Skip to main content
Log in

Vibration response of viscoelastic perforated higher-order nanobeams rested on an elastic substrate under moving load

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This work aims to develop a size-dependent mathematical model to analyze the nonclassical size-dependent vibration response of viscoelastic perforated higher-order nanobeams (VEPHONBs) embedded in an elastic foundation and subjected to dynamic moving loads. The nonclassical strain gradient theory is adopted to capture the microstructure as well as the size length-scales effects. The Kelvin–Voigt viscoelastic material model is utilized to simulate the internal material damping. Regular square perforation pattern is considered. Shear deformation effect due to cutouts is incorporated by adopting the higher-order shear deformation beam theory. The moving load is portrayed by point load and harmonic type. The Hamilton approach is applied to derive the dynamic equations of motion considering viscoelasticity as well as size dependency effects. Based on the Navier and Newmark techniques, a mixed analytical–numerical solution is developed and verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the different design parameters on the transient vibration behavior of viscoelastic perforated higher-order nanobeams under moving load. The proposed procedure is supportive in the analysis and design of perforated viscoelastic NEMS structures under moving load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdelrahman, A.A., Mohamed, N.A., Eltaher, M.A.: Static bending of perforated nanobeams including surface energy and microstructure effects. Eng. Comput. 38(1), 415–435 (2022). https://doi.org/10.1007/s00366-020-01149-x

    Article  Google Scholar 

  2. Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., Zettl, A.: Carbon nanotubes as nanoscale mass conveyors. Nature 428(6986), 924–927 (2004). https://doi.org/10.1038/nature02496

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kiani, K.: Vibration behavior of simply supported inclined single-walled carbon nanotubes conveying viscous fluids flow using nonlocal Rayleigh beam model. Appl. Math. Model. 37(4), 1836–1850 (2013). https://doi.org/10.1016/j.apm.2012.04.027

    Article  MathSciNet  Google Scholar 

  4. Şimşek, M.: Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1721–1732 (2010). https://doi.org/10.1016/j.ijengsci.2010.09.027

    Article  Google Scholar 

  5. Kiani, K.: Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle. Part I: Theoretical formulations. Phys. E Low Dimens. Syst. Nanostruct. 44(1), 229–248 (2011). https://doi.org/10.1016/j.physe.2011.08.020

    Article  ADS  Google Scholar 

  6. Kiani, K.: Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part I: theoretical formulations. Acta Mech. 216, 165–195 (2011). https://doi.org/10.1007/s00707-010-0362-1

    Article  Google Scholar 

  7. Kiani, K.: Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part II: parametric study. Acta Mech. 216(1–4), 197–206 (2011). https://doi.org/10.1007/s00707-010-0363-0

    Article  Google Scholar 

  8. Ghadiri, M., Rajabpour, A., Akbarshahi, A.: Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects. Appl. Math. Model. 50, 676–694 (2017). https://doi.org/10.1016/j.apm.2017.06.019

    Article  MathSciNet  Google Scholar 

  9. Nikkhoo, A., Zolfaghari, S., Kiani, K.: A simplified-nonlocal model for transverse vibration of nanotubes acted upon by a moving nanoparticle. J. Braz. Soc. Mech. Sci. Eng. 39(12), 4929–4941 (2017). https://doi.org/10.1007/s40430-017-0892-8

    Article  Google Scholar 

  10. Jafari-Talookolaei, R.A., Abedi, M., Şimşek, M., Attar, M.: Dynamics of a micro scale Timoshenko beam subjected to a moving micro particle based on the modified couple stress theory. J. Vib. Control 24(3), 527–548 (2018). https://doi.org/10.1177/1077546316645237

    Article  MathSciNet  Google Scholar 

  11. Abdelrahman, A.A., Esen, I., Daikh, A.A., Eltaher, M.A.: Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load. Mech. Based Des. Struct. Mach. 5, 10 (2021). https://doi.org/10.1080/15397734.2021.1999263

    Article  Google Scholar 

  12. Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S., Eltaher, M.A.: Nonlinear dynamics of viscoelastic flexible structural systems by finite element method. Eng. Comput. 38, 169-S190 (2022). https://doi.org/10.1007/s00366-020-01141-5

    Article  Google Scholar 

  13. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M., Eltaher, M.A.: Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load. Adv. Nano Res. 12, 231–251 (2022). https://doi.org/10.12989/anr.2022.12.3.231

    Article  Google Scholar 

  14. Esen, I., Abdelrahman, A.A., Eltaher, M.A.: Dynamics analysis of timoshenko perforated microbeams under moving loads. Eng. Comput. 38, 2413–2429 (2022). https://doi.org/10.1007/s00366-020-01212-7

    Article  Google Scholar 

  15. Esen, I., Alazwari, M.A., Eltaher, M.A., Abdelrahman, A.A.: Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load. Steel Compos. Struct. 42(6), 805–826 (2022). https://doi.org/10.12989/scs.2022.42.6.805

    Article  Google Scholar 

  16. Yu, G., Kiani, K., Roshan, M.: Dynamic analysis of multiple-nanobeam-systems acted upon by multiple moving nanoparticles accounting for nonlocality, lag, and lateral inertia. Appl. Math. Model. 108, 326–354 (2022). https://doi.org/10.1016/j.apm.2022.03.027

    Article  MathSciNet  Google Scholar 

  17. Karamanli, A., Eltaher, M.A., Thai, S., Vo, T.P.: Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model. Eng. Struct. 278, 115566 (2023). https://doi.org/10.1016/j.engstruct.2022.115566

    Article  Google Scholar 

  18. Attia, M.A., Melaibari, A., Shanab, R.A., Eltaher, M.A.: Dynamic analysis of sigmoid bidirectional FG microbeams under moving load and thermal load: analytical Laplace solution. Mathematics 10(24), 4797 (2022). https://doi.org/10.3390/math10244797

    Article  Google Scholar 

  19. Hosseini, S.A., Rahmani, O., Bayat, S.: Thermal effect on forced vibration analysis of FG nanobeam subjected to moving load by Laplace transform method. Mech. Based Des. Struct. Mach. 51(7), 3803–3822 (2023). https://doi.org/10.1080/15397734.2021.1943671

    Article  Google Scholar 

  20. Assie, A.E., Eltaher, M.A., Mahmoud, F.F.: The response of viscoelastic-frictionless bodies under normal impact. Int. J. Mech. Sci. 52(3), 446–454 (2010). https://doi.org/10.1016/j.ijmecsci.2009.11.005

    Article  Google Scholar 

  21. Assie, A.E., Eltaher, M.A., Mahmoud, F.F.: Modeling of viscoelastic contact-impact problems. Appl. Math. Model. 34(9), 2336–2352 (2010). https://doi.org/10.1016/j.apm.2009.11.001

    Article  MathSciNet  Google Scholar 

  22. Abdelrahman, A.A., El-Shafei, A.G.: Modeling and analysis of the transient response of viscoelastic solids. Waves Random Complex Media 31(6), 1990–2020 (2021). https://doi.org/10.1080/17455030.2020.1714790

    Article  ADS  MathSciNet  Google Scholar 

  23. Kiani, K., Nikkhoo, A., Mehri, B.: Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method. Acta Mech. Sin. 26, 721–733 (2010). https://doi.org/10.1007/s10409-010-0365-0

    Article  ADS  MathSciNet  Google Scholar 

  24. Mahmoud, F.F., El-Shafei, A.G., Attia, M.A., Rahman, A.A.: Analysis of quasistatic frictional contact problems in nonlinear viscoelasticity with large deformations. Int. J. Mech. Sci. 66, 109–119 (2013). https://doi.org/10.1016/j.ijmecsci.2012.11.001

    Article  Google Scholar 

  25. Akbaş, ŞD., Bashiri, A.H., Assie, A.E., Eltaher, M.A.: Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support. J. Vib. Control 27(13–14), 1644–1655 (2021). https://doi.org/10.1177/1077546320947302

    Article  MathSciNet  Google Scholar 

  26. Akbaş, ŞD., Fageehi, Y.A., Assie, A.E., Eltaher, M.A.: Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load. Eng. Comput. 38, 365–377 (2022). https://doi.org/10.1007/s00366-020-01070-3

    Article  Google Scholar 

  27. Javani, M., Kiani, Y., Eslami, M.R.: On the free vibrations of FG-GPLRC folded plates using GDQE procedure. Compos. Struct. 286, 115273 (2022). https://doi.org/10.1016/j.compstruct.2022.115273

    Article  CAS  Google Scholar 

  28. Javani, M., Kiani, Y., Shakeri, M., Eslami, M.R.: A unified formulation for thermoviscoelasticity of hollow sphere based on the second sound theories. Thin-Walled Struct. 158, 107167 (2021). https://doi.org/10.1016/j.tws.2020.107167

    Article  Google Scholar 

  29. Jena, S.K., Chakraverty, S., Mahesh, V., Harursampath, D.: Wavelet-based techniques for hygro-magneto-thermo vibration of nonlocal strain gradient nanobeam resting on Winkler–Pasternak elastic foundation. Eng. Anal. Bound. Elem. 140, 494–506 (2022)

    Article  MathSciNet  Google Scholar 

  30. Jena, S.K., Chakraverty, S., Mahesh, V., Harursampath, D., Sedighi, H.M.: Free vibration of functionally graded beam embedded in Winkler–Pasternak elastic foundation with geometrical uncertainties using symmetric Gaussian fuzzy number. Eur. Phys. J. Plus 137(3), 399 (2022). https://doi.org/10.1140/epjp/s13360-022-02607-9

    Article  Google Scholar 

  31. Jena, S.K., Harursampath, D., Mahesh, V., Ponnusami, S.A.: Comparing different polynomials-based shape functions in the Rayleigh–Ritz method for investigating dynamical characteristics of nanobeam. In: Chakraverty, S. (ed.) Polynomial Paradigms: Trends and Applications in Science and Engineering, pp. 7–1.:7-14 Copyright © IOP Publishing Ltd, Bristol (2022)

    Google Scholar 

  32. Jalaei, M.H., Thai, H.T., Civalek, Ӧ: On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022). https://doi.org/10.1016/j.ijengsci.2022.103629

    Article  MathSciNet  Google Scholar 

  33. Cui, Y., Qu, J., Han, C., Cheng, G., Zhang, W., Chen, Y.: Shifted Bernstein-Legendre polynomial collocation algorithm for numerical analysis of viscoelastic Euler-Bernoulli beam with variable order fractional model. Math. Comput. Simul 200, 361–376 (2022). https://doi.org/10.1016/j.matcom.2022.04.035

    Article  MathSciNet  Google Scholar 

  34. Loghman, E., Bakhtiari-Nejad, F., Kamali, A., Abbaszadeh, M.: Nonlinear random vibrations of micro-beams with fractional viscoelastic core. Probab. Eng. Mech. 69, 103274 (2022). https://doi.org/10.1016/j.probengmech.2022.103274

    Article  Google Scholar 

  35. Li, C., Qing, H.: Theoretical thermal damping vibration analysis of functionally graded viscoelastic Timoshenko microbeam with integral nonlocal strain gradient model. Mech. Based Des. Struct. Mach. 5, 10 (2023). https://doi.org/10.1080/15397734.2023.2227702

    Article  Google Scholar 

  36. Boyina, K., Piska, R.: Wave propagation analysis in viscoelastic Timoshenko nanobeams under surface and magnetic field effects based on nonlocal strain gradient theory. Appl. Math. Comput. 439, 127580 (2023). https://doi.org/10.1016/j.amc.2022.127580

    Article  MathSciNet  Google Scholar 

  37. Nguyen, T.Q.: A data-driven approach to structural health monitoring of bridge structures based on the discrete model and FFT-deep learning. J. Vib. Eng. Technol. 9(8), 1959–1981 (2021). https://doi.org/10.1007/s42417-021-00343-5

    Article  Google Scholar 

  38. Liu, H., Yuan, P., Yang, B., Yang, G., Chen, Y.: Head-related transfer function–reserved time-frequency masking for robust binaural sound source localization. CAAI Trans. Intell. Technol. 7(1), 26–33 (2022). https://doi.org/10.1049/cit2.12010

    Article  Google Scholar 

  39. Shao, Y., Li, L., Li, J., An, S., Hao, H.: Target-free 3D tiny structural vibration measurement based on deep learning and motion magnification. J. Sound Vib. 538, 117244 (2022). https://doi.org/10.1016/j.jsv.2022.117244

    Article  Google Scholar 

  40. Fan, B., Zhang, Y., Chen, Y., Meng, L.: Intelligent vehicle lateral control based on radial basis function neural network sliding mode controller. CAAI Trans. Intell. Technol. 7(3), 455–468 (2022). https://doi.org/10.1049/cit2.12075

    Article  Google Scholar 

  41. Saito, S., Oka, S., Onodera, R.: Modelling of a shape memory alloy actuator for feedforward hysteresis compensator considering load fluctuation. CAAI Trans. Intell. Technol. 7(4), 549–560 (2022). https://doi.org/10.1049/cit2.12129

    Article  Google Scholar 

  42. Jia, Z., Wang, W., Zhang, J., Li, H.: Contact high-temperature strain automatic calibration and precision compensation research. J. Artif. Intell. Technol. 2(2), 69–76 (2022). https://doi.org/10.37965/jait.2022.0083

    Article  Google Scholar 

  43. Khatir, A., Capozucca, R., Khatir, S., Magagnini, E.: Vibration-based crack prediction on a beam model using hybrid butterfly optimization algorithm with artificial neural network. Front. Struct. Civ. Eng. 16(8), 976–989 (2022). https://doi.org/10.1007/s11709-022-0840-2

    Article  Google Scholar 

  44. Perera, R., Arteaga, A., De Diego, A.: Artificial intelligence techniques for prediction of the capacity of RC beams strengthened in shear with external FRP reinforcement. Compos. Struct. 92(5), 1169–1175 (2010). https://doi.org/10.1016/j.compstruct.2009.10.027

    Article  Google Scholar 

  45. Luschi, L., Pieri, F.: An analytical model for the resonance frequency of square perforated Lamé-mode resonators. Sens. Actuators B Chem. 222, 1233–1239 (2016). https://doi.org/10.1016/j.snb.2015.07.085

    Article  CAS  Google Scholar 

  46. Shaterzadeh, A.R., Rezaei, R., Abolghasemi, S.: Thermal buckling analysis of perforated functionally graded plates. J. Therm. Stress. 38(11), 1248–1266 (2015). https://doi.org/10.1080/01495739.2015.1073525

    Article  Google Scholar 

  47. Bourouina, H., Yahiaoui, R., Sahar, A., Benamar, M.E.A.: Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads. Physica E 75, 163–168 (2016). https://doi.org/10.1016/j.physe.2015.09.014

    Article  ADS  Google Scholar 

  48. Eltaher, M.A., Abdraboh, A.M., Almitani, K.H.: Resonance frequencies of size dependent perforated nonlocal nanobeam. Microsyst. Technol. 24, 3925–3937 (2018). https://doi.org/10.1007/s00542-018-3910-6

    Article  Google Scholar 

  49. Eltaher, M.A., Kabeel, A.M., Almitani, K.H., Abdraboh, A.M.: Static bending and buckling of perforated nonlocal size-dependent nanobeams. Microsyst. Technol. 24, 4881–4893 (2018). https://doi.org/10.1007/s00542-018-3905-3

    Article  Google Scholar 

  50. Almitani, K.H., Abdelrahman, A.A., Eltaher, M.A.: Influence of the perforation configuration on dynamic behaviors of multilayered beam structure. Structures 28, 1413–1426 (2020). https://doi.org/10.1016/j.istruc.2020.09.055

    Article  Google Scholar 

  51. Alazwari, M.A., Abdelrahman, A.A., Wagih, A., Eltaher, M.A., Abd-El-Mottaleb, H.E.: Static analysis of cutout microstructures incorporating the microstructure and surface effects. Steel Compos. Struct. 38(5), 583–597 (2021). https://doi.org/10.12989/scs.2021.38.5.583

    Article  Google Scholar 

  52. Abdelrahman, A.A., Eltaher, M.A.: On bending and buckling responses of perforated nanobeams including surface energy for different beams theories. Eng. Comput. 38(3), 2385–2411 (2022). https://doi.org/10.1007/s00366-020-01211-8

    Article  Google Scholar 

  53. Melaibari, A., Abdelrahman, A.A., Hamed, M.A., Abdalla, A.W., Eltaher, M.A.: Dynamic analysis of a piezoelectrically layered perforated nonlocal strain gradient nanobeam with flexoelectricity. Mathematics 10(15), 2614 (2022). https://doi.org/10.3390/math10152614

    Article  Google Scholar 

  54. Eltaher, M.A., Shanab, R.A., Mohamed, N.A.: Analytical solution of free vibration of viscoelastic perforated nanobeam. Arch. Appl. Mech. 93(1), 221–243 (2023). https://doi.org/10.1007/s00419-022-02184-4

    Article  ADS  Google Scholar 

  55. Kafkas, U., Uzun, B., Yaylı, M.Ö., Güçlü, G.: Thermal vibration of perforated nanobeams with deformable boundary conditions via nonlocal strain gradient theory. Zeitschrift für Naturforschung A (2023). https://doi.org/10.1515/zna-2023-0088

    Article  Google Scholar 

  56. Abdelrahman, A.A., Saleem, H.A., Abdelhaffez, G.S., Eltaher, M.A.: On bending of piezoelectrically layered perforated nanobeams embedded in an elastic foundation with flexoelectricity. Mathematics 11(5), 1162 (2023). https://doi.org/10.3390/math11051162

    Article  Google Scholar 

  57. Eltaher, M.A., Abdelrahman, A.A.: Bending behavior of squared cutout nanobeams incorporating surface stress effects. Steel Compos. Struct. Int. J. 36(2), 143–161 (2020). https://doi.org/10.12989/scs.2020.36.2.143

    Article  Google Scholar 

  58. Abdelrahman, A.A., Abd El Mottaleb, H.E., Eltaher, M.A.: On bending analysis of perforated microbeams including the microstructure effects. Struct. Eng. Mech. Int. J. 76(6), 765–779 (2020). https://doi.org/10.12989/sem.2020.76.6.765

    Article  Google Scholar 

  59. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics. Wiley, Hoboken (2017)

    Google Scholar 

  60. Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A., Assie, A.E.: Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory. Smart Struct. Syst. 28(4), 515–533 (2021). https://doi.org/10.12989/sss.2021.28.4.515

    Article  Google Scholar 

  61. Li, L., Hu, Y.: Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 107, 77–97 (2016). https://doi.org/10.1016/j.ijengsci.2016.07.011

    Article  MathSciNet  Google Scholar 

  62. Li, Y., Li, M.: Dynamic analysis of rotating double-tapered cantilever Timoshenko nano-beam using the nonlocal strain gradient theory. Math. Methods Appl. Sci. 43(15), 9206–9222 (2020). https://doi.org/10.1002/mma.6616

    Article  ADS  MathSciNet  Google Scholar 

  63. Al-shujairi, M., Mollamahmutoğlu, Ç.: Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect. Compos. B Eng. 154, 292–312 (2018). https://doi.org/10.1016/j.compositesb.2018.08.103

    Article  Google Scholar 

  64. Li, L., Tang, H., Hu, Y.: The effect of thickness on the mechanics of nanobeams. Int. J. Eng. Sci. 123, 81–91 (2018). https://doi.org/10.1016/j.ijengsci.2017.11.021

    Article  MathSciNet  CAS  Google Scholar 

  65. Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40(5–6), 4109–4128 (2016). https://doi.org/10.1016/j.apm.2015.11.026

    Article  MathSciNet  Google Scholar 

  66. Shaat, M., Ghavanloo, E., Fazelzadeh, S.A.: Review on nonlocal continuum mechanics: physics, material applicability, and mathematics. Mech. Mater. 150, 103587 (2020). https://doi.org/10.1016/j.mechmat.2020.103587

    Article  Google Scholar 

  67. Ebrahimi, F., Barati, M.R.: Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position. J. Therm. Stress. 39(10), 1210–1229 (2016). https://doi.org/10.1080/01495739.2016.1215726

    Article  Google Scholar 

  68. Xie, K., Wang, Y., Fu, T.: Nonlinear vibration analysis of third-order shear deformable functionally graded beams by a new method based on direct numerical integration technique. Int. J. Mech. Mater. Des. 16(4), 839–855 (2020). https://doi.org/10.1007/s10999-020-09493-y

    Article  CAS  Google Scholar 

  69. Newmark, N.M.: A method of computation for structural dynamics. J .Eng. Mech. Div. 85, 67–94 (1959). https://doi.org/10.1061/JMCEA3.0000098

    Article  Google Scholar 

  70. Mathews, J.H., Fink, K.D.: Numerical Methods using MATLAB. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  71. Attia, M.A., Shanab, R.A.: On the dynamic response of bi-directional functionally graded nanobeams under moving harmonic load accounting for surface effect. Acta Mech. 233, 3291–3317 (2022). https://doi.org/10.1007/s00707-022-03243-1

    Article  MathSciNet  Google Scholar 

  72. Nguyen, D.K., Nguyen, Q.H., Tran, T.T., Bui, V.T.: Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load. Acta Mech. 228(1), 141–155 (2017). https://doi.org/10.1007/s00707-016-1705-3

    Article  MathSciNet  Google Scholar 

  73. Şimşek, M., Kocatürk, T.: Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Compos. Struct. 90(4), 465–473 (2009). https://doi.org/10.1016/j.compstruct.2009.04.024

    Article  Google Scholar 

  74. Kocatürk, T., Şimşek, M.: Vibration of viscoelastic beams subjected to moving harmonic loads. J. Eng. Nat. Sci. Sigma 2004, 3 (2004)

    Google Scholar 

  75. Abdelrahman, A.A., El-Shafei, A.G., Mahmoud, F.F.: Nonlinear analysis of viscoelastically layered rolls in steady state rolling contact. Int. J. Appl. Mech. 6(06), 1450065 (2014). https://doi.org/10.1142/S1758825114500653

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Institutional Fund Projects under grant no. IFPIP (10-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR in Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa A. Abdelrahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, N.A., Shanab, R.A., Eltaher, M.A. et al. Vibration response of viscoelastic perforated higher-order nanobeams rested on an elastic substrate under moving load. Acta Mech 235, 1213–1233 (2024). https://doi.org/10.1007/s00707-023-03776-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03776-z

Navigation