Skip to main content
Log in

A numerical scheme for geometrically exact flexoelectric microbeams using the weak form quadrature element method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, a geometrically exact flexoelectric beam model and its weak form quadrature element formulation are established. The coupling of strain gradient and electric field in flexoelectricity involving size effects is taken into account and the resulting C1 continuity requirements are satisfied. The formulation owns the advantage of high-order approximation to circumvent locking problems after discretization. Several numerical examples originating from benchmark nonlinear beam problems are studied to validate the feasibility of the formulation. Compared to existing flexoelectric beam models, the use of geometrically exact beam theory in the present model makes an innovative contribution to analyzing flexoelectric microbeams undergoing large displacements and rotations. This study is a step forward to better understandings of flexoelectric effects on microbeams under large deflections, while also providing a viable approach to predict their nonlinear behaviors in such conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Sci. 43, 387–421 (2013)

    ADS  CAS  Google Scholar 

  2. Yudin, P., Tagantsev, A.: Fundamentals of flexoelectricity in solids. Nanotechnology 24(43), 432001 (2013)

    ADS  CAS  PubMed  Google Scholar 

  3. Kundalwal, S., Meguid, S., Weng, G.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017)

    CAS  Google Scholar 

  4. Majdoub, M., Sharma, P., Çağin, T.: Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys. Rev. B 78(12), 121407 (2008)

    ADS  Google Scholar 

  5. Majdoub, M., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77(12), 125424 (2008)

    ADS  Google Scholar 

  6. Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4(6), 637–642 (1968)

    Google Scholar 

  7. Sahin, E., Dost, S.: A strain-gradients theory of elastic dielectrics with spatial dispersion. Int. J. Eng. Sci. 26(12), 1231–1245 (1988)

    CAS  Google Scholar 

  8. Maranganti, R., Sharma, N., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74(1), 014110 (2006)

    ADS  Google Scholar 

  9. Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)

    ADS  MathSciNet  CAS  Google Scholar 

  10. Liu, L.: An energy formulation of continuum magneto-electro-elasticity with applications. J. Mech. Phys. Solids 63, 451–480 (2014)

    ADS  MathSciNet  Google Scholar 

  11. Rupa, N.S., Ray, M.C.: Analysis of flexoelectric response in nanobeams using nonlocal theory of elasticity. Int. J. Mech. Mater. Des. 13(3), 453–467 (2017)

    Google Scholar 

  12. Ebrahimi, F., Karimiasl, M.: Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams. Mech. Adv. Mater. Struct. 25(11), 943–952 (2018)

    CAS  Google Scholar 

  13. Ebrahimi, F., Karimiasl, M., Civalek, Ö., Vinyas, M.: Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams. Adv. Nano Res. 7(2), 77 (2019)

    Google Scholar 

  14. Ebrahimi, F., Karimiasl, M., Singhal, A.: Magneto-electro-elastic analysis of piezoelectric–flexoelectric nanobeams rested on silica aerogel foundation. Eng. Comput. 37, 1007–1014 (2021)

    Google Scholar 

  15. Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M., Toghroli, A.: On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading. Adv. Nano Res. 8(1), 49–58 (2020)

    Google Scholar 

  16. Zhang, D., Lei, Y., Adhikari, S.: Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory. Acta Mech. 229(6), 2379–2392 (2018)

    MathSciNet  Google Scholar 

  17. Qu, Y., Jin, F., Yang, J.: Buckling of flexoelectric semiconductor beams. Acta Mech. 232(7), 2623–2633 (2021)

    MathSciNet  Google Scholar 

  18. Wang, K.F., Wang, B.L.: Non-linear flexoelectricity in energy harvesting. Int. J. Eng. Sci. 116, 88–103 (2017)

    Google Scholar 

  19. Zarepour, M., Hosseini, S., Akbarzadeh, A.: Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on eringen’s differential model. Appl. Math. Model. 69, 563–582 (2019)

    MathSciNet  Google Scholar 

  20. Baroudi, S., Najar, F.: Dynamic analysis of a nonlinear nanobeam with flexoelectric actuation. J. Appl. Phys. 125(4), 044503 (2019)

    ADS  Google Scholar 

  21. Zhong, H., Yu, T.: Flexural vibration analysis of an eccentric annular Mindlin plate. Arch. Appl. Mech. 77(4), 185–195 (2007)

    ADS  Google Scholar 

  22. Zhong, H., Yu, T.: A weak form quadrature element method for plane elasticity problems. Appl. Math. Model. 33(10), 3801–3814 (2009)

    MathSciNet  Google Scholar 

  23. Bellman, R., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)

    MathSciNet  Google Scholar 

  24. Striz, A.G., Weilong, C., Bert, C.W.: Static analysis of structures by the quadrature element method (QEM). Int. J. Solids Struct. 31(20), 2807–2818 (1994)

    Google Scholar 

  25. Zhong, H., Zhang, R., Xiao, N.: A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch. Appl. Mech. 84(12), 1825–1840 (2014)

    ADS  Google Scholar 

  26. Zhang, R., Zhong, H.: A quadrature element formulation of an energy-momentum conserving algorithm for dynamic analysis of geometrically exact beams. Comput. Struct. 165, 96–106 (2016)

    Google Scholar 

  27. Zhang, R., Zhong, H.: A weak form quadrature element formulation for geometrically exact thin shell analysis. Comput. Struct. 202, 44–59 (2018)

    Google Scholar 

  28. Zhang, R., Zhong, H., Yao, X., Han, Q.: A quadrature element formulation of geometrically nonlinear laminated composite shells incorporating thickness stretch and drilling rotation. Acta Mech. 231(5), 1685–1709 (2020)

    MathSciNet  Google Scholar 

  29. Zhang, R., Stanciulescu, I., Yao, X., Zhong, H.: An energy-momentum conserving scheme for geometrically exact shells with drilling dofs. Comput. Mech. 67(1), 341–364 (2021)

    MathSciNet  Google Scholar 

  30. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. part i. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    ADS  Google Scholar 

  31. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part ii: computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)

    ADS  Google Scholar 

  32. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Google Scholar 

  33. Codony, D., Gupta, P., Marco, O., Arias, I.: Modeling flexoelectricity in soft dielectrics at finite deformation. J. Mech. Phys. Solids 146, 104182 (2021)

    MathSciNet  Google Scholar 

  34. Shu, C., Richards, B.E.: Application of generalized differential quadrature to solve two-dimensional incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 15(7), 791–798 (1992)

    ADS  Google Scholar 

  35. Auricchio, F., Carotenuto, P., Reali, A.: On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite-elasticity. Int. J. Solids Struct. 45(17), 4766–4781 (2008)

    Google Scholar 

  36. Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23(3), 035020 (2014)

    ADS  CAS  Google Scholar 

  37. Deng, F., Deng, Q., Yu, W., Shen, S.: Mixed finite elements for flexoelectric solids. J. Appl. Mech. 84(8), 081004 (2017)

    ADS  Google Scholar 

  38. Sladek, J., Sladek, V., Hosseini, S.M.: Analysis of a curved Timoshenko nano-beam with flexoelectricity. Acta Mech. 232(4), 1563–1581 (2021)

    MathSciNet  Google Scholar 

  39. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Courier Corporation, Chelmsford (2007)

    Google Scholar 

  40. Balobanov, V., Niiranen, J.: Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity. Comput. Methods Appl. Mech. Eng. 339, 137–159 (2018)

    ADS  MathSciNet  Google Scholar 

  41. De Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, Hoboken (2012)

    Google Scholar 

  42. Chapelle, D., Bathe, K.-J.: The Finite Element Analysis of Shells-fundamentals. Springer, Berlin (2010)

    Google Scholar 

  43. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2007)

    Google Scholar 

  44. Meier, C., Popp, A., Wall, W.A.: An objective 3d large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478 (2014)

    ADS  MathSciNet  Google Scholar 

  45. Herath, S., Yin, G.: On the geometrically exact formulations of finite deformable isogeometric beams. Comput. Mech. 67(6), 1705–1717 (2021)

    MathSciNet  Google Scholar 

  46. Jelenic, G., Crisfield, M.: Geometrically exact 3d beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171(1–2), 141–171 (1999)

    ADS  MathSciNet  Google Scholar 

  47. Bauer, A., Breitenberger, M., Philipp, B., Wüchner, R., Bletzinger, K.-U.: Nonlinear isogeometric spatial Bernoulli beam. Comput. Methods Appl. Mech. Eng. 303, 101–127 (2016)

    ADS  MathSciNet  Google Scholar 

  48. Vo, D., Nanakorn, P., Bui, T.Q.: Geometrically nonlinear multi-patch isogeometric analysis of spatial Euler–Bernoulli beam structures. Comput. Methods Appl. Mech. Eng. 380, 113808 (2021)

    ADS  MathSciNet  Google Scholar 

  49. Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A. Solids 29(4), 591–599 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

The present investigation was performed with the support of the National Natural Science Foundation of China (No. 12172136), the Science and Technology Project of Guangzhou (No. 202102020656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Constitutive and element tangent stiffness matrix

1.1 Constitutive matrix

By denoting the initial shear-axial strain vector and bending-torsional strain vector as \(\varvec{\gamma }_0\) and \(\varvec{\kappa }_0\), the stress resultant \({\textbf{n}}\), \({\textbf{m}}\) and the double stress resultant \({\tilde{\textbf{n}}}\), \({\tilde{\textbf{m}}}\) in Eq. (31) are given by

$$\begin{aligned} \begin{array}{l} {{\textbf{n}}} = \displaystyle \int _A {{\textbf{s}}}{\text { d}}A = {{\textbf{D}}_1}\left( {\varvec{\gamma }}-{\varvec{\gamma }_0}\right) ,\\ {{\textbf{m}}} = \displaystyle \int _A {\left( {\hat{\varvec{\lambda }}{{\textbf{s}}} +\hat{{\textbf{e}}}_\alpha {{\tilde{{\textbf{s}}}}_\alpha }} \right) }{\text { d}}A = {{\textbf{D}}_2}\left( {\varvec{\kappa }} -{\varvec{\kappa }_0}\right) + {{\textbf{D}}_3}\left( {\varvec{\gamma }'}-{\varvec{\gamma }'_0}\right) , \\ {\tilde{{\textbf{n}}}} = \displaystyle \int _A {{{{\tilde{{\textbf{s}}}}}_3}{\text { d}}A} ={{\textbf{D}}_3^T}\left( {\varvec{\kappa }}-{\varvec{\kappa }_0} \right) + {{\textbf{D}}_4}\left( {\varvec{\gamma }'}-{\varvec{\gamma }'_0}\right) , \\ {\tilde{{\textbf{m}}}} = \displaystyle \int _A {\hat{\varvec{\lambda }}{{\tilde{{\textbf{s}}}}_3}{\text { d}}A} = {{\textbf{D}}_5}\left( {\varvec{\kappa }'}-{\varvec{\kappa }'_0}\right) , \end{array} \end{aligned}$$
(A1)

with

$$\begin{aligned} {\textbf{D}}_1= & {} \text { diag}\begin{bmatrix} k_{s1}GA&\,\, k_{s2}GA&\,\, EA \end{bmatrix} \end{aligned}$$
(A2)
$$\begin{aligned} {\textbf{D}}_2= & {} \text { diag}\begin{bmatrix} EI_1+l^2EA+\dfrac{f_1^2A}{\epsilon }&\,\, EI_2+l^2EA +\dfrac{f_1^2A}{\epsilon }&\,\, GJ_{sv}+2l^2GA \end{bmatrix} \end{aligned}$$
(A3)
$$\begin{aligned} {\textbf{D}}_3= & {} \frac{1}{\epsilon }\left[ \begin{array}{ccc} 0&{}\quad f_1 f_2A &{}\quad 0 \\ -f_1 f_2A&{}\quad 0&{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 \\ \end{array} \right] \end{aligned}$$
(A4)
$$\begin{aligned} {\textbf{D}}_4= & {} \text { diag}\begin{bmatrix} l^2k_{s1}GA+\dfrac{f_2^2A}{\epsilon }&\,\, l^2k_{s2}GA +\dfrac{f_2^2A}{\epsilon }&\,\, l^2EA \end{bmatrix} \end{aligned}$$
(A5)
$$\begin{aligned} {\textbf{D}}_5= & {} \text { diag}\begin{bmatrix} l^2EI_1&\,\, l^2EI_2&\,\, l^2GJ_{sv}+\dfrac{f_2^2 J_{sv}}{\epsilon } \end{bmatrix} \end{aligned}$$
(A6)

where \(k_{s1}\) and \(k_{s2}\) are the shear correction factors; \(I_1\) and \(I_2\) are the corresponding principal bending inertial moments of the cross section; and \(J_{sv}\) is the torsional inertial moment.

1.2 Element tangent stiffness matrix

According to the definition in Eq. (58), the element tangent stiffness matrix is derived as

$$\begin{aligned} {{\textbf{K}}}^{(e)} = \sum \limits _{i = 1}^n {{\mu _i}} {w_i}\left( \begin{aligned}{} & {} {{\textbf{A}}}_i^T{\varvec{\Gamma }}_i^T{{{\textbf{D}}}_{\text { I}}}{{\varvec{\Gamma }}_i}{{{\textbf{A}}}_i} + {{\textbf{A}}}_i^T{\varvec{\Gamma }}_i^T{{{\textbf{D}}}_{{\text { II}}}}{\overline{\varvec{\Gamma }} _i}{\overline{{\textbf{A}}} _i} + \overline{{\textbf{A}}} _i^T\overline{\varvec{\Gamma }} _i^T{{{\textbf{D}}}_{\text { II}}^T}{{\varvec{\Gamma }}_i}{{{\textbf{A}}}_i} \\ {}{} & {} \quad + \overline{{\textbf{A}}} _i^T\overline{\varvec{\Gamma }} _i^T{{{\textbf{D}}}_{{\text { III}}}}{\overline{\varvec{\Gamma }} _i}{\overline{{\textbf{A}}} _i} + {{\textbf{A}}}_i^T{{\mathbf {\Xi }}_i}{{{\textbf{A}}}_i} + \overline{{\textbf{A}}} _i^T{\overline{\mathbf {\Xi }} _i}{\overline{{\textbf{A}}} _i} \\ \end{aligned} \right) . \end{aligned}$$
(A7)

where \({{\textbf{D}}}_{\text { I}}\), \({{\textbf{D}}}_{\text { II}}\) and \({{\textbf{D}}}_{\text { III}}\) are defined as

$$\begin{aligned} \begin{aligned} {\textbf{D}}_{\text { I}} = \left[ {\begin{array}{*{20}{c}} {\textbf{D}}_1&{}\quad {\textbf{0}} \\ {\textbf{0}}&{}\quad {\textbf{D}}_2 \end{array}} \right] , \\ {{{\textbf{D}}}_{{\text { II}}}} = \left[ {\begin{array}{*{20}{c}} {\textbf{0}}&{}\quad {\textbf{0}} \\ {\textbf{D}}_3&{}\quad {\textbf{0}} \end{array}} \right] , \\ {{{\textbf{D}}}_{{\text { III}}}} = \left[ {\begin{array}{*{20}{c}} {\textbf{D}}_4&{}\quad {\textbf{0}} \\ {\textbf{0}}&{}\quad {\textbf{D}}_5 \end{array}} \right] . \\ \end{aligned} \end{aligned}$$
(A8)

\({{\mathbf {\Xi }}_i}\) and \({\overline{\mathbf {\Xi }} _i}\) are given by

$$\begin{aligned} {{\mathbf {\Xi }}_i} = \left[ {\begin{array}{*{20}{c}} {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad { - {{\mathbf {\Lambda }}_i}{{{\hat{{\textbf{n}}}}}_i}{\mathbf {\Lambda }}_i^T}, \\ {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad { - {{\mathbf {\Lambda }}_i}{{{\hat{{\textbf{m}}}}}_i}{\mathbf {\Lambda }}_i^T}, \\ {{{\mathbf {\Lambda }}_i}{{{\hat{{\textbf{n}}}}}_i}{\mathbf {\Lambda }}_i^T}&{}\quad {\textbf{0}}&{}\quad {{\hat{{\textbf{r}}}}_i^\prime {{\mathbf {\Lambda }}_i}{{{\hat{{\textbf{n}}}}}_i}{\mathbf {\Lambda }}_i^T} \end{array}} \right] . \end{aligned}$$
(A9)
$$\begin{aligned} {{{\bar{\mathbf {\Xi }} }}_i} = \left[ {\begin{array}{*{20}{c}} {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad { - {{\mathbf {\Lambda }}_i}{{{\hat{{\tilde{\textbf{n}}}}}}_i}{\mathbf {\Lambda }}_i^T} \\ {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad { - {{\mathbf {\Lambda }}_i}{{{\hat{{\tilde{\textbf{m}}}}}}_i}{\mathbf {\Lambda }}_i^T} \\ {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad { - {{\mathbf {\Lambda }}_i}{{{\hat{{\tilde{\textbf{n}}}}}}_i}{\mathbf {\Lambda }}_i^T}&{}\quad { - \widehat{{\mathbf \Lambda ^\prime _i}{{{\tilde{{\textbf{n}}}}}_i}}}, \\ {\textbf{0}}&{}\quad {\textbf{0}}&{}\quad {{{\mathbf {\Lambda }}_i}{{{\hat{{\tilde{\textbf{n}}}}}}_i}{\mathbf {\Lambda }}_i^T}&{}\quad { - {{\mathbf {\Lambda }}_i}{{{\hat{{\tilde{\textbf{m}}}}}}_i}{\mathbf {\Lambda }}_i^T}&{}\quad {\hat{{\textbf{r}}}_i^\prime {{\mathbf {\Lambda }}_i}{{{\hat{{\tilde{\textbf{n}}}}}}_i}{\mathbf {\Lambda }}_i^T - \widehat{{\mathbf \Lambda ^\prime _i}{{{\tilde{{\textbf{m}}}}}_i}}} \\ {{{\mathbf {\Lambda }}_i}{{{\hat{{\tilde{\textbf{n}}}}}}_i}{\mathbf {\Lambda }}_i^T}&{}\quad {\textbf{0}}&{}\quad {\widehat{{\mathbf \Lambda ^\prime _i}{{{\tilde{{\textbf{n}}}}}_i}}}&{}\quad {\hat{{\textbf{r}}}_i^\prime {{\mathbf {\Lambda }}_i}{{{\hat{{\tilde{\textbf{n}}}}}}_i}{\mathbf {\Lambda }}_i^T}&{}\quad {\hat{{\textbf{r}}}_i^\prime \widehat{{\mathbf \Lambda ^\prime _i}{{{\tilde{{\textbf{n}}}}}_i}} + \hat{{\textbf{r}}}_i^{\prime \prime }{{\mathbf {\Lambda }}_i}{{{\hat{{\tilde{\textbf{n}}}}}}_i}{\mathbf {\Lambda }}_i^T} \end{array}} \right] . \end{aligned}$$
(A10)

Appendix B Analytical solutions for the simply-supported beam

We consider a plane simply-supported beam with the governing equation Eq. (37) reduced as

$$\begin{aligned}&k_{s1} GA\left( {u_1^{{\prime } {\prime } } - \varphi ^{\prime } } \right) + \frac{{f_1 f_2 A}}{\varepsilon }\varphi ^{{\prime } {\prime } {\prime } } - \left( {k_{s1} l^2 GA + \frac{{f_2^2 A}}{\varepsilon }} \right) \left( {u_1^{{\prime } {\prime } {\prime } {\prime } } - \varphi ^{{\prime } {\prime } {\prime } } } \right) = - p, \nonumber \\&k_{s1} GA\left( {u_1^{\prime } - \varphi } \right) + \left( {EI + l^2 EA + \frac{{f_1^2 + f_1 f_2 }}{\varepsilon }} \right) \varphi ^{{\prime } {\prime } } \nonumber \\&\qquad - \left( {k_{s1} l^2 GA + \frac{{f_2^2 + f_1 f_2 }}{\varepsilon }A} \right) \left( {u_1^{{\prime } {\prime } {\prime } } - \varphi ^{{\prime } {\prime } } } \right) - l^2 EI\varphi ^{{\prime } {\prime } {\prime } {\prime } } = - m, \end{aligned}$$
(B1)

where \(u_1\) is the deflection and \(\varphi \) denotes the rotation. p and m are the external distributed force and moment, respectively. Referring to previous works [40, 49] for strain gradient beams, the following boundary conditions

$$\begin{aligned} \begin{array}{cc} u_1=u''_1=\varphi '=0,&\text { at } s=0, L \end{array} \end{aligned}$$
(B2)

are employed. The deflection \(u_1\) and rotation \(\varphi \) are assumed to take the following Fourier series

$$\begin{aligned} \begin{array}{cc} u_1(s)=\sum \limits _{n=1}^{\infty }U_n \sin \dfrac{n\pi s}{L},&\varphi (s)=\sum \limits _{n=1}^{\infty }\Phi _n \cos \dfrac{n\pi s}{L}, \end{array} \end{aligned}$$
(B3)

where \(U_n\) and \(\Phi _n\) are Fourier coefficients to be determined for each n. External load is taken as

$$\begin{aligned} \begin{array}{cc} p(s)=p_0 \sin \dfrac{\pi s}{L},&m=0, \end{array} \end{aligned}$$
(B4)

with a constant \(p_0\). According to Eqs. (B1), (B3) and (B4), after somewhat straightforward calculations, the final expression of \(u_1\) and \(\varphi \) is given as

$$\begin{aligned} \begin{array}{c} u_1(s)=\dfrac{a_3}{a_2^2-a_1a_3}p_0\sin \beta s,\\ \varphi (s)=\dfrac{a_2}{a_1a_3-a_2^2}p_0\cos \beta s. \end{array} \end{aligned}$$
(B5)

with

$$\begin{aligned} \begin{array}{l} a_1=-k_{s1}GA\beta ^2-k_{s1}l^2GA\beta ^4-\frac{f_2^2A}{\epsilon }\beta ^4,\\ a_2=k_{s1}GA\beta +\left( {k_{s1}}{l^2}GA + \frac{f_2^2+{f_1}{f_2}}{\epsilon }A\right) \beta ^3,\\ a_3=-k_{s1}GA-\left( EI+l^2EA+k_{s1}l^2GA+\frac{\left( f_1+f_2\right) ^2}{\epsilon }A\right) \beta ^2-l^2EI\beta ^4, \end{array} \end{aligned}$$
(B6)

where \(\beta =\pi /L\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Zhang, R., Chen, T. et al. A numerical scheme for geometrically exact flexoelectric microbeams using the weak form quadrature element method. Acta Mech 235, 991–1013 (2024). https://doi.org/10.1007/s00707-023-03787-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03787-w

Navigation