Skip to main content
Log in

An electromechanical coupling isogeometric approach using zig-zag function for modeling and smart damping control of multilayer PFG-GPRC plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, a novel numerical approach based on electromechanical coupling isogeometric analysis employing a piecewise linear zig-zag function is proposed for modeling and analysis of smart constrained layer damping (SCLD) treatment in multilayer porous functionally graded graphene platelets-reinforced composite (PFG-GPRC) plates. The approach efficiently approximates the geometric, mechanical, and electric displacement fields by utilizing non-uniform rational B-splines (NURBS) basis functions. These basis functions are subsequently integrated with the zig-zag formulation to characterize the system dynamic and help handle both continuous/discontinuous material properties at all interfaces, as well as improve the effectiveness of global–local numerical solutions for the analysis of current structures. The multilayer PFG-GPRC plate model is designed to incorporate porous, uniformly, or non-uniformly distributed layers based on three different graphene platelet patterns. The analysis of the SCLD treatment encompasses an examination of the frequency response function of the damped structure under passive/hybrid mechanisms, taking into account viscoelastic behavior and the converse piezoelectric effect. Reliability in the current analysis is demonstrated through a validation study, and a comprehensive parametric investigation is undertaken to analyze the impact of various parameters related to graphene platelets (GPLs) and distribution types of porosity on the damping behavior of multilayer PFG-GPRC plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    CAS  Google Scholar 

  2. Mehar, K., Panda, S.K., Sharma, N.: Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure. Eng. Struct. 211, 110444 (2020)

    Google Scholar 

  3. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009)

    CAS  PubMed  Google Scholar 

  4. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    ADS  CAS  PubMed  Google Scholar 

  5. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    ADS  CAS  PubMed  Google Scholar 

  6. Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008)

    ADS  CAS  PubMed  Google Scholar 

  7. Ramteke, P.M., Mahapatra, B.P., Panda, S.K., Sharma, N.: Static deflection simulation study of 2d functionally graded porous structure. Mater. Today Proc. 33, 5544–5547 (2020)

    Google Scholar 

  8. Ramteke, P.M., Sharma, N., Choudhary, J., Hissaria, P., Panda, S.K.: Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach. Eng. Comput. 38(Suppl 4), 3077–3097 (2022)

    Google Scholar 

  9. Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Google Scholar 

  10. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Google Scholar 

  11. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLS). Compos. B Eng. 110, 132–140 (2017)

    CAS  Google Scholar 

  12. Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. B Eng. 134, 106–113 (2018)

    CAS  Google Scholar 

  13. Thai, C.H., Ferreira, A., Tran, T., Phung-Van, P.: Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the nurbs formulation. Compos. Struct. 220, 749–759 (2019)

    Google Scholar 

  14. Wang, Y., Xie, K., Fu, T., Shi, C.: Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Compos. Struct. 209, 928–939 (2019)

    Google Scholar 

  15. Nematollahi, M.S., Mohammadi, H., Dimitri, R., Tornabene, F.: Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams. Appl. Sci. 10(16), 5669 (2020)

    CAS  Google Scholar 

  16. Yang, Z., Zhao, S., Yang, J., Lv, J., Liu, A., Fu, J.: In-plane and out-of-plane free vibrations of functionally graded composite arches with graphene reinforcements. Mech. Adv. Mater. Struct. 28(19), 2046–2056 (2021)

    CAS  Google Scholar 

  17. Preumont, A., Seto, K.: Active Control of Structures. Wiley, New York (2008)

    Google Scholar 

  18. Zhang, J., He, L., Wang, E., Gao, R.: Active vibration control of flexible structures using piezoelectric materials. In: 2009 International Conference on Advanced Computer Control, pp. 540–545. IEEE (2009)

  19. Selim, B., Liu, Z., Liew, K.: Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers. Thin-Walled Struct. 145, 106372 (2019)

    Google Scholar 

  20. Nguyen, N.V., Lee, J., Nguyen-Xuan, H.: Active vibration control of GPLS-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Compos. B Eng. 172, 769–784 (2019)

    CAS  Google Scholar 

  21. Nguyen, L.B., Nguyen, N.V., Thai, C.H., Ferreira, A., Nguyen-Xuan, H.: An isogeometric bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets. Compos. Struct. 214, 227–245 (2019)

    Google Scholar 

  22. Dong, Y., Li, Y., Li, X., Yang, J.: Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 82, 252–270 (2020)

    MathSciNet  Google Scholar 

  23. Nguyen, N.V., Lee, J.: On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197, 106310 (2021)

    Google Scholar 

  24. Singh, V.K., Mahapatra, T.R., Panda, S.K.: Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator. Compos. Struct. 157, 121–130 (2016)

    Google Scholar 

  25. Singh, V.K., Mahapatra, T.R., Panda, S.K.: Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator. Eur. J. Mech A Solids 60, 300–314 (2016)

    ADS  Google Scholar 

  26. Baz, A.M.: Active and Passive Vibration Damping. Wiley, New York (2019)

    Google Scholar 

  27. Ray, M., Pradhan, A.: The performance of vertically reinforced 1–3 piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15(2), 631 (2006)

    ADS  CAS  Google Scholar 

  28. Ray, M., Reddy, J.: Active damping of laminated cylindrical shells conveying fluid using 1–3 piezoelectric composites. Compos. Struct. 98, 261–271 (2013)

    Google Scholar 

  29. Kattimani, S., Ray, M.: Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates. Compos. Struct. 114, 51–63 (2014)

    Google Scholar 

  30. Kumar, A., Ray, M.: Control of smart rotating laminated composite truncated conical shell using ACLD treatment. Int. J. Mech. Sci. 89, 123–141 (2014)

    Google Scholar 

  31. Datta, P., Ray, M.: Three-dimensional fractional derivative model of smart constrained layer damping treatment for composite plates. Compos. Struct. 156, 291–306 (2016)

    Google Scholar 

  32. Nguyen-Thoi, T., Ly, K.D., Truong, T.T., Nguyen, S.N., Mahesh, V.: Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed fem and metaheuristic algorithm. Eng. Struct. 259, 114062 (2022)

    Google Scholar 

  33. Ramteke, P.M.: Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure. Steel Compos. Struct. Int. J. 33(6), 865–875 (2019)

    Google Scholar 

  34. Ramteke, P.M., Panda, S.K.: Free vibrational behaviour of multi-directional porous functionally graded structures. Arab. J. Sci. Eng. 46, 7741–7756 (2021)

    Google Scholar 

  35. Ramteke, P.M., Panda, S.K.: Computational modelling and experimental challenges of linear and nonlinear analysis of porous graded structure: a comprehensive review. Arch. Comput. Methods Eng. 30(5), 3437–3452 (2023)

    Google Scholar 

  36. Sharma, A., Kumar, A., Susheel, C., Kumar, R.: Smart damping of functionally graded nanotube reinforced composite rectangular plates. Compos. Struct. 155, 29–44 (2016)

    Google Scholar 

  37. Sahoo, S., Ray, M.: Analysis of smart damping of laminated composite beams using mesh free method. Int. J. Mech. Mater. Des. 14(3), 359–374 (2018)

    CAS  Google Scholar 

  38. Liu, G.R., Trung, N.: Smoothed Finite Element Methods. CRC Press, Boco Raton (2016)

    Google Scholar 

  39. Nguyen-Thoi, T., Phung-Van, P., Nguyen-Xuan, H., Thai-Hoang, C.: A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of reissner-mindlin plates. Int. J. Numer. Methods Eng. 91(7), 705–741 (2012)

    MathSciNet  Google Scholar 

  40. Nguyen-Thoi, T., Phung-Van, P., Thai-Hoang, C., Nguyen-Xuan, H.: A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. Int. J. Mech. Sci. 74, 32–45 (2013)

    Google Scholar 

  41. Nguyen, S.N., Truong, T.T., Cho, M., Trung, N.T.: A cell-based smoothed finite element formulation for viscoelastic laminated composite plates considering hygrothermal effects. J. Compos. Mater. 55(14), 1967–1978 (2021)

    ADS  Google Scholar 

  42. Ly, D.K., Truong, T.T., Nguyen, S.N., Nguyen-Thoi, T.: A smoothed finite element formulation using zig-zag theory for hybrid damping vibration control of laminated functionally graded carbon nanotube reinforced composite plates. Eng. Anal. Bound. Elem. 144, 456–474 (2022)

    MathSciNet  Google Scholar 

  43. Guo, H., Zhuang, X., Rabczuk, T.: A deep collocation method for the bending analysis of kirchhoff plate (2021). arXiv preprint arXiv:2102.02617

  44. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020)

    ADS  MathSciNet  Google Scholar 

  45. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    ADS  MathSciNet  Google Scholar 

  46. Fernández Casanova, C., et al.: Analysis of Composite Shells: Isogeometric Modelling and Damage identification. Universidad de Granada (2014)

    Google Scholar 

  47. Singh, S., Singh, I.V.: Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material. Eng. Fract. Mech. 247, 107640 (2021)

    Google Scholar 

  48. Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H., Lee, J.: Nurbs-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells. Comput. Methods Appl. Mech. Eng. 347, 983–1003 (2019)

    ADS  MathSciNet  Google Scholar 

  49. Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S., Abdel-Wahab, M., Nguyen-Xuan, H.: An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. Int. J. Non-Linear Mech. 76, 190–202 (2015)

    ADS  Google Scholar 

  50. Phung-Van, P., Tran, L.V., Ferreira, A., Nguyen-Xuan, H., Abdel-Wahab, M.: Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dyn. 87(2), 879–894 (2017)

    Google Scholar 

  51. Shafei, E., Faroughi, S., Rabczuk, T.: Nonlinear transient vibration of viscoelastic plates: a nurbs-based isogeometric hsdt approach. Comput. Math. Appl. 84, 1–15 (2021)

    MathSciNet  Google Scholar 

  52. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boco Raton (2003)

    Google Scholar 

  53. Liew, K., Pan, Z., Zhang, L.: An overview of Layerwise theories for composite laminates and structures: development, numerical implementation and application. Compos. Struct. 216, 240–259 (2019)

    Google Scholar 

  54. Murakami, H.: Laminated composite plate theory with improved in-plane responses. J. Appl. Mech. 53(3), 661–666 (1986)

    ADS  Google Scholar 

  55. Carrera, E.: On the use of the Murakami’s zig-zag function in the modeling of layered plates and shells. Comput. Struct. 82(7–8), 541–554 (2004)

    Google Scholar 

  56. Tessler, A., DiSciuva, M., Gherlone, M.: Refined zigzag theory for laminated composite and sandwich plates (2009)

  57. Nguyen, S.N., Lee, J., Cho, M.: A triangular finite element using laplace transform for viscoelastic laminated composite plates based on efficient higher-order zigzag theory. Compos. Struct. 155, 223–244 (2016)

    Google Scholar 

  58. Nguyen, S.N., Lee, J., Cho, M.: Viscoelastic behavior of naghdi shell model based on efficient higher-order zig-zag theory. Compos. Struct. 164, 304–315 (2017)

    Google Scholar 

  59. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos. Struct. 193, 281–294 (2018)

    Google Scholar 

  60. Nguyen, V.P., Anitescu, C., Bordas, S.P., Rabczuk, T.: Isogeometric analysis: an overview and computer implementation aspects. Math. Comput. Simul. 117, 89–116 (2015)

    MathSciNet  Google Scholar 

  61. Lim, Y.H., Varadan, V.V., Varadan, V.K.: Closed loop finite-element modeling of active constrained layer damping in the time domain analysis. Smart Mater. Struct. 11(1), 89 (2002)

    ADS  Google Scholar 

  62. Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W., Liu, M.: Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets. Compos. Struct. 204, 114–130 (2018)

    Google Scholar 

Download references

Acknowledgements

This study was supported by Bualuang ASEAN Chair Professor Fund.

Funding

Bualuang ASEAN Chair Professor Fund (Bualuang ASEAN Chair Professor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nguyen-Thoi.

Ethics declarations

Data availability

No data were used for the research described in the article.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Stiffness and rigidity matrices related to the PFG-GPRC/ACLD plate

The matrices appearing in Eqs. (39)–(40) are given by

The elemental elastic stiffness matrices:

$$\begin{aligned} \left[ K_{{ t t}}^{e}\right] =\left( \left[ K_{t b}^{e}\right] +\left[ K_{t s}^{e}\right] \right) +(\left[ K_{{ t b p}}^{e}\right] +\left[ K_{t s p}^{e}\right] )+\left[ K_{tsv}^{e}\right] \end{aligned}$$
(A.1)

in which

$$\begin{aligned} \left[ K_{t b}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left[ B_{t b}\right] ^{\textrm{T}}\left[ D_{t b}\right] \left[ B_{t b}\right] \mathrm {d\Omega }; \quad \left[ D_{t b}\right] =\int _{h_{1}}^{h_{2}}\left[ {\bar{C}}_{b}^{{ FG}}(z)\right] \textrm{d} z;\nonumber \\ \left[ K_{{ t s}}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left[ B_{{ t s}}\right] ^{\textrm{T}}\left[ D_{{ t s}}\right] \left[ B_{t s}\right] \mathrm {d\Omega }; \quad \left[ D_{t s}\right] =\int _{h_{1}}^{h_{2}}\left[ {\bar{C}}_{s}^{\textrm{FG}}(z)\right] \textrm{d} z;\nonumber \\ \left[ K_{{ t b p}}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left( \left[ B_{t b}\right] ^{\textrm{T}}\left[ D_{t b}^{P}\right] \left[ B_{t b}\right] +\left[ B_{t b}\right] ^{\textrm{T}}\left[ D_{t b s}^{P}\right] \left[ B_{t s}\right] +\left[ B_{ts}\right] ^{\textrm{T}}\left[ D_{t b s}^{P}\right] \left[ B_{tb}\right] \right) \mathrm {d\Omega };\nonumber \\ \left[ D_{t b}^{P}\right]= & {} \int _{h_{3}}^{h_{4}}\left[ {\bar{C}}_{b}^{P}\right] \textrm{d} z; \quad \left[ D_{t b s}^{P}\right] =\int _{h_{3}}^{h_{4}}\left[ {\bar{C}}_{b s}^{P}\right] \textrm{d} z;\nonumber \\ \left[ K_{t s p}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left[ B_{{ t s}}\right] ^{\textrm{T}}\left[ D_{{ t s}}^{P}\right] \left[ B_{t s}\right] \mathrm {d\Omega }; \quad \left[ D_{t s}^{P}\right] =\int _{h_{3}}^{h_{4}}\left[ {\bar{C}}_{s}^{P}\right] \textrm{d} z\nonumber \\ \left[ K_{t s v}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left[ B_{{ t s}}\right] ^{\textrm{T}} \left[ {D}_{ts}^{Vis}\right] \left[ B_{t s}\right] \mathrm {d\Omega }; \quad \left[ D_{ts }^{Vis}\right] =\int _{h_{2}}^{h_{3}}\left[ {\bar{C}}_{s}^{Vis}\right] \textrm{d} z\nonumber \\ \left[ K_{tr}^{e}\right]= & {} \left( \left[ K_{trb}^{e}\right] +\left[ K_{trs}^{e}\right] \right) +\left( \left[ K_{trbp}^{e}\right] +\left[ K_{trsp}^{e}\right] \right) +\left[ K_{trsv}^{e}\right] ; \end{aligned}$$
(A.2)

in which

$$\begin{aligned} \left[ K_{t r b}^{e}\right]= & {} \int _{\mathrm {\Omega } } \left[ B_{t b}\right] ^{\textrm{T}}\left[ D_{t r b}\right] \left[ B_{r b}\right] \mathrm {d\Omega }; \quad \left[ D_{t r b}\right] =\int _{h_{1}}^{h_{2}}\left[ {\bar{C}}_{b}^{F G}(z)\right] \left[ Z_{1}\right] \textrm{d} z;\nonumber \\ \left[ K_{t r s}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left[ B_{t s}\right] ^{\textrm{T}}\left[ D_{t r s}\right] \left[ B_{r s}\right] \mathrm {d\Omega }; \quad \left[ D_{t r s}\right] =\int _{h_{1}}^{h_{2}}\left[ {\bar{C}}_{s}^{F G}(z)\right] \left[ Z_{3}\right] \textrm{d} z;\nonumber \\ \left[ K_{t r b p}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left( \left[ B_{t b}\right] ^{\textrm{T}}\left[ D_{t r b}^{P}\right] \left[ B_{r b}\right] + 1/2\left[ B_{t b}\right] ^{\textrm{T}}\left[ D_{t r b s}^{P}\right] \left[ B_{r s}\right] +1/2\left[ B_{t s}\right] ^{\textrm{T}}\left[ D_{r t b s}^{P}\right] ^{\textrm{T}}\left[ B_{r b}\right] \right. \nonumber \\{} & {} \left. +1/2\left[ \left[ B_{rb}\right] ^{\textrm{T}}\left[ D_{r t b s}^{P}\right] ^{\textrm{T}}\left[ B_{ts}\right] \right] ^\textrm{T} + 1/2\left[ \left[ B_{rs}\right] ^{\textrm{T}}\left[ D_{trb s}^{P}\right] ^{\textrm{T}}\left[ B_{tb}\right] \right] ^\textrm{T} \right) \mathrm {d\Omega }\nonumber \\ \left[ D_{t r b}^{P}\right]= & {} \int _{h_{3}}^{h_{4}}\left[ {\bar{C}}_{b}^{P}\right] \left[ Z_{2}\right] \textrm{d} z; \quad \left[ D_{t r b s}^{P}\right] =\int _{h_{3}}^{h_{4}}\left[ {\bar{C}}_{b s}^{p}\right] \left[ Z_{5}\right] \textrm{d} z; \quad \left[ D_{r t b s}^{P}\right] =\int _{h_{3}}^{h_{4}}\left[ Z_{2}\right] ^{\textrm{T}}\left[ {\bar{C}}_{b s}^{P}\right] \textrm{d} z;\nonumber \\ \left[ K_{t r s p}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left[ B_{t s}\right] ^{\textrm{T}}\left[ D_{t r s}^{P}\right] \left[ B_{r s}\right] \mathrm {d\Omega }; \quad \left[ D_{t r s}^{P}\right] =\int _{h_{3}}^{h_{4}}\left[ {\bar{C}}_{s}^{P}\right] \left[ Z_{5}\right] \textrm{d} z;\nonumber \\ \left[ K_{{trsv }}^{e}\right]= & {} \int _{\mathrm {\Omega }}\left[ B_{t s}\right] ^{\textrm{T}}\left[ D_{{trs}}^{Vis}\right] \left[ B_{r s}\right] \mathrm {d\Omega }; \quad \left[ D_{{trs }}^{Vis}\right] =\int _{h_{2}}^{h_{3}}\left[ {\bar{C}}_{s}^{Vis}\right] \left[ Z_{4}\right] \textrm{d} z.\nonumber \\ \left[ K_{rr}^{e}\right]= & {} \left( \left[ K_{rrb}^{e}\right] +\left[ K_{rrs}^{e}\right] \right) +\left( \left[ K_{rrbp}^{e}\right] +\left[ K_{rrsp}^{e}\right] \right) +\left[ K_{rrsv}^{e}\right] ; \end{aligned}$$
(A.3)

in which

$$\begin{aligned} \left[ K_{r r b}^{e}\right]= & {} \int _{\mathrm {\Omega }}\left[ B_{r b}\right] ^{\textrm{T}}\left[ D_{r r b}\right] \left[ B_{r b}\right] \mathrm {d\Omega }; \quad [D_{r r b}]=\int _{h_{1}}^{h_{2}}\left[ Z_{1}\right] ^{\textrm{T}}\left[ {\bar{C}}_{b}^{F G}(z)\right] \left[ Z_{1}\right] \textrm{d} z;\nonumber \\ \left[ K_{r r s}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left[ B_{r s}\right] ^{\textrm{T}}\left[ D_{r r s}\right] \left[ B_{r s}\right] \mathrm {d\Omega }; \quad \left[ D_{r r s}\right] =\int _{h_{1}}^{h_{2}}\left[ Z_{3}\right] ^{\textrm{T}}\left[ {\bar{C}}_{s}^{F G}(z)\right] \left[ Z_{3}\right] \textrm{d} z;\nonumber \\ \left[ K_{r r b p}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left( \left[ B_{r b}\right] ^{\textrm{T}}\left[ D_{r r b}^{P}\right] \left[ B_{r b}\right] +\left[ B_{r b}\right] ^{\textrm{T}}\left[ D_{r r b s}^{P}\right] \left[ B_{r s}\right] +\left[ B_{r s}\right] ^{\textrm{T}}\left[ D_{r r b s}^{P}\right] \left[ B_{rb}\right] \right) \mathrm {d\Omega };\nonumber \\ \left[ D_{r r b}^{P}\right]= & {} \int _{h_{3}}^{h_{4}}\left[ Z_{2}\right] ^{\textrm{T}}\left[ {\bar{C}}_{b}^{P}\right] \left[ Z_{2}\right] \textrm{d} z; \quad \left[ D_{r r b s}^{P}\right] =\int _{h_{3}}^{h_{4}}\left[ Z_{2}\right] ^{\textrm{T}}\left[ {\bar{C}}_{b s}^{P}\right] \left[ Z_{5}\right] \textrm{d} z;\nonumber \\ \left[ K_{r r s p}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left[ B_{r s}\right] ^{\textrm{T}}\left[ D_{r r s}^{P}\right] \left[ B_{r s}\right] \mathrm {d\Omega }; \quad \left[ D_{r r s}^{P}\right] =\int _{h_{3}}^{h_{4}}\left[ Z_{2}\right] ^{\textrm{T}}\left[ {\bar{C}}_{s}^{P}\right] \left[ Z_{5}\right] \textrm{d} z;\nonumber \\ \left[ K_{r r s v}^{e}\right]= & {} \int _{\mathrm {\Omega }} \left[ B_{r s}\right] ^{\textrm{T}}\left[ D_{r r s}^{Vis}\right] \left[ B_{r s}\right] \mathrm {d\Omega }; \quad \left[ D_{r r s}^{Vis}\right] =\int _{h_{2}}^{h_{3}}\left[ Z_{4}\right] ^{\textrm{T}}\left[ {\bar{C}}_{s}^{Vis}\right] \left[ Z_{4}\right] \textrm{d} z.\nonumber \\ \left\{ F^{e}\right\}= & {} \int _{\Omega }\left[ N_{t}\right] ^{\textrm{T}}\{f\} \textrm{d}\Omega \nonumber \\ \left\{ F_{t p}^{e}\right\}= & {} \left\{ F_{t p b}^{e}\right\} +\left\{ F_{t p s}^{e}\right\} \nonumber \\ \left\{ F_{r p}^{e}\right\}= & {} \left\{ F_{r p b}^{e}\right\} +\left\{ F_{r p s}^{e}\right\} \end{aligned}$$
(A.4)

in which

$$\begin{aligned} \left\{ F_{t p b}^{e}\right\}= & {} \int _{\mathrm {\Omega }} \left[ B_{t b}\right] ^{\textrm{T}}\left\{ D_{t p}^{b}\right\} \mathrm {d\Omega }; \quad \left\{ F_{t p s}^{e}\right\} =\int _{\mathrm {\Omega }}\left[ B_{t s}\right] ^{\textrm{T}}\left\{ D_{tp}^{s}\right\} \mathrm {d\Omega };\nonumber \\ \left\{ D_{t p}^{b}\right\}= & {} \int _{h_{3}}^{h_{4}} \frac{1}{h_{p}}\left\{ {\bar{e}}_{b}^{P}\right\} \textrm{d} z; \quad \left\{ D_{t p}^{s}\right\} =\int _{h_{3}}^{h_{4}} \frac{1}{h_{p}}\left\{ e_{s}^{P}\right\} \textrm{d} z;\nonumber \\ \left\{ F_{r p b}^{e}\right\}= & {} \int _{\mathrm {d\Omega }} \left[ B_{r b}\right] ^{\textrm{T}}\left\{ D_{r p}^{b}\right\} \mathrm {d\Omega }; \quad \left\{ F_{r p s}^{e}\right\} =\int _{\mathrm {\Omega }}\left[ B_{r s}\right] ^{\textrm{T}}\left\{ D_{r p}^{s}\right\} \mathrm {d\Omega }.\nonumber \\ \left\{ D_{r p}^{b}\right\}= & {} \int _{h_{3}}^{h_{4}} \frac{1}{h_{p}}\left[ Z_{2}\right] ^{\textrm{T}}\left\{ {\bar{e}}_{b}^{P}\right\} \textrm{d} z; \quad \left\{ D_{r p}^{s}\right\} =\int _{h_{3}}^{h_{4}} \frac{1}{h_{p}}\left[ Z_{5}\right] ^{\textrm{T}}\left\{ {\bar{e}}_{s}^{P}\right\} \textrm{d} z. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen-Thoi, T., Ly, DK., Kattimani, S. et al. An electromechanical coupling isogeometric approach using zig-zag function for modeling and smart damping control of multilayer PFG-GPRC plates. Acta Mech 235, 941–970 (2024). https://doi.org/10.1007/s00707-023-03785-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03785-y

Navigation