Skip to main content
Log in

Hierarchic sets of shape functions constructed from enriched Fourier series

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the concept of improving the convergence of Fourier series by elimination of the Gibbs phenomenon, this work proposes a rational approach to construct hierarchic sets of shape functions of any desired degree of continuity from suitably modified (enriched) trigonometric series. Hierarchic sets of either enriched cosines or enriched sines are then used in Ritz solutions of beam and plate bending problems to illustrate the benefits provided by the enrichment in the quality of approximations. For a given degree of continuity, it is observed that a set of enriched cosines yields, in general, more accurate results and faster convergence than a set of enriched sines. To the authors’ knowledge, there is no published information yet on hierarchic sets of enriched cosines. Moreover, it is shown that some hierarchic sets, which are already well-established in the literature, may lead not only to spurious oscillations but also to erroneous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lanczos, C.: Discourse on Fourier Series. Oliver and Boyd, Edinburgh (1966)

    Google Scholar 

  2. Jones, W.B., Hardy, G.: Accelerating convergence of trigonometric approximations. Math. Comp. 24(111), 547–560 (1970)

    Article  MathSciNet  Google Scholar 

  3. Baszenski, G., Delvos, F.J., Tasche, M.: A united approach to accelerating trigonometric expansions. Comput. Math. Applic. 30(3–6), 33–49 (1995). https://doi.org/10.1016/0898-1221(95)00084-4

    Article  MathSciNet  Google Scholar 

  4. Li, W.L.: Reply to: Discussion on “Free vibrations of beams with general boundary conditions.” J. Sound Vib. 257(3), 593–595 (2002). https://doi.org/10.1006/jsvi.2002.5195

    Article  ADS  Google Scholar 

  5. Iguchi, S.: Allgemeine lösung der knickungsaufgabe für rechteckige platten. Ing.-Arch. 7(4), 207–215 (1936). https://doi.org/10.1007/BF02095891

    Article  Google Scholar 

  6. Iguchi, S.: Die biegungsschwingungen der vierseitig eigenspannten rechteckigen platte. Ing.-Arch. 8(1), 11–25 (1937). https://doi.org/10.1007/BF02086517

    Article  MathSciNet  Google Scholar 

  7. Iguchi, S.: Die knickung der rechteckigen platte durch schubkräfte. Ing.-Arch. 9(1), 1–12 (1938). https://doi.org/10.1007/BF02084324

    Article  Google Scholar 

  8. Leggett, D.M.A.: The buckling of a square panel under shear when one pair of opposite edges is clamped, and the other pair is simply supported, Tech. Rep. 1991, Aeronautical Research Committee, London, (1941)

  9. Li, W.L.: Free vibrations of beams with general boundary conditions. J. Sound Vib. 237(4), 709–725 (2000). https://doi.org/10.1006/jsvi.2000.3150

    Article  ADS  Google Scholar 

  10. Li, W.L.: Dynamic analysis of beams with arbitrary elastic supports at both ends. J. Sound Vib. 246(4), 751–756 (2001). https://doi.org/10.1006/jsvi.2001.3603

    Article  ADS  Google Scholar 

  11. Li, W.L.: Comparison of Fourier sine and cosine series expansions for beams with arbitrary boundary conditions. J. Sound Vib. 255(1), 185–194 (2002). https://doi.org/10.1006/jsvi.2001.4108

    Article  ADS  Google Scholar 

  12. Li, W.L.: Vibration analysis of rectangular plates with general elastic boundary supports. J. Sound Vib. 273(3), 619–635 (2004). https://doi.org/10.1016/S0022-460X(03)00562-5

    Article  ADS  Google Scholar 

  13. Li, W.L.: Alternative Fourier series expansions with accelerated convergence. Appl. Math. 7(15), 1824–1845 (2016). https://doi.org/10.4236/am.2016.715152

    Article  Google Scholar 

  14. Xu, H., Li, W.L., Du, J.: Modal analysis of general plate structures. J. Vib. Acoust. 136(2), 021002 (2014). https://doi.org/10.1115/1.4025876

    Article  Google Scholar 

  15. Jin, G., Ye, T., Su, Z.: Structural Vibration—A Uniform Accurate Solution for Laminated Beams. Plates and Shells with General Boundary Conditions. Springer, Heidelberg (2015)

    Google Scholar 

  16. Yshii, L.N., Lucena Neto, E., Monteiro, F.A.C., Santana, R.C.: Accuracy of the buckling predictions of anisotropic plates. J. Eng. Mech. 144(8), 04018061 (2018). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001498

    Article  Google Scholar 

  17. Beslin, O., Nicolas, J.: A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions. J. Sound Vib. 202(5), 633–655 (1997). https://doi.org/10.1006/jsvi.1996.0797

    Article  ADS  Google Scholar 

  18. West, L.J., Bardell, N.S., Dunsdon, J.M., Loasby, P.M.: Some limitations associated with the use of K-orthogonal polynomials in hierarchical versions of the finite element method, In Proceedings of the Sixth International Conference on Recent Advances in Structural Dynamics, vol. 1, pp. 217–231 (1997)

  19. Bardell, N.S., Dunsdon, J.M., Langley, R.S.: Free vibration analysis of coplanar sandwich panels. Compos. Struct. 38(1–4), 463–475 (1997). https://doi.org/10.1016/S0263-8223(97)00080-9

    Article  Google Scholar 

  20. Bardell, N.S., Dunsdon, J.M., Langley, R.S.: Free vibration of thin, isotropic, open, conical panels. J. Sound Vib. 217(2), 297–320 (1998). https://doi.org/10.1006/jsvi.1998.1761

    Article  ADS  Google Scholar 

  21. Leung, A.Y.T., Chan, J.K.W.: Fourier p-element for the analysis of beams and plates. J. Sound Vib. 212(1), 179–185 (1998). https://doi.org/10.1006/jsvi.1997.1423

    Article  ADS  Google Scholar 

  22. Houmat, A.: An alternative hierarchical finite element formulation applied to plate vibrations. J. Sound Vib. 206(2), 201–215 (1997). https://doi.org/10.1006/jsvi.1997.1076

    Article  ADS  Google Scholar 

  23. Houmat, A.: A sector Fourier p-element applied to free vibration analysis of sectorial plates. J. Sound Vib. 243(2), 269–282 (2001). https://doi.org/10.1006/jsvi.2000.3410

    Article  ADS  Google Scholar 

  24. Haberman, R.: Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 5th edn. Pearson, Boston (2013)

    Google Scholar 

  25. Tolstov, G.P.: Fourier Series. Dover, New York (1976)

    Google Scholar 

  26. Dozio, L.: Free in-plane vibration analysis of rectangular plates with arbitrary elastic boundaries. Mech. Res. Commun. 37(7), 627–635 (2010). https://doi.org/10.1016/j.mechrescom.2010.09.003

    Article  Google Scholar 

  27. Dozio, L.: On the use of the Trigonometric Ritz method for general vibration analysis of rectangular Kirchhoff plates. Thin-Walled Struct. 49(1), 129–144 (2011). https://doi.org/10.1016/j.tws.2010.08.014

    Article  Google Scholar 

  28. Dozio, L.: In-plane free vibrations of single-layer and symmetrically laminated rectangular composite plates. Compos. Struct. 93(7), 1787–1800 (2011). https://doi.org/10.1016/j.compstruct.2011.01.021

    Article  Google Scholar 

  29. Dang, T.D., Kapania, R.K., Patil, M.J.: Ritz analysis of discontinuous beams using local trigonometric functions. Comput. Mech. 47(3), 235–250 (2011). https://doi.org/10.1007/s00466-010-0540-y

    Article  MathSciNet  Google Scholar 

  30. Paik, J.K.: Ultimate Limit State Analysis and Design of Plated Structures, 2nd edn. John Wiley, Hoboken (2018)

    Book  Google Scholar 

  31. Mousavi, H., Azhari, M., Saadatpour, M.M.: A novel formulation for static and buckling analysis of plates using coupled element free Galerkin-finite strip (EFG-FS). Appl. Math. Model. 70, 264–284 (2019). https://doi.org/10.1016/j.apm.2019.01.019

    Article  MathSciNet  Google Scholar 

  32. Yeh, S.L., Harne, R.L.: Origins of broadband vibration attenuation empowered by optimized viscoelastic metamaterial inclusions. J. Sound Vib. 458, 218–237 (2019). https://doi.org/10.1016/j.jsv.2019.06.018

    Article  ADS  Google Scholar 

  33. Chen, Q., Qiao, P.: Buckling and postbuckling of rotationally-restrained laminated composite plates under shear. Thin-Walled Struct. 161, 107435 (2021). https://doi.org/10.1016/j.tws.2021.107435

    Article  Google Scholar 

  34. Mousavi, H., Azhari, M., Saadatpour, M.M., Sarrami-Foroushani, S.: Application of improved element-free Galerkin combining with finite strip method for buckling analysis of channel-section beams with openings. Eng. Comput. 38(1), 739–755 (2022). https://doi.org/10.1007/s00366-020-01087-8

    Article  Google Scholar 

  35. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. John Wiley, Hoboken (2002)

    Google Scholar 

  36. Lucena Neto, E.: Fundamentals of Structural Mechanics (in Portuguese). Orsa Maggiore, Florianópolis (2021)

    Google Scholar 

  37. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. John Wiley, New York (1953)

    Google Scholar 

  38. Oliveira, B.H.S., Lucena Neto, E., Monteiro, F.A.C.: An accurate Ritz approach for analysis of cracked stiffened plates. Appl. Math. Model. 73, 598–614 (2019). https://doi.org/10.1016/j.apm.2019.04.014

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lucena Neto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

For \(C^{0}\) continuity, the components of the set \({\mathbf{F}}_{c}\) of enriched cosines read

$$\begin{aligned} F_{c1} & = \frac{1}{4}\left( {3\xi + 1} \right)\left( {\xi - 1} \right)\;\;\;\;F_{c2} = \frac{1}{4}\left( {3\xi - 1} \right)\left( {\xi + 1} \right) \\ F_{cj} & = \cos \frac{\pi }{2}\left( {j - 3} \right)\left( {\xi + 1} \right) - F_{c1} + \left( { - 1} \right)^{j} F_{c2} \;\;\;\;j = 3, 4, \ldots \\ \end{aligned}$$
(A.1)

with properties

$$\begin{aligned} F_{c1} & = 1\;\;\;\;F_{c2} = F_{c3} = \ldots = 0 \;\;\;\;{\text{at}}\; \xi = - 1 \\ F_{c2} & = 1\;\;\;\;F_{c1} = F_{c3} = \ldots = 0\;\;\;\;{\text{at}}\; \xi = 1. \\ \end{aligned}$$
(A.2)

For numerical convenience, one replaces \(x\) by the nondimensional coordinate \(\xi = 2x/L - 1\) (\(- 1 \le \xi \le 1\)). The first two functions of \({\mathbf{F}}_{c}\) are the nodal components collected in \({\varvec{\psi}}\), whereas the remaining ones are the hierarchic components collected in \({\mathbf{H}}\). The components of the set \({\mathbf{F}}_{s}\) of enriched sines are

$$\begin{aligned} F_{s1} & = - \frac{1}{2}\left( {\xi - 1} \right)\;\;\;\;F_{s2} = \frac{1}{2}\left( {\xi + 1} \right) \\ F_{sj} & = \sin \frac{\pi }{2}\left( {j - 2} \right)\left( {\xi + 1} \right)\;\;\;\;j = 3, 4, \ldots \\ \end{aligned}$$
(A.3)

with the same properties (A.2).

Similarly, the components of \({\mathbf{F}}_{c}\) for \(C^{1}\) continuity are given by

$$\begin{aligned} F_{c1} & = - \frac{1}{16}\left( {3\xi + 1} \right)\left( {5\xi + 7} \right)\left( {\xi - 1} \right)^{2} \;\;\;\;F_{c2} = - \frac{L}{32}\left( {\xi + 1} \right)\left( {5\xi + 1} \right)\left( {\xi - 1} \right)^{2} \\ F_{c3} & = - \frac{1}{16}\left( {3\xi - 1} \right)\left( {5\xi - 7} \right)\left( {\xi + 1} \right)^{2} \;\;\;\; F_{c4} = \frac{L}{32}\left( {\xi - 1} \right)\left( {5\xi - 1} \right)\left( {\xi + 1} \right)^{2} \\ F_{cj} & = \cos \frac{\pi }{2}\left( {j - 5} \right)\left( {\xi + 1} \right) - F_{c1} + \left( { - 1} \right)^{j} F_{c3} \;\;\;\;j = 5, 6, \ldots \\ \end{aligned}$$
(A.4)

with properties

$$\begin{aligned} F_{c1} & = 1\;\;\;\;F_{c2} = F_{c3} = F_{c4} = F_{c5} = \cdots = 0 \\ \frac{{{\text{d}}F_{c2} }}{{{\text{d}}x}} & = \frac{2}{L}\frac{{{\text{d}}F_{c2} }}{{{\text{d}}\xi }} = 1\;\;\;\;\frac{{{\text{d}}F_{c1} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c3} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c4} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c5} }}{{{\text{d}}\xi }} = \cdots = 0\;\;\;\;{\text{at}}\;{ }\xi = - 1 \\ F_{c3} & = 1\;\;\;\;F_{c1} = F_{c2} = F_{c4} = F_{c5} = \cdots = 0 \\ \frac{{{\text{d}}F_{c4} }}{{{\text{d}}x}} & = \frac{2}{L}\frac{{{\text{d}}F_{c4} }}{{{\text{d}}\xi }} = 1\;\;\;\;\frac{{{\text{d}}F_{c1} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c2} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c3} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c5} }}{{{\text{d}}\xi }} = \cdots = 0\;\;\;\;{\text{at}}\;\xi = 1. \\ \end{aligned}$$
(A.5)

The components of \({\mathbf{F}}_{s}\) are

$$\begin{aligned} F_{s1} & = \frac{1}{4}\left( {\xi + 2} \right)\left( {\xi - 1} \right)^{2} \;\;\;\;F_{s2} = \frac{L}{8}\left( {\xi + 1} \right)\left( {\xi - 1} \right)^{2} \\ F_{s3} & = - \frac{1}{4}\left( {\xi - 2} \right)\left( {\xi + 1} \right)^{2} \;\;\;\;F_{s4} = \frac{L}{8}\left( {\xi - 1} \right)\left( {\xi + 1} \right)^{2} \\ F_{sj} & = \sin \frac{\pi }{2}\left( {j - 4} \right)\left( {\xi + 1} \right) - \frac{\pi }{L}\left( {j - 4} \right)\left[ {F_{s2} + \left( { - 1} \right)^{j} F_{s4} } \right]\;\;\;\; j = 5, 6, \ldots \\ \end{aligned}$$
(A.6)

with the same properties (A.5).

For \(C^{2}\) continuity, the components of \({\mathbf{F}}_{c}\) change to

$$\begin{aligned} F_{c1} & = \frac{1}{32}\left( {\xi - 1} \right)^{3} \left( {35\xi^{3} + 99\xi^{2} + 87\xi + 19} \right) \\ F_{c2} & = \frac{L}{32}\left( {\xi + 1} \right)\left( {\xi - 1} \right)^{3} \left( {7\xi^{2} + 11\xi + 2} \right) \\ F_{c3} & = \frac{{L^{2} }}{384}\left( {\xi + 1} \right)^{2} \left( {\xi - 1} \right)^{3} \left( {7\xi + 1} \right) \\ F_{c4} & = \frac{1}{32}\left( {\xi + 1} \right)^{3} \left( {35\xi^{3} - 99\xi^{2} + 87\xi - 19} \right) \\ F_{c5} & = - \frac{L}{32}\left( {\xi - 1} \right)\left( {\xi + 1} \right)^{3} \left( {7\xi^{2} - 11\xi + 2} \right) \\ F_{c6} & = \frac{{L^{2} }}{384}\left( {\xi - 1} \right)^{2} \left( {\xi + 1} \right)^{3} \left( {7\xi - 1} \right) \\ F_{cj} & = \cos \frac{\pi }{2}\left( {j - 7} \right)\left( {\xi + 1} \right) - F_{c1} + \left( { - 1} \right)^{j} F_{c4} + \left( {\frac{\pi }{L}} \right)^{2} \left( {j - 7} \right)^{2} \left[ {F_{c3} - \left( { - 1} \right)^{j} F_{c6} } \right] \;\;\;\;j = 7, 8, \ldots \\ \end{aligned}$$
(A.7)

with properties

$$\begin{aligned} F_{c1} & = 1\;\;\;\;F_{c2} = F_{c3} = F_{c4} = F_{c5} = F_{c6} = F_{c7} = \cdots = 0 \\ \frac{{{\text{d}}F_{c2} }}{{{\text{d}}x}} & = \frac{2}{L}\frac{{{\text{d}}F_{c2} }}{{{\text{d}}\xi }} = 1\;\;\;\;\frac{{{\text{d}}F_{c1} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c3} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c4} }}{d\xi } = \frac{{{\text{d}}F_{c5} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c6} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c7} }}{{{\text{d}}\xi }} = \cdots = 0 \\ \frac{{{\text{d}}^{2} F_{c3} }}{{{\text{d}}x^{2} }} & = \frac{4}{{L^{2} }}\frac{{{\text{d}}^{2} F_{c3} }}{{{\text{d}}\xi^{2} }} = 1\;\;\;\;\frac{{{\text{d}}^{2} F_{c1} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c2} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c4} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c5} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c6} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c7} }}{{{\text{d}}\xi^{2} }} = \cdots = 0\;\;\;\;{\text{at}} \;\xi = - 1 \\ F_{c4} & = 1\;\;\;\;F_{c1} = F_{c2} = F_{c3} = F_{c5} = F_{c6} = F_{c7} = \cdots = 0 \\ \frac{{{\text{d}}F_{c5} }}{{{\text{d}}x}} & = \frac{2}{L}\frac{{{\text{d}}F_{c5} }}{{{\text{d}}\xi }} = 1\;\;\;\; \frac{{{\text{d}}F_{c1} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c2} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c3} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c4} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c6} }}{{{\text{d}}\xi }} = \frac{{{\text{d}}F_{c7} }}{{{\text{d}}\xi }} = \cdots = 0 \\ \frac{{{\text{d}}^{2} F_{c6} }}{{{\text{d}}x^{2} }} & = \frac{4}{{L^{2} }}\frac{{{\text{d}}^{2} F_{c6} }}{{{\text{d}}\xi^{2} }} = 1\;\;\;\;\frac{{{\text{d}}^{2} F_{c1} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c2} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c3} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c4} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c5} }}{{{\text{d}}\xi^{2} }} = \frac{{{\text{d}}^{2} F_{c7} }}{{{\text{d}}\xi^{2} }} = \cdots = 0\;\;\;\;{\text{at}}\; \xi = 1. \\ \end{aligned}$$
(A.8)

In turn, the components of \({\mathbf{F}}_{s}\) are given by

$$\begin{aligned} F_{s1} & = - \frac{1}{16}\left( {\xi - 1} \right)^{3} \left( {3\xi^{2} + 9\xi + 8} \right)\;\;\;\;F_{s2} = - \frac{L}{32}\left( {\xi + 1} \right)\left( {3\xi + 5} \right)\left( {\xi - 1} \right)^{3} \\ F_{s3} & = - \frac{{L^{2} }}{64}\left( {\xi + 1} \right)^{2} \left( {\xi - 1} \right)^{3} \;\;\;\;F_{s4} = \frac{1}{16}\left( {\xi + 1} \right)^{3} \left( {3\xi^{2} - 9\xi + 8} \right) \\ F_{s5} & = - \frac{L}{32}\left( {\xi - 1} \right)\left( {3\xi - 5} \right)\left( {\xi + 1} \right)^{3} \;\;\;\;F_{s6} = \frac{{L^{2} }}{64}\left( {\xi - 1} \right)^{2} \left( {\xi + 1} \right)^{3} \\ F_{sj} & = \sin \frac{\pi }{2}\left( {j - 6} \right)\left( {\xi + 1} \right) - \frac{\pi }{L}\left( {j - 6} \right)\left[ {F_{s2} + \left( { - 1} \right)^{j} F_{s5} } \right] \;\;\;\;j = 7, 8, \ldots \\ \end{aligned}$$
(A.9)

with the same properties (A.8).

The sets (A.3), (A.6) and (A.9) are also developed in [21, 23] and [22], respectively, but without worrying about convergence aspects of the sine series expansion. The hierarchic functions \(F_{sj}\) (\(j = 5, 6, \ldots\)) of the set (A.6) were first proposed by Iguchi [6].

Appendix B

2.1 Beam bending

It is convenient to rewrite the potential energy (48) as follows

$${\Pi }\left( v \right) = \frac{L}{2}\mathop \int \limits_{ - 1}^{1} \left[ {\frac{8EI}{{L^{4} }}v_{,\xi \xi }^{2} + q_{0} e^{\xi + 1} v} \right]{\text{d}}\xi ,$$
(B.1)

where a comma followed by \(\xi\) indicates differentiation with respect to \(\xi\). Substitution of the approximation \(v\left( \xi \right) \approx {\mathbf{H}}^{T} {\mathbf{h}}\) into (B.1) yields

$${\Pi }\left( {\mathbf{h}} \right) = {\mathbf{h}}^{T} \left( {\frac{1}{2}{\mathbf{kh}} - {\mathbf{f}}} \right)$$
(B.2)

with

$${\mathbf{k}} = \frac{8EI}{{L^{3} }}\mathop \int \limits_{ - 1}^{1} {\mathbf{H}}_{,\xi \xi } {\mathbf{H}}_{,\xi \xi }^{T} {\text{d}}\xi \;\;\;\;{\mathbf{f}} = - \frac{{q_{0} L}}{2}\mathop \int \limits_{ - 1}^{1} e^{\xi + 1} {\mathbf{H}}{\text{d}}\xi .$$
(B.3)

The discrete form of the equations that govern the response of the beam bending is given by the stationary condition of \({\Pi }\) with respect to \({\mathbf{h}}\):

$$\frac{{\partial {\Pi }}}{{\partial {\mathbf{h}}}} = \textbf{0} \;\; \Rightarrow \;\; {\mathbf{kh}} = {\mathbf{f}}.$$
(B.4)

2.2 Plate bending

In the nondimensional coordinates \(\xi = 2x/a - 1\) and \(\eta = 2y/b - 1\), the potential energy (52) reads

$${\Pi }\left( w \right) = \mathop \int \limits_{ - 1}^{1} \mathop \int \limits_{ - 1}^{1} \left\{ {\frac{2D}{{ab}}\left[ {\frac{{b^{2} }}{{a^{2} }}w_{,\xi \xi }^{2} + 2\nu w_{,\xi \xi } w_{,\eta \eta } + \frac{{a^{2} }}{{b^{2} }}w_{,\eta \eta }^{2} + 2\left( {1 - \nu } \right)w_{,\xi \eta }^{2} } \right] + \frac{ab}{4}q_{0} w} \right\}{\text{d}}\xi {\text{d}}\eta .$$
(B.5)

Substitution of the approximation (55), now written as \(w\left( {\xi ,\eta } \right) \approx {\mathbf{R}}^{{\text{T}}} {\mathbf{c}}\) in which \({\mathbf{R}}\) and \({\mathbf{c}}\) collect the Ritz basis functions and the unknown coefficients, into (B.5) gives

$${\Pi }\left( {\mathbf{c}} \right) = {\mathbf{c}}^{T} \left( {\frac{1}{2}{\mathbf{kc}} - {\mathbf{f}}} \right)$$
(B.6)

with

$$\begin{aligned} {\mathbf{k}} & = \frac{4D}{{ab}}\mathop \int \limits_{ - 1}^{1} \mathop \int \limits_{ - 1}^{1} \left[ {\frac{{b^{2} }}{{a^{2} }}{\mathbf{R}}_{,\xi \xi } {\mathbf{R}}_{,\xi \xi }^{T} + 2\nu {\mathbf{R}}_{,\xi \xi } {\mathbf{R}}_{,\eta \eta }^{T} + \frac{{a^{2} }}{{b^{2} }}{\mathbf{R}}_{,\eta \eta } {\mathbf{R}}_{,\eta \eta }^{T} + 2\left( {1 - \nu } \right){\mathbf{R}}_{,\xi \eta } {\mathbf{R}}_{,\xi \eta }^{T} } \right]d\xi {\text{d}}\eta \\ {\mathbf{f}} & = - \frac{ab}{4}\mathop \int \limits_{ - 1}^{1} \mathop \int \limits_{ - 1}^{1} q_{0} {\mathbf{R}}d\xi {\text{d}}\eta . \\ \end{aligned}$$
(B.7)

The discrete form of the equations that govern the response of the plate bending is

$$\frac{{\partial {\Pi }}}{{\partial {\mathbf{c}}}} = \textbf{0}\;\; \Rightarrow \;\; {\mathbf{kc}} = {\mathbf{f}}.$$
(B.8)

The Ritz basis can be expressed by means of the Kronecker product [38] as

$${\mathbf{R}}\left( {\xi ,\eta } \right) = {\mathbf{X}}\left( \xi \right) \otimes {\mathbf{Y}}\left( \eta \right),$$
(B.9)

retaining \(M\) and \(N\) shape functions in the sets \({\mathbf{X}}\) and \({\mathbf{Y}}\), respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, F.A.C., Lucena Neto, E. Hierarchic sets of shape functions constructed from enriched Fourier series. Acta Mech 235, 671–690 (2024). https://doi.org/10.1007/s00707-023-03767-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03767-0

Navigation