Skip to main content
Log in

Shear horizontal wave in a p-type Si substrate covered with a piezoelectric semiconductor n-type ZnO layer with consideration of PN heterojunction effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Shear horizontal waves propagating in a p-type Si substrate with a transversely isotropic piezoelectric semiconductor n-type ZnO covered layer is analyzed in this paper. The PN heterojunction, which is created between the n-type ZnO covered layer and the p-type Si substrate, can be considered as an electrically gradient layer due to the drastic changes of the steady-state carrier concentrations. The state transfer equation and the laminated model are used to treat the inhomogeneity. The effects of the PN heterojunction and doping density on the dispersion and attenuation curves and the wave mode shapes of the shear horizontal waves are investigated. The results show that the effects of PN heterojunction on the attenuation curve are more obvious than that on the dispersion curve, especially for the second-order modes in the relative higher frequency. Moreover, the effects of PN heterojunction are closely related to the doping density of the ZnO covered layer, but not nearly related to the doping density of the Si substrate. In addition, the mode shapes of the electric potential, electric displacement, hole and electron perturbation density and the hole and electron current density are affected evidently by the existence of PN heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matthaei, G.L., Barman, F., Savage, E.B.: SAW reflecting arrays. Electron. Lett. 12, 556 (1976). https://doi.org/10.1049/el:19760424

    Article  ADS  Google Scholar 

  2. Danicki, E.: Generation and Bragg reflection of surface acoustic waves in nearly periodic system of elastic metal strips on piezoelectric half-space. J. Acoust. Soc. Am. 93, 116–131 (1993). https://doi.org/10.1121/1.405649

    Article  ADS  Google Scholar 

  3. Michio, K., Toshimaro, Y., Koji, F., Takeshi, N., Eiichi, T.: Resonator filters using shear horizontal-type leaky surface acoustic wave consisting of heavy-metal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2004). https://doi.org/10.1109/tuffc.2004.1295395

    Article  Google Scholar 

  4. Baroi, J., Sahu, S.A., Nirwal, S.: Anti-plane shear wave motion in a composite layered structure with slit. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1944701

    Article  Google Scholar 

  5. Qu, Y.L., Zhang, G.Y., Gao, X.-L., Jin, F.: A new model for thermally induced redistributions of free carriers in centrosymmetric flexoelectric semiconductor beams. Mech. Mater. 171, 104328 (2022). https://doi.org/10.1016/j.mechmat.2022.104328

    Article  Google Scholar 

  6. Qu, Y., Jin, F., Yang, J.: Magnetically induced charge redistribution in the bending of a composite beam with flexoelectric semiconductor and piezomagnetic dielectric layers. J. Appl. Phys. 129, 064503 (2021). https://doi.org/10.1063/5.0039686

    Article  ADS  CAS  Google Scholar 

  7. Yang, W., Liang, Y.: Typical transient effects in a piezoelectric semiconductor nanofiber under a suddenly applied axial time-dependent force. Appl. Math. Mech. 42, 1095–1108 (2021). https://doi.org/10.1007/s10483-021-2761-9

    Article  MathSciNet  Google Scholar 

  8. Jiao, F., Wei, P., Zhou, Y., Zhou, X.: Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. Eur. J. Mech. A. Solids 75, 70–81 (2019). https://doi.org/10.1016/j.euromechsol.2019.01.007

    Article  ADS  MathSciNet  Google Scholar 

  9. Guo, X., Wei, P., Xu, M., Lan, M.: Dispersion relations of anti-plane elastic waves in micro-scale one dimensional piezoelectric semiconductor phononic crystals with the consideration of interface effect. Mech. Mater. 161, 104000 (2021). https://doi.org/10.1016/j.mechmat.2021.104000

    Article  Google Scholar 

  10. Weinreich, G., Sanders, T.M., White, H.G.: Acoustoelectric effect in n type Germanium. Phys. Rev. 114, 33–44 (1959). https://doi.org/10.1103/physrev.114.33

    Article  ADS  CAS  Google Scholar 

  11. White, R.M.: Surface elastic-wave propagation and amplification. IEEE Trans. Electron Devices 14, 181–189 (1967). https://doi.org/10.1109/t-ed.1967.15926

    Article  ADS  Google Scholar 

  12. Gu, C., Jin, F.: Shear-horizontal surface waves in a half-space of piezoelectric semiconductors. Philos. Mag. Lett. 95, 92–100 (2015). https://doi.org/10.1080/09500839.2015.1011249

    Article  ADS  CAS  Google Scholar 

  13. Cao, X., Hu, S., Liu, J., Shi, J.: Generalized Rayleigh surface waves in a piezoelectric semiconductor half space. Meccanica 54, 271–281 (2019). https://doi.org/10.1007/s11012-019-00944-1

    Article  MathSciNet  Google Scholar 

  14. Tian, R., Liu, J., Pan, E., Wang, Y., Soh, A.K.: Some characteristics of elastic waves in a piezoelectric semiconductor plate. J. Appl. Phys. 126, 125701 (2019). https://doi.org/10.1063/1.5116662

    Article  ADS  CAS  Google Scholar 

  15. Tian, R., Liu, J., Pan, E., Wang, Y.: SH waves in multilayered piezoelectric semiconductor plates with imperfect interfaces. Eur. J. Mech. A. Solids 81, 103961 (2020). https://doi.org/10.1016/j.euromechsol.2020.103961

    Article  ADS  MathSciNet  Google Scholar 

  16. Tian, R., Nie, G., Liu, J., Pan, E., Wang, Y.: On Rayleigh waves in a piezoelectric semiconductor thin film over an elastic half-space. Int. J. Mech. Sci. 204, 106565 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106565

    Article  Google Scholar 

  17. Salah, I.B., Takali, F., Othmani, C., Njeh, A.: SH waves in a stressed piezoelectric semiconductor plates: electron and hole drift phenomenon. Int. J. Mech. Sci. 223, 107281 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107281

    Article  Google Scholar 

  18. Shockley, W.: The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb03645.x

    Article  Google Scholar 

  19. Yang, W., Liu, J., Xu, Y., Hu, Y.: A full-coupling model of PN junctions based on the global-domain carrier motions with inclusion of the two metal/semiconductor contacts at endpoints. Appl. Math. Mech. 41, 845–858 (2020). https://doi.org/10.1007/s10483-020-2617-9

    Article  MathSciNet  Google Scholar 

  20. Fan, S., Yang, W., Hu, Y.: Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading. Nano Energy 52, 416–421 (2018). https://doi.org/10.1016/j.nanoen.2018.08.017

    Article  CAS  Google Scholar 

  21. Yang, W., Fan, S., Liang, Y., Hu, Y.: Prestress-loading effect on the current–voltage characteristics of a piezoelectric p–n junction together with the corresponding mechanical tuning laws. Beilstein J. Nanotechnol. 10, 1833–1843 (2019). https://doi.org/10.3762/bjnano.10.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, Y., Zhang, C., Chen, W., Yang, J.: An analysis of PN junctions in piezoelectric semiconductors. J. Appl. Phys. 122, 204502 (2017). https://doi.org/10.1063/1.4996754

    Article  ADS  CAS  Google Scholar 

  23. Guo, M., Lu, C., Qin, G., Zhao, M.: Temperature gradient-dominated electrical behaviours in a piezoelectric PN junction. J. Electron. Mater. 50, 947–953 (2021). https://doi.org/10.1007/s11664-020-08634-5

    Article  ADS  CAS  Google Scholar 

  24. Ren, C., Wang, K.F., Wang, B.L.: Analysis of piezoelectric PN homojunction and heterojunction considering flexoelectric effect and strain gradient. J. Phys. D Appl. Phys. 54, 495102 (2021). https://doi.org/10.1088/1361-6463/ac2334

    Article  ADS  CAS  Google Scholar 

  25. Yang, G., Yang, L., Du, J., Wang, J., Yang, J.: PN junctions with coupling to bending deformation in composite piezoelectric semiconductor fibers. Int. J. Mech. Sci. 173, 105421 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105421

    Article  Google Scholar 

  26. Feng, X., Zhang, Y., Wang, Z.: Theoretical study of piezotronic heterojunction. Sci. China Technol. Sci. 56, 2615–2621 (2013). https://doi.org/10.1007/s11431-013-5358-3

    Article  ADS  CAS  Google Scholar 

  27. Kouaydi, N., Zemzemi, M.: Electronic, band offset, and thermoelectric properties of ZnO/GaN heterostructure from first-principles study. J. Electron. Mater. 49, 5773–5781 (2020). https://doi.org/10.1007/s11664-020-08341-1

    Article  ADS  CAS  Google Scholar 

  28. Yang, W., Hong, R., Wang, Y., Hu, Y.: Effects of mechanical loadings on the performance of a piezoelectric hetero-junction. Appl. Math. Mech. 43, 615–626 (2022). https://doi.org/10.1007/s10483-022-2848-7

    Article  Google Scholar 

  29. Xu, C., Wei, P., Wei, Z., Guo, X.: Shear horizontal wave in a piezoelectric semiconductor substrate covered with a metal layer with consideration of Schottky junction effects. Appl. Math. Model. 109, 509–518 (2022). https://doi.org/10.1016/j.apm.2022.05.004

    Article  MathSciNet  Google Scholar 

  30. Bian, Z., Yang, S., Zhou, X., Hui, D.: Band gap manipulation of viscoelastic functionally graded phononic crystal. Nanotechnol. Rev. 9, 515–523 (2020). https://doi.org/10.1515/ntrev-2020-0042

    Article  CAS  Google Scholar 

  31. Zhang, Z., Wen, Z., Hu, J.: Calculation of surface acoustic waves in a multilayered piezoelectric structure. J. Semicond. 34, 012002 (2013). https://doi.org/10.1088/1674-4926/34/1/012002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (No. 11872105, NO.12072022, NO. 11911530176 and NO.12202039) and Fundamental Research Funds for the Central Universities (FRF-TW-2018-005, FRF-BR-18-008B, FRF-TP-18-077A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wei, P., Wei, Z. et al. Shear horizontal wave in a p-type Si substrate covered with a piezoelectric semiconductor n-type ZnO layer with consideration of PN heterojunction effects. Acta Mech 235, 735–750 (2024). https://doi.org/10.1007/s00707-023-03771-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03771-4

Navigation