Skip to main content
Log in

Propagation of shear horizontal (SH) waves in a functionally graded piezoelectric substrate with periodic gratings

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Propagation characteristics of SH waves in a functionally graded piezoelectric material (FGPM) substrate with periodic gratings have been investigated in the article. The material constants of the FGPM substrate change exponentially along the thickness direction. An effective numerical root finding method is adopted to solve the dispersion equation of SH waves in the complex-value domain and the theoretical results are verified by the finite element method. Effects of the material properties and height of the gratings as well as the gradient coefficient of the FGPM substrate on band structures of SH waves are investigated in detail. Numerical results show that more SH surface modes are trapped in the gratings when the shear wave velocity in the gratings decreases. The surface modes are converted into the bulk modes by tuning the negative gradient coefficient. A new low-frequency band gap is opened and SH modes with high frequencies are trapped in the gratings completely by transforming the propagating modes into the resonant modes induced by the positive gradient coefficient. The results in the article provide a theoretical foundation for designing surface acoustic wave devices with high performance based on FGPMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hashimoto, Ken-ya.: Surface acoustic wave devices in telecommunications, Springer-Verlag, Berlin, Heidelberg, 2000.

  2. Tanaka, Y., Tamura, S.: Surface acoustic waves in two-dimensional periodic elastic structures. Phys. Rev. B 58(12), 7958–7965 (1998)

    Article  Google Scholar 

  3. Wang, Y.Z., Li, F.M., Kishimoto, K.: Effects of the initial stress on the propagation and localization properties of Rayleigh waves in randomly disordered layered piezoelectric phononic crystals. Acta Mech. 216(1–4), 291–300 (2011)

    Article  MATH  Google Scholar 

  4. Yu, S.Y., Wang, J.Q., Sun, X.C., Liu, F.K., He, C., Xu, H.H., Lu, M.H., Christensen, J., Liu, X.P., Chen, Y.F.: Slow surface acoustic waves via lattice optimization of a phononic crystal on a chip. Phys. Rev. Appl. 14(6), 064008 (2020)

    Article  Google Scholar 

  5. Glass, N.E., Loudon, R., Maradudin, A.A.: Propagation of Rayleigh surface waves across a large-amplitude grating. Phys. Rev. B 24(12), 6843–6861 (1981)

    Article  Google Scholar 

  6. Glass, N.E., Maradudin, A.A.: Leaky surface-elastic waves on both flat and strongly corrugated surfaces for isotropic, nondissipative media. J. Appl. Phys. 54(2), 796–805 (1983)

    Article  Google Scholar 

  7. Maznev, A.A., Every, A.G.: Surface acoustic waves in a periodically patterned layered structure. J. Appl. Phys. 106(11), 113531 (2009)

    Article  Google Scholar 

  8. Khelif, A., Achaoui, Y., Benchabane, S., Laude, V., Aoubiza, B.: Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface. Phys. Rev. B 81(21), 214303 (2010)

    Article  Google Scholar 

  9. Assouar, B.M., Oudich, M.: Dispersion curves of surface acoustic waves in a two-dimensional phononic crystal. Appl. Phys. Lett. 99(12), 123505 (2011)

    Article  Google Scholar 

  10. Khelif, A., Achaoui, Y., Aoubiza, B.: Surface acoustic waves in pillars-based two-dimensional phononic structures with different lattice symmetries. J. Appl. Phys. 112(3), 033511 (2012)

    Article  Google Scholar 

  11. Oudich, M., Assouar, B.M.: Surface acoustic wave band gaps in a diamond-based two-dimensional locally resonant phononic crystal for high frequency applications. J. Appl. Phys. 111(1), 014504 (2012)

    Article  Google Scholar 

  12. Trzaskowska, A., Mielcarek, S., Sarkar, J.: Band gap in hypersonic surface phononic lattice of nickel pillars. J. Appl. Phys. 114(13), 134304 (2013)

    Article  Google Scholar 

  13. Zhang, D.B., Zhao, J.F., Bonello, B., Zhang, F.L., Yuan, W.T., Pan, Y.D., Zhong, Z.: Investigation of surface acoustic wave propagation in composite pillar based phononic crystals within both local resonance and Bragg scattering mechanism regimes. J. Phys. D Appl. Phys. 50(43), 435602 (2017)

    Article  Google Scholar 

  14. Bleustein, J.L.: A new surface wave in piezoelectric material. Appl. Phys. Lett. 13(12), 412–413 (1968)

    Article  Google Scholar 

  15. Jin, F., Wang, Z.K., Wang, T.J.: The Bleustein-Gulyaev (B-G) wave in a piezoelectric layered half-space. Int. J. Eng. Sci. 39(11), 1271–1285 (2001)

    Article  Google Scholar 

  16. Li, P., Jin, F.: Bleustein-Gulyaev waves in a transversely isotropic piezoelectric layered structure with an imperfectly bonded interface. Smart Mater. Struct. 21(4), 045009 (2012)

    Article  Google Scholar 

  17. Du, J.K., Xian, K., Wang, J., Yong, Y.K.: Love wave propagation in piezoelectric layered structure with dissipation. Ultrasonics 49(2), 281–286 (2009)

    Article  Google Scholar 

  18. Qian, Z.H., Jin, F., Hirose, S.: A novel type of transverse surface wave propagating in a layered structure consisting of a piezoelectric layer attached to an elastic half-space. Acta Mech. Sinica 26(3), 417–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, J.X., Wang, Y.H., Wang, B.L.: Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface. IEEE T. Ultrason. Ferr. 57(8), 1875–1879 (2010)

    Article  Google Scholar 

  20. Yang, J.S.: Piezoelectric transformer structural modeling-a review. IEEE T. Ultrason. Ferr. 54(6), 1154–1170 (2007)

    Article  Google Scholar 

  21. Tsutsumi, M., Kumagai, N.: Behavior of Bleustein-Gulyaev waves in a periodically corrugated piezoelectric crystal. IEEE T. Microw. Theory 28(6), 627–632 (1980)

    Article  MathSciNet  Google Scholar 

  22. Xu, C.Y., Pang, Y., Feng, W.J.: Bragg reflection of Bleustein-Gulyaev(BG) waves in a magneto-electro-elastic substrate with a periodically inertial load surface. Mech. Mater. 162, 104037 (2021)

    Article  Google Scholar 

  23. Wilcox, J.Z., Yen, K.H., Wilcox, T.J., Evans, G.: Horizontal shear acoustic waves on layered surfaces with sinusoidal corrugations. J. Appl. Phys. 53(4), 2862–2870 (1982)

    Article  Google Scholar 

  24. Hawwa, M.A., Asfar, O.R.: Coupled-mode analysis of Love waves in a filter film with periodically corrugated surfaces. IEEE T. Ultrason. Ferroelectr. 41(1), 13–18 (1994)

    Article  Google Scholar 

  25. Singh, S.S.: Love wave at a layer medium bounded by irregular boundary surfaces. J. Vib. Control 17(5), 789–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kundu, S., Manna, S., Gupta, S.: Love wave dispersion in pre-stressed homogeneous medium over a porous half-space with irregular boundary surfaces. Int. J. Solids Struct. 51(21–22), 3689–3697 (2014)

    Article  Google Scholar 

  27. Gupta, S., Ahmed, M., Misra, C.J.: Effects of periodic corrugated boundary surfaces on plane SH-waves in fiber-reinforced medium over a semi-infinite micropolar solid under the action of magnetic field. Mech. Res. Commun. 95, 35–44 (2019)

    Article  Google Scholar 

  28. Pang, Y., Xu, C.Y., Ge, T., Feng, W.J.: Shear horizontal wave propagation along a periodic metal grating surface of a magneto-electro-elastic substrate. J. Appl. Phys. 125(16), 165104 (2019)

    Article  Google Scholar 

  29. Baghai-Wadji, A.R., Maradudin, A.A.: Shear horizontal surface acoustic waves on large amplitude gratings. Appl. Phys. Lett. 59(15), 1841–1843 (1991)

    Article  Google Scholar 

  30. Laude, V., Khelif, A., Pastureaud, Th., Ballandras, S.: Generally polarized acoustic waves trapped by high aspect ratio electrode gratings at the surface of a piezoelectric material. J. Appl. Phys. 90(5), 2492–2497 (2001)

    Article  Google Scholar 

  31. Laude, V., Robert, L., Daniau, W., Khelif, A., Ballandras, S.: Surface acoustic wave trapping in a periodic array of mechanical resonators. Appl. Phys. Lett. 89(8), 083515 (2006)

    Article  Google Scholar 

  32. Dühring, M.B., Laude, V., Khelif, A.: Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators. J. Appl. Phys. 105(9), 093504 (2009)

    Article  Google Scholar 

  33. Collet, B., Destrade, M., Maugin, G.A.: Bleustein-Gulyaev waves in some functionally graded materials. Eur. J. Mech. A-Solid 25(5), 695–706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Qian, Z.H., Jin, F., Lu, T.J., Kishimoto, K.: Transverse surface waves in functionally graded piezoelectric materials with exponential variation. Smart Mater. Struct. 17(6), 065005 (2008)

    Article  Google Scholar 

  35. Daros, C.H.: A fundamental solution for SH-waves in a class of inhomogeneous anisotropic media. Int. J. Eng. Sci. 46(8), 809–817 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, X., Pan, E.: On the screw dislocation in a functionally graded piezoelectric plane and half-plane. Mech. Res. Commun. 35(4), 229–236 (2008)

    Article  MATH  Google Scholar 

  37. Eskandari, M., Shodja, H.M.: Love waves propagation in functionally graded piezoelectric materials with quadratic variation. J. Sound Vib. 313(1–2), 195–204 (2008)

    Article  Google Scholar 

  38. Qian, Z.H., Jin, F., Lu, T.J., Kishimoto, K.: Transverse surface waves in a layered structure with a functionally graded piezoelectric substrate and a hard dielectric layer. Ultrasonics 49(3), 293–297 (2009)

    Article  Google Scholar 

  39. Daros, C.H.: Liouville-Green approximation for Bleustein-Gulyaev waves in functionally graded materials. Eur. J. Mech. A-Solid 38, 129–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Singh, B.M., Rokne, J.: Propagation of SH waves in functionally gradient electromagnetoelastic half-space. IEEE T. Ultrason. Ferroelectr. 60(10), 2189–2195 (2013)

    Article  Google Scholar 

  41. Manna, S., Kundu, S., Gupta, S.: Love wave propagation in a piezoelectric layer overlying in an inhomogeneous elastic half-space. J. Vib. Control 21(13), 2553–2568 (2015)

    Article  MathSciNet  Google Scholar 

  42. Kielczynski, P., Szalewski, M., Balcerzak, A., Wieja, K.: Propagation of ultrasonic love waves in nonhomogeneous elastic functionally graded materials. Ultrasonics 65, 220–227 (2016)

    Article  Google Scholar 

  43. Qian, Z.H., Jin, F., Hirose, S.: Effects of covering layer thickness on love waves in functionally graded piezoelectric substrates. Arch. Appl. Mech. 81(11), 1743–1755 (2011)

    Article  MATH  Google Scholar 

  44. Chen, X., Liu, D.L.: Temperature stability of ZnO-based love wave biosensor with SiO2 buffer layer. Sensor Actuator. A-Phys. 156(2), 317–322 (2009)

    Article  Google Scholar 

  45. Zhu, F., Wang, B., Qian, Z.H.: A numerical algorithm to solve multivariate transcendental equation sets in complex domain and its application in wave dispersion curve characterization. Acta Mech. 230(4), 1303–1321 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Graczykowski, B., Alzina, F., Gomis-Bresco, J., Sotomayor Torres, C.M.: Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals. J. Appl. Phys. 119(2), 025308 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Nos. 11862012 and 11862014) and the Natural Science Foundation of Shandong Province (No. ZR2020KA006) are gratefully acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlong Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, C., Ou, Z., Ma, L. et al. Propagation of shear horizontal (SH) waves in a functionally graded piezoelectric substrate with periodic gratings. Acta Mech 234, 2709–2724 (2023). https://doi.org/10.1007/s00707-023-03525-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03525-2

Navigation