 (2016)

    Google Scholar 

  45. Baltacioglu, A.K., Civalek, O.: Vibration analysis of circular cylindrical panels with CNT reinforced and FGM composites. Compos. Struct. 202, 374–388 (2018)

    Google Scholar 

  46. Zghal, S., Frikha, A., Dammak, F.: Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl. Math. Model. 53, 132–155 (2018)

    MathSciNet  Google Scholar 

  47. Khosravi, S., Arvin, H., Kiani, Y.: Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment. Int. J. Mech. Sci. 164, 105187 (2019)

    Google Scholar 

  48. Frikha, A., Zghal, S., Dammak, F.: Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp. Sci. Technol. 78, 438–451 (2018)

    Google Scholar 

  49. Wang, Z.X., Shen, H.S.: Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput. Mater. Sci. 50, 2319–2330 (2011)

    CAS  Google Scholar 

  50. Tang, H., Dai, H.L.: Nonlinear vibration behavior of CNTRC plate with different distribution of CNTs under hygrothermal effects. Aerosp. Sci. Technol. 115, 106767 (2021)

    Google Scholar 

  51. Cho, J.R.: Nonlinear free vibration of functionally graded CNT-reinforced composite plates. Compos. Struct. 281, 115101 (2022)

    CAS  Google Scholar 

  52. Shen, H.S., Xiang, Y.: Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Compos. Struct. 111, 291–300 (2014)

    Google Scholar 

  53. Librescu, L., Lin, W.: Vibration of thermomechanically loaded flat and curved panels taking into account geometric imperfections and tangential edge restraints. Int. J. Solids Struct. 34, 2161–2181 (1997)

    Google Scholar 

  54. Tung, H.V.: Postbuckling behavior of functionally graded cylindrical panels with tangential edge constraints and resting on elastic foundations. Compos. Struct. 100, 532–541 (2013)

    Google Scholar 

  55. Hieu, P.T., Tung, H.V.: Thermomechanical postbuckling of pressure-loaded CNT-reinforced composite cylindrical shells under tangential edge constraints and various temperature conditions. Polym. Compos. 41, 244–257 (2020)

    CAS  Google Scholar 

  56. Trang, L.T.N., Tung, H.V.: Thermo-torsional postbuckling of CNT-reinforced composite toroidal shell segments with surrounding elastic media and tangentially restrained edges. J. Thermoplast. Compos. Mater. 36(8), 3137–3167 (2023)

    Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang Van Tung.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The expressions of \(a_{k3}\)(\(k = 1, \ldots ,4\)) in Eq. (20) are given as the following:

$$\begin{aligned} a_{13} = &\, \frac{{E_{0}^{m} }}{{B_{h}^{4} }}K_{1} + \frac{{E_{0}^{m} }}{{B_{h}^{4} }}\pi^{2} \left( {m^{2} B_{a}^{2} + n^{2} } \right)K_{2} + \frac{{\pi^{4} }}{{B_{h}^{4} }}\left[ {\overline{a}_{11} m^{4} B_{a}^{4} + \overline{a}_{21} n^{4} + \overline{a}_{31} m^{2} n^{2} B_{a}^{2} } \right. \\ & \quad + \left. {\frac{{\overline{a}_{41} m^{2} n^{2} B_{a}^{2} + m^{2} B_{a}^{2} B_{h} R_{b} }}{{\pi^{2} \left( {\overline{a}_{12} m^{4} B_{a}^{4} + \overline{a}_{22} m^{2} n^{2} B_{a}^{2} + \overline{a}_{32} n^{4} } \right)}}\left( {\frac{{m^{2} }}{{\pi^{2} }}B_{a}^{2} B_{h} R_{b} - \overline{a}_{42} m^{4} B_{a}^{4} - \overline{a}_{52} m^{2} n^{2} B_{a}^{2} - \overline{a}_{62} n^{4} } \right)} \right] \\ a_{23} = &\,\, \frac{{32mn\gamma_{m} \gamma_{n} \pi^{2} B_{a}^{2} }}{{3B_{h}^{4} \left( {\overline{a}_{12} m^{4} B_{a}^{4} + \overline{a}_{22} m^{2} n^{2} B_{a}^{2} + \overline{a}_{32} n^{4} } \right)}}\left( {\overline{a}_{42} m^{4} B_{a}^{4} + \overline{a}_{52} m^{2} n^{2} B_{a}^{2} + \overline{a}_{62} n^{4} - \frac{{m^{2} }}{{\pi^{2} }}B_{a}^{2} B_{h} R_{b} } \right), \\ a_{33} = &\,\, - \frac{{2n^{2} R_{b} \gamma_{m} \gamma_{n} }}{{3mn\overline{a}_{12} B_{h}^{3} }},\,a_{43} = \pi^{4} \frac{{\overline{a}_{12} m^{4} B_{a}^{4} + \overline{a}_{32} n^{4} }}{{16\overline{a}_{12} \overline{a}_{32} B_{h}^{4} }}. \\ \end{aligned}$$
(28)

where

$$\begin{aligned} \left( {\overline{a}_{11} ,\overline{a}_{21} ,\overline{a}_{31} } \right) = &\,\, \frac{1}{{h^{3} }}\left( {a_{11} ,a_{21} ,a_{31} } \right),\,\left( {\overline{a}_{41} ,\overline{a}_{42} ,\overline{a}_{52} ,\overline{a}_{62} } \right) = \frac{1}{h}\left( {a_{41} ,a_{42} ,a_{52} ,a_{62} } \right), \\ \left( {\overline{a}_{12} ,\overline{a}_{22} ,\overline{a}_{32} } \right) = &\,\, h\left( {a_{12} ,a_{22} ,a_{32} } \right),\,\left( {K_{1} ,K_{2} } \right) = \left( {k_{1} b^{2} ,k_{2} } \right)\frac{{b^{2} }}{{E_{0}^{m} h^{3} }} \\ \end{aligned}$$
(29)

in which \(E_{0}^{m}\) is value of \(E^{m}\) computed at room temperature \(T_{0} = 300{\text{K}}\).

The coefficients \(a_{k6}\) and \(a_{k7}\) (\(k = 1,2,3\)) in Eqs. (22a, 22b) are given as follows:

$$\begin{aligned} a_{{\mathop {16}}} = &\,\, \frac{{a_{34} }}{{a_{24} }}\left( {\overline{c}_{2} a_{25} - 1} \right)a_{46} - \overline{c}_{2} a_{35} a_{46} ,\quad a_{{\mathop {26}}} = \frac{{a_{44} }}{{a_{24} }}\left( {\overline{c}_{2} a_{25} - 1} \right)a_{46} - \overline{c}_{2} a_{45} a_{46} , \\ a_{36} = &\,\, \frac{{a_{54} }}{{a_{24} }}\left( {\overline{c}_{2} a_{25} - 1} \right)a_{46} - \overline{c}_{2} a_{55} a_{46} ,\quad a_{17} = \frac{{a_{35} }}{{a_{15} }}\left( {\overline{c}_{1} a_{14} - 1} \right)a_{47} - \overline{c}_{1} a_{34} a_{47} , \\ a_{27} = &\,\, \frac{{a_{45} }}{{a_{15} }}\left( {\overline{c}_{1} a_{14} - 1} \right)a_{47} - \overline{c}_{1} a_{44} a_{47} ,\quad a_{37} = \frac{{a_{55} }}{{a_{15} }}\left( {\overline{c}_{1} a_{14} - 1} \right)a_{47} - \overline{c}_{1} a_{54} a_{47} \\ \end{aligned}$$
(30)

in which

$$\left( {a_{46} ,a_{47} } \right) = \frac{{\left( {\overline{c}_{1} a_{24} ,\overline{c}_{2} a_{15} } \right)}}{{\overline{c}_{1} \overline{c}_{2} a_{24} a_{15} + \left( {\overline{c}_{2} a_{25} - 1} \right)\left( {1 - \overline{c}_{1} a_{14} } \right)}},\quad \left( {\overline{c}_{1} ,\overline{c}_{2} } \right) = \frac{1}{h}\left( {c_{1} ,c_{2} } \right)$$
(31)

and specific expressions of \(a_{i4}\) and \(a_{j5}\) (\(i,j = 1, \ldots ,5\)) were given in the work [26].

The detail of coefficients \(r_{1} , \ldots ,r_{6}\) in Eq. (23) is defined as follows:

$$\begin{aligned} r_{1} = &\,\, a_{13} - \frac{{16\gamma_{m} \gamma_{n} R_{b} }}{{mn\pi^{2} B_{h} }}a_{17} ,\;r_{2} = a_{23} + \frac{{\pi^{2} }}{{B_{h}^{2} }}\left( {m^{2} B_{a}^{2} a_{16} + n^{2} a_{17} } \right),\;r_{3} = a_{33} - \frac{{16\gamma_{m} \gamma_{n} R_{b} }}{{mn\pi^{2} B_{h} }}a_{27} , \\ r_{4} = &\,\, a_{43} + \frac{{\pi^{2} }}{{B_{h}^{2} }}\left( {m^{2} B_{a}^{2} a_{26} + n^{2} a_{27} } \right),\;r_{5} = \frac{{\pi^{2} }}{{B_{h}^{2} }}\left( {m^{2} B_{a}^{2} a_{36} + n^{2} a_{37} } \right),\;r_{6} = \frac{{16\gamma_{m} \gamma_{n} R_{b} }}{{mn\pi^{2} B_{h} }}a_{37} \\ \end{aligned}$$
(32)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thinh, N., Van Tung, H. Nonlinear vibration of geometrically imperfect CNT-reinforced composite cylindrical panels exposed to thermal environments with elastically restrained edges. Acta Mech 235, 1147–1164 (2024). https://doi.org/10.1007/s00707-023-03791-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03791-0

Navigation