Skip to main content
Log in

Axisymmetric free vibration modeling of a functionally graded piezoelectric resonator by a double Legendre polynomial method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper presents a semi-analytical method, named the Double Legendre Polynomial Method (DLPM), which is extended for modeling the axisymmetric free vibration of a functionally graded piezoelectric (FGP) hollow cylinder resonator. The FGP resonator is composed of two-phase graded piezoelectric materials, Lead zirconate titanate (PZT4) and aluminum nitrid (AlN), on the top and bottom surfaces, respectively, where the material properties gradually change along the thickness direction. The integration of FGP materials with piezoelectric materials is an innovative aspect in material science, and this paper explores their dynamic behavior, providing insights into their mechanical and electrical properties and contributes to expand our understanding of the axisymmetric free vibration of FGP hollow cylinder resonators as a crucial factor for optimizing their performance across a wide range of applications, including sensors, actuators, energy harvesting, and structural health monitoring systems. The DLPM is applied to solve the wave governing differential equations of motion, offering a new tool for studying the dynamic behavior of FGP hollow cylinders under axisymmetric vibration. The study investigates the effects of the diameter-thickness ratio on the effective electromechanical coupling coefficient and the resonant and anti-resonant frequencies of the FGP hollow cylinder. The results show that as the diameter-thickness ratio increases, the frequency-diameter product appears to become more stable. This observation is a valuable insight for optimizing the design of these resonators. Furthermore, the study presents the electrical input admittance, the natural frequencies as well as the mechanical displacement and electric potential profiles of the resonator. All the provided results are based on the calculation of the resonant frequencies. The validity of the presented results was verified by the comparison with the existing ones reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yamanouchi, M., M. Koizumi, T. Hirai, and I. Shiota. "FGM-90. Proc. First International Symposium on Functionally Graded Materials." Tokyo, Japan: FGM Forum, 1990.

  2. Zhou, H., Han, K., Elmaimouni, L., Wang, X., Yu, J.: Double Legendre polynomial quadrature-free method for axisymmetric vibration of functionally graded piezoelectric circular plates. J. VIB. CONTROL (2023). https://doi.org/10.1177/10775463221149087

    Article  Google Scholar 

  3. Parashar, S.K., Sharma, P.: Modal analysis of shear-induced flexural vibration of FGPM beam using generalized differential quadrature method. Compos. Struct. 139, 222–232 (2016). https://doi.org/10.1016/j.compstruct.2015.12.012

    Article  Google Scholar 

  4. Sharma, T.K.: Free vibration analysis of functionally graded circular piezoelectric plate using COMSOL multiphysics. In AIP Conf Proc (Vol. 2220, No. 1, p. 080017). AIP Publishing LLC, (2020). https://doi.org/10.1063/5.0001899

  5. Wang, X., Liu, J., Hu, B., Li, Z., Zhang, B.: Wave propagation in porous functionally graded piezoelectric nanoshells resting on a viscoelastic foundation. Physica E Low Dimens. Syst. Nanostruct. (2023). https://doi.org/10.1016/j.physe.2022.115615

    Article  Google Scholar 

  6. Chen, W.Q., Ding, H.J.: On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mech. 153, 207–216 (2002). https://doi.org/10.1007/BF01177452

    Article  Google Scholar 

  7. Arefi, M., Rahimi, G.H.: Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity. Acta Mech. 223, 63–79 (2012). https://doi.org/10.1007/s00707-011-0536-5

    Article  MathSciNet  Google Scholar 

  8. Ueda, S.: A cracked functionally graded piezoelectric material strip under transient thermal loading. Acta Mech. 199, 53–70 (2008). https://doi.org/10.1007/s00707-007-0561-6

    Article  Google Scholar 

  9. Li, Z., Liu, J., Hu, B., et al.: Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation. Appl. Math. Mech.-Engl. Ed. 44, 35–52 (2023). https://doi.org/10.1007/s10483-023-2953-7

    Article  MathSciNet  Google Scholar 

  10. Cao, X., Shi, J., Jin, F.: Lamb wave propagation in the functionally graded piezoelectric–piezomagnetic material plate. Acta Mech. 223, 1081–1091 (2012). https://doi.org/10.1007/s00707-012-0612-5

    Article  MathSciNet  Google Scholar 

  11. Finot, M., Suresh, S.: Small and large deformation of thick and thin-film multi-layers: effects of layer geometry, plasticity and compositional gradients. J. Mech. Phys. Solids 44(5), 683–721 (1996). https://doi.org/10.1016/0022-5096(96)84548-0

    Article  ADS  CAS  Google Scholar 

  12. Chorsi, M.T.: Biosensing using Functionally Graded Piezoelectric MEMS Resonators. arXiv preprint arXiv:1705.08267, (2017). https://doi.org/10.48550/arXiv.1705.08267

  13. Attar, F., Khordad, R., Zarifi, A., Modabberasl, A.: Application of nonlocal modified couple stress to study of functionally graded piezoelectric plates. Physica B Condens. Matter 600, 412623 (2021). https://doi.org/10.1016/j.physb.2020.412623

    Article  CAS  Google Scholar 

  14. Chorsi, M.T., Azizi, S., Bakhtiari-Nejad, F.: Nonlinear dynamics of a functionally graded piezoelectric micro-resonator in the vicinity of the primary resonance. J VIB CONTROL 23(3), 400–413 (2017). https://doi.org/10.1177/1077546315580051

    Article  MathSciNet  CAS  Google Scholar 

  15. Azizi, S., Ghazavi, M.R., Rezazadeh, G., et al.: Thermo-elastic damping in a functionally graded piezoelectric micro-resonator. Int. J. Mech. Mater. Des. 11, 357–369 (2015). https://doi.org/10.1007/s10999-014-9285-7

    Article  Google Scholar 

  16. Liu, C.F., Chen, T.J., Chen, Y.J.: A modified axisymmetric finite element for the 3-D vibration analysis of piezoelectric laminated circular and annular plates. J. Sound Vib. 309(3–5), 794–804 (2008). https://doi.org/10.1016/j.jsv.2007.07.048

    Article  ADS  Google Scholar 

  17. Zhang, X., Xiong, Y., Pan, Y., Du, H., Liu, B.: Crushing stress and vibration fatigue-life optimization of a battery-pack system. Struct. Multidiscip. Optim. 66(3), 48 (2023). https://doi.org/10.1007/s00158-023-03510-2

    Article  Google Scholar 

  18. Sharma, P., Parashar, S.K.: Free vibration analysis of shear-induced flexural vibration of FGPM annular plate using generalized differential quadrature method. Compos. Struct. 155, 213–222 (2016). https://doi.org/10.1016/j.compstruct.2016.07.077

    Article  Google Scholar 

  19. Yas, M.H., Moloudi, N.: Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method. Appl. Math. Mech.-Engl. Ed. 36, 439–464 (2015). https://doi.org/10.1007/s10483-015-1923-9

    Article  MathSciNet  Google Scholar 

  20. Bai, X., Shi, H., Zhang, K., Zhang, X., Wu, Y.: Effect of the fit clearance between ceramic outer ring and steel pedestal on the sound radiation of full ceramic ball bearing system. J. Sound Vib. 529, 116967 (2022). https://doi.org/10.1016/j.jsv.2022.116967

    Article  Google Scholar 

  21. Hao, R.B., Lu, Z.Q., Ding, H., Chen, L.Q.: Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness: Experiment and analysis. Int. J. Mech. Sci. 222, 107237 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107237

    Article  Google Scholar 

  22. Yas, M.H., Jodaei, A., Irandoust, S., et al.: Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations. Meccanica 47, 1401–1423 (2012). https://doi.org/10.1007/s11012-011-9525-y

    Article  MathSciNet  Google Scholar 

  23. Luo, C., Wang, L., Xie, Y., Chen, B.: A new conjugate gradient method for moving force identification of vehicle–bridge system. J. Vib. Eng. Technol. (2022). https://doi.org/10.1007/s42417-022-00824-1

    Article  Google Scholar 

  24. Zhang, H.X., Wang, P.F., Yao, C.G., Chen, S.P., Cai, K.D., Shi, F.N.: Recent advances of ferro-/piezoelectric polarization effect for dendrite-free metal anodes. Rare Met. (2023). https://doi.org/10.1007/s12598-023-02319-8

    Article  Google Scholar 

  25. Lin, Y.C., Ma, C.C.: Experimental measurement and numerical analysis on resonant characteristics of piezoelectric disks with partial electrode designs. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(8), 937–947 (2004). https://doi.org/10.1109/TUFFC.2004.1324397

    Article  ADS  PubMed  Google Scholar 

  26. Liu, Y., Xu, K.D.: Millimeter-Wave Bandpass Filters Using On-Chip Dual-Mode Resonators in 0.13-$\mu $ m SiGe BiCMOS Technology. IEEE Trans. Microw. Theory Tech. (2023). https://doi.org/10.1109/TMTT.2023.3242317

    Article  Google Scholar 

  27. Chung, K.L., Tian, H., Wang, S., Feng, B., Lai, G.: Miniaturization of microwave planar circuits using composite microstrip/coplanar-waveguide transmission lines. Alex. Eng. J. 61(11), 8933–8942 (2022). https://doi.org/10.1016/j.aej.2022.02.027

    Article  Google Scholar 

  28. Othmani, C., Takali, F., Njeh, A., Ghozlen, M.H.B.: Numerical simulation of Lamb waves propagation in a functionally graded piezoelectric plate composed of GaAs-AlAs materials using Legendre polynomial approach. Optik 142, 401–411 (2017). https://doi.org/10.1016/j.ijleo.2017.05.099

    Article  ADS  CAS  Google Scholar 

  29. Raghib, R., Naciri, I., Khalfi, H., et al.: Vibration analysis of a multilayer functionally graded cylinder with effects of graded-index and boundary conditions. Acta Mech. (2023). https://doi.org/10.1007/s00707-023-03590-7

    Article  MathSciNet  Google Scholar 

  30. Wang, X.X., Yu, J.G., Zhang, B., et al.: Lamb waves propagating in functionally graded 1-D quasi-crystal couple stress nanoplates. Acta Mech. 233, 3021–3033 (2022). https://doi.org/10.1007/s00707-022-03274-8

    Article  MathSciNet  Google Scholar 

  31. Chen, C., Wu, X., Yuan, X., Zheng, X.: A new technique for the subdomain method in predicting electromagnetic performance of surface-mounted permanent magnet motors with shaped magnets and a quasi-regular polygon rotor core. IEEE Trans. Energy Convers. (2022). https://doi.org/10.1109/TEC.2022.3217042

    Article  Google Scholar 

  32. Muhammad, I., Ali, A., Zhou, L., Zhang, W., Wong, P.K.J.: Vacancy-engineered half-metallicity and magnetic anisotropy in CrSI semiconductor monolayer. J. Alloys Compd. 909, 164797 (2022). https://doi.org/10.1016/j.jallcom.2022.164797

    Article  CAS  Google Scholar 

  33. Han, X., Liu, G.R.: Effects of SH waves in a functionally graded plate. Mech. Res. Commun. 29(5), 327–338 (2002). https://doi.org/10.1016/S0093-6413(02)00316-6

    Article  Google Scholar 

  34. Kharouf, N., Heyliger, P.R.: Axisymmetric free vibrations of homogeneous and laminated piezoelectric cylinders. J. Sound Vib. 174(4), 539–561 (1994). https://doi.org/10.1006/jsvi.1994.1293

    Article  ADS  Google Scholar 

  35. Zhang, Y., Wu, Y., Wu, X., Xi, X., Wang, J.: A novel vibration mode testing method for cylindrical resonators based on microphones. Sensors 15(1), 1954–1963 (2015). https://doi.org/10.3390/s150101954

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Guo, N., Cawley, P., Hitchings, D.: The finite element analysis of the vibration characteristics of piezoelectric discs. J. sound vib. 159(1), 115–138 (1992). https://doi.org/10.1016/0022-460X(92)90454-6

    Article  ADS  Google Scholar 

  37. Huang, N., Chen, Q., Cai, G., Xu, D., Zhang, L., Zhao, W.: Fault diagnosis of bearing in wind turbine gearbox under actual operating conditions driven by limited data with noise labels. IEEE Trans. Instrum. Meas. 70, 1–10 (2020). https://doi.org/10.1109/TIM.2020.3025396

    Article  Google Scholar 

  38. Fu, Q., Luo, K., Song, Y., Zhang, M., Zhang, S., Zhan, J., Duan, J., Li, Y.: Study of sea fog environment polarization transmission characteristics. Appl. Sci. 12(17), 8892 (2022). https://doi.org/10.3390/app12178892

    Article  CAS  Google Scholar 

  39. Maradudin, A.A., Wallis, R.F., Mills, D.L., et al.: Vibrational edge modes in finite crystals. Phys. Rev. B 6(4), 1106 (1972). https://doi.org/10.1103/PhysRevB.6.1106

    Article  ADS  CAS  Google Scholar 

  40. Lefebvre, J.E., Zhang, V., Gazalet, J., et al.: Legendre polynomial approach for modeling free-ultrasonic waves in multilayered plates. J. Appl. Phys. 85(7), 3419–3427 (1999). https://doi.org/10.1063/1.369699

    Article  ADS  CAS  Google Scholar 

  41. Elmaimouni, L., Lefebvre, J.E., Zhang, V., et al.: A polynomial approach to the analysis of guided waves in anisotropic cylinders of infinite length. Wave Motion 42(2), 177–189 (2005). https://doi.org/10.1016/j.wavemoti.2005.01.005

    Article  ADS  Google Scholar 

  42. Othmani, C., Takali, F., Njeh, A.: Theoretical study on the dispersion curves of Lamb waves in piezoelectric-semiconductor sandwich plates GaAs-FGPM-AlAs: Legendre polynomial series expansion. Superlattices Microstruct. 106, 86–101 (2017). https://doi.org/10.1016/j.spmi.2017.03.036

    Article  ADS  CAS  Google Scholar 

  43. Gao, J., Lyu, Y., Zheng, M., Liu, M., Liu, H., Wu, B., He, C.: Modeling guided wave propagation in functionally graded plates by state-vector formalism and the Legendre polynomial method. Ultrasonics 99, 105953 (2019). https://doi.org/10.1016/j.ultras.2019.105953

    Article  CAS  PubMed  Google Scholar 

  44. Liu, H., Liu, S., Chen, X., Lyu, Y., Liu, Z.: Coupled Lamb waves propagation along the direction of non-principal symmetry axes in pre-stressed anisotropic composite lamina. Wave Motion 97, 102591 (2020). https://doi.org/10.1016/j.wavemoti.2020.102591

    Article  MathSciNet  Google Scholar 

  45. Othmani, C., Zhang, H., Lü, C.: Effects of initial stresses on guided wave propagation in multilayered PZT-4/PZT-5A composites: A polynomial expansion approach. Appl. Math. Model. 78, 148–168 (2020). https://doi.org/10.1016/j.apm.2019.10.017

    Article  MathSciNet  Google Scholar 

  46. Naciri, I., Khalfi, H., Raghib, R., Elmaimouni, L., Yu, J., Ratolojanahary, F.E.: Propagation modeling and guided waves in a ZnO piezoelectric planar resonator: open-circuit and short-circuit cases. Ferroelectr. 614(1), 219–232 (2023). https://doi.org/10.1080/00150193.2023.2227075

    Article  ADS  CAS  Google Scholar 

  47. Liu, C., Yu, J., Zhang, X., Zhang, B., Elmaimouni, L.: Reflection behavior of elastic waves in the functionally graded piezoelectric microstructures. Eur. J. Mech. A. Solids 81, 103955 (2020). https://doi.org/10.1016/j.euromechsol.2020.103955

    Article  ADS  MathSciNet  Google Scholar 

  48. Zheng, M., Ma, H., Lyu, Y., Chao, Lu., He, C.: Derivation of circumferential guided waves equations for a multilayered laminate composite hollow cylinder by state-vector and Legendre polynomial hybrid formalism. Compos. Struct. 255, 112950 (2021). https://doi.org/10.1016/j.compstruct.2020.112950

    Article  CAS  Google Scholar 

  49. Yu, J., Wang, X., Zhang, X., Li, Z., Li, F.: An analytical integration Legendre polynomial series approach for Lamb waves in fractional order thermoelastic multilayered plates. Math. Methods Appl. Sci. 45(12), 7631–7651 (2022). https://doi.org/10.1002/mma.8266

    Article  ADS  MathSciNet  Google Scholar 

  50. Elmaimouni, L., Lefebvre, J.E., Raherison, A., Ratolojanahary, F.E.: Acoustical guided waves in inhomogeneous cylindrical materials. Ferroelectr. 372(1), 115–123 (2008). https://doi.org/10.1080/00150190802382074

    Article  ADS  CAS  Google Scholar 

  51. Zhang, B., Yu, J.G., Zhang, X.M., et al.: Guided wave propagating in a 1-D hexagonal piezoelectric quasi-crystal plate. Acta Mech. 232, 135–151 (2021). https://doi.org/10.1007/s00707-020-02811-7

    Article  MathSciNet  Google Scholar 

  52. Yu, J., Lefebvre, J.E., Guo, Y.Q.: Free-ultrasonic waves in multilayered piezoelectric plates: An improvement of the Legendre polynomial approach for multilayered structures with very dissimilar materials. Compos. B Eng. 51, 260–269 (2013). https://doi.org/10.1016/j.compositesb.2013.03.024

    Article  Google Scholar 

  53. Yu, J., Lefebvre, J.E., Guo, Y., Elmaimouni, L.: Wave propagation in the circumferential direction of general multilayered piezoelectric cylindrical plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Contro. 59(11), 2498–2508 (2012). https://doi.org/10.1109/TUFFC.2012.2482

    Article  Google Scholar 

  54. Xiao, S., Wang, Z., Wu, G., Guo, Y., Gao, G., Zhang, X., Cao, Y., Zhang, Y., Yu, J., Liu, P., Li, P.: The impact analysis of operational overvoltage on traction transformers for high-speed trains based on the improved capacitor network methodology. IEEE Trans. Transp. Electrif. (2023). https://doi.org/10.1109/TTE.2023.3283668

    Article  Google Scholar 

  55. Tian, H., Liu, J., Wang, Z., Xie, F., Cao, Z.: Characteristic analysis and circuit implementation of a novel fractional-order memristor-based clamping voltage drift. Fractal Fract. 7(1), 2 (2022). https://doi.org/10.3390/fractalfract7010002

    Article  Google Scholar 

  56. Elmaimouni, L., Lefebvre, J.E., Ratolojanahary, F.E., Yu, J.G., Rabotovao, P.M., Naciri, I., Gryba, T., Rguiti, M.: Polynomial approach for modeling a piezoelectric disc resonator partially covered with electrodes. Wave Motion 64, 79–91 (2016). https://doi.org/10.1016/j.wavemoti.2016.03.003

    Article  ADS  MathSciNet  Google Scholar 

  57. Naciri, I., Rguiti, A., Elmaimouni, L., Lefebvre, J.E., Ratolojanahary, F.E., Gryba, T.: Modeling of a Circular Ring MEMS Resonator with Voltage Excitation by Means of an Orthogonal Polynomial Method. Acta Acust United Acust 104(4), 553–560 (2018). https://doi.org/10.3813/AAA.919196

    Article  Google Scholar 

  58. Naciri, I., Rguiti, A., Elmaimouni, L., Lefebvre, J.E., Ratolojanahary, F.E., Yu, J.G., Belkassmi, Y., El Moussati, A.: Numerical modelling of vibration characteristics of a partially metallized micro electromechanical system resonator disc. Acta Acust United Acust 105(6), 1164–1172 (2019). https://doi.org/10.3813/AAA.919393

    Article  Google Scholar 

  59. Khalfi, H., Naciri, I., Raghib, R., Elmaimouni, L., Ratolojanahary, F.E., Yu, J., Belkassmi, Y.: Modeling of hollowcylinderpiezoelectricresonatorwithcurrent excitation by a double Legendre polynomial method. Ferroelectr. 606(1), 97–112 (2023). https://doi.org/10.1080/00150193.2023.2189828

    Article  ADS  CAS  Google Scholar 

  60. Falimiaramanana, D.J., et al.: Legendre Polynomial Modeling of a Piezoelectric Transformer. In: Saidi, R., El Bhiri, B., Maleh, Y., Mosallam, A., Essaaidi, M. (eds.) Advanced Technologies for Humanity, ICATH 2021. Lecture Notes on Data Engineering and Communications Technologies, Springer, Cham (2022)

    Google Scholar 

  61. Rabotovao, P.M., Ratolojanahary, F.E., Lefebvre, J.E., Raherison, A., Elmaimouni, L., Gryba, T., Yu, J.G.: Modeling of high contrast partially electroded resonators by means of a polynomial approach. J. Appl. Phys. 114(12), 124502 (2013). https://doi.org/10.1063/1.4821768

    Article  ADS  CAS  Google Scholar 

  62. Raherison, A., Lefebvre, J.E., Ratolojanahary, F.E., Elmaimouni, L., Gryba, T.: Two-dimensional Legendre polynomial modeling of composite bulk acoustic wave resonators. J. Appl. Phys. 108(10), 104904 (2010). https://doi.org/10.1063/1.3504611

    Article  ADS  CAS  Google Scholar 

  63. Raherison, A., Ratolojanahary, F.E., Lefebvre, J.E., Elmaimouni, L.: Legendre polynomial modeling of composite bulk acoustic wave resonators. J. Appl. Phys. 104(1), 014508 (2008). https://doi.org/10.1063/1.2953096

    Article  ADS  CAS  Google Scholar 

  64. Elmaimouni, L., Lefebvre, J.E., Ratolojanahary, F.E., Raherison, A., Bahani, B., Gryba, T.: Polynomial approach modeling of resonator piezoelectric disc. Key Eng. 482, 11–20 (2011)

    Article  Google Scholar 

  65. Auld, B.A.: Acoustic Fields and Waves in Solids. Krieger Publishing Company, Malabar, Florida (1990)

    Google Scholar 

  66. Lefebvre, J.E., Yu, J.G., Ratolojanahary, F.E., Elmaimouni, L., Xu, W.J., Gryba, T.: Mapped orthogonal functions method applied to acoustic waves-based devices. AIP Adv. 6(6), 065307 (2016). https://doi.org/10.1063/1.4953847

    Article  ADS  Google Scholar 

  67. Caraballo, S.: Thermo-mechanical beam element for analyzing stresses in functionally graded materials. (2011).

  68. Sharma, T.K., Bharadwaj, P., Kumar, J.: Free vibration analysis of functionally graded piezoelectric annular plate using comsol® 42 multiphysics software. AIP Conf. Proc. 2220(1), 080017 (2020). https://doi.org/10.47904/IJSKIT.10.1.2020.75-79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassna Khalfi.

Ethics declarations

Conflict of interest

The authors declare no competing of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The integral expression of the matrix in the above equation is:

$${A1}_{mnjk}={\overline{C} }_{11}^{l}4{a}^{2}\left({\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{{\partial }^{2}\overline{u}}{\partial {q }_{1}^{2}}{\pi }_{r}{\pi }_{z}+{\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{1}}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}-{q}_{3}^{l}\overline{u}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{1}}{\pi }_{r}{\pi }_{z}\right)+{\overline{C} }_{12}^{l}4{a}^{2}\left({q}_{1}+b\right){q}_{3}^{l}\overline{u}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}+{\overline{C} }_{55}^{l}4\left({\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{{\partial }^{2}\overline{u}}{\partial {q }_{3}^{2}}{\pi }_{r}{\pi }_{z}+{\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{3}}\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+{\left({q}_{1}+b\right)}^{2}\frac{\partial \overline{u}}{\partial {q }_{3}}\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{\pi }_{r}{\pi }_{z}\right)$$
$${A2}_{mnjk}={\overline{C} }_{13}^{l}4a\left({\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{{\partial }^{2}\overline{w}}{\partial {q }_{1}{\partial q}_{3}}{\pi }_{r}{\pi }_{z}+{\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{\partial \overline{w}}{\partial {q }_{3}}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}\right)+{\overline{C} }_{55}^{l}4a\left({\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{{\partial }^{2}\overline{w}}{\partial {q }_{1}\partial {q}_{3}}{\pi }_{r}{\pi }_{z}+{\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{\partial \overline{w}}{\partial {q }_{1}}\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+{\left({q}_{1}+b\right)}^{2}\frac{\partial \overline{w}}{\partial {q }_{1}}\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{\pi }_{r}{\pi }_{z}\right)$$
$${A3}_{mnjk}=\frac{{\overline{e} }_{31}^{l}}{{\beta }^{l}}4a\left({\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{{\partial }^{2}\varphi }{\partial {q}_{1}\partial {q}_{3}}{\pi }_{r}{\pi }_{z}+{\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{\partial \varphi }{\partial {q}_{3}}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}\right)+\frac{{\overline{e} }_{15}^{l}}{{\beta }^{l}}4a\left({\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{{\partial }^{2}\varphi }{\partial {q}_{1}\partial {q}_{3}}{\pi }_{r}{\pi }_{z}+{\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\frac{\partial \varphi }{\partial {q}_{1}}\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+{\left({q}_{1}+b\right)}^{2}\frac{\partial \varphi }{\partial {q}_{1}}\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{\pi }_{r}{\pi }_{z}\right)$$
$$\begin{aligned}{B1}_{mnjk}&={\overline{C} }_{55}^{l}4a\left(\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\overline{u}}{\partial {q }_{1}\partial {q}_{3}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{3}}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}+{q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{3}}{\pi }_{r}{\pi }_{z}\right)\\ &\quad +{\overline{C} }_{13}^{l}4a\left(\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\overline{u}}{\partial {q }_{1}{\partial q}_{3}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{1}}\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+\left({q}_{1}+b\right)\frac{\partial \overline{u}}{\partial {q }_{1}}\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{\pi }_{r}{\pi }_{z}\right. \\ &\quad \left. +{q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{3}}{\pi }_{r}{\pi }_{z}+{q}_{3}^{l}\overline{u}\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+\overline{u}\frac{\partial {q }_{3}^{l}}{\partial {q}_{3}}{\pi }_{r}{\pi }_{z}\right)\end{aligned}$$
$${B2}_{mnjk}={\overline{C} }_{55}^{l}4{a}^{2}\left(\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\overline{w}}{\partial {q }_{1}^{2}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \overline{w}}{\partial {q }_{1}}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}+{q}_{3}^{l}\frac{\partial \overline{w}}{\partial {q }_{1}}{\pi }_{r}{\pi }_{z}\right)+{\overline{C} }_{33}^{l}4\left(\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\overline{w}}{\partial {q }_{3}^{2}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \overline{w}}{\partial {q }_{3}}\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+\left({q}_{1}+b\right)\frac{\partial \overline{w}}{\partial {q }_{3}}\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{\pi }_{r}{\pi }_{z}\right)$$
$${B3}_{mnjk}=\frac{{\overline{e} }_{15}^{l}}{{\beta }^{l}}4{a}^{2}\left(\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\varphi }{\partial {q}_{1}^{2}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \varphi }{\partial {q}_{1}}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}+{q}_{3}^{l}\frac{\partial \varphi }{\partial {q}_{1}}{\pi }_{r}{\pi }_{z}\right)+\frac{{\overline{e} }_{33}^{l}}{{\beta }^{l}}4\left(\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\varphi }{\partial {q}_{3}^{2}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \varphi }{\partial {q}_{3}}\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+\left({q}_{1}+b\right)\frac{\partial \varphi }{\partial {q}_{3}}\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{\pi }_{r}{\pi }_{z}\right)$$
$${C1}_{mnjk}={\overline{e} }_{15}^{l}4a{\beta }^{l}\left({q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{3}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\overline{u}}{\partial {q }_{1}\partial {q}_{3}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{3}}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}\right)+{\overline{e} }_{31}^{l}4a{\beta }^{l}\left(\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\overline{u}}{\partial {q }_{1}\partial {q}_{3}}{\pi }_{r}{\pi }_{z}+{q}_{3}^{l}\frac{\partial \overline{u}}{\partial {q }_{3}}{{\pi }_{r}\pi }_{z}\right)$$
$${C2}_{mnjk}={\overline{e} }_{15}^{l}4{a}^{2}{\beta }^{l}\left({q}_{3}^{l}\frac{\partial \overline{w}}{\partial {q }_{1}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\overline{w}}{\partial {q }_{1}^{2}}{\pi }_{r}{\pi }_{z}+{\left({q}_{1}+b\right)q}_{3}^{l}\frac{\partial \overline{w}}{\partial {q }_{1}}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}\right)+{\overline{e} }_{33}^{l}4{\beta }^{l}\left(\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\overline{w}}{\partial {q }_{3}^{2}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \overline{w}}{\partial {q }_{3}}\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+\left({q}_{1}+b\right)\frac{\partial \overline{w}}{\partial {q }_{3}}\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{\pi }_{r}{\pi }_{z}\right)$$
$${C3}_{mnjk}=-{\overline{\varepsilon }}_{11}^{l}4{a}^{2}\left({q}_{3}^{l}\frac{\partial \varphi }{\partial {q}_{1}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\varphi }{\partial {q}_{1}^{2}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \varphi }{\partial {q}_{1}}\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}\right)-{\overline{\varepsilon }}_{33}^{l}4\left(\left({q}_{1}+b\right){q}_{3}^{l}\frac{{\partial }^{2}\varphi }{\partial {q}_{3}^{2}}{\pi }_{r}{\pi }_{z}+\left({q}_{1}+b\right){q}_{3}^{l}\frac{\partial \varphi }{\partial {q}_{3}}\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+\left({q}_{1}+b\right)\frac{\partial \varphi }{\partial {q}_{3}}\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{\pi }_{r}{\pi }_{z}\right)$$
$${M1}_{mnjk}=-{\Omega }^{2}{\pi }^{2}{\left({q}_{1}+b\right)}^{2}{q}_{3}^{l}\overline{u}{\pi }_{r}{\pi }_{z}; {M2}_{mnjk}=-{\Omega }^{2}{\pi }^{2}\left({q}_{1}+b\right){q}_{3}^{l}\overline{w}{\pi }_{r}{\pi }_{z}$$
$${{g}_{1}}_{jk}=12{\overline{\varepsilon }}_{31}^{l}\frac{a}{{\beta }^{l}}{\left({q}_{1}+b\right)}^{2}{Q}_{j}^{*}\left({q}_{1}\right){Q}_{0}\left({q}_{1}\right){Q}_{k}^{*}\left({q}_{3}\right){q}_{3}^{l+2}{Q}_{0}\left({q}_{3}\right)\frac{\partial {\pi }_{r}}{\partial {q}_{1}}{\pi }_{z}$$
$${{g}_{2}}_{jk}=12{\overline{\varepsilon }}_{33}^{l}\frac{1}{{\beta }^{l}}\left({q}_{1}+b\right)\left({Q}_{j}^{*}\left({q}_{1}\right){Q}_{0}\left({q}_{1}\right){Q}_{k}^{*}\left({q}_{3}\right){q}_{3}^{l+2}{Q}_{0}\left({q}_{3}\right)\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+{Q}_{j}^{*}\left({q}_{1}\right){Q}_{0}\left({q}_{1}\right){Q}_{k}^{*}\left({q}_{3}\right)\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{Q}_{0}\left({q}_{3}\right){\pi }_{r}{\pi }_{z}+2{Q}_{j}^{*}\left({q}_{1}\right){Q}_{0}\left({q}_{1}\right){Q}_{k}^{*}\left({q}_{3}\right){q}_{3}^{l}{Q}_{0}\left({q}_{3}\right){\pi }_{r}{\pi }_{z}\right)$$
$${{g}_{3}}_{jk}=-12{\overline{\varepsilon }}_{33}^{l}\left({q}_{1}+b\right)\left({Q}_{j}^{*}\left({q}_{1}\right){Q}_{0}\left({q}_{1}\right){Q}_{k}^{*}\left({q}_{3}\right){q}_{3}^{l+2}{Q}_{0}\left({q}_{3}\right)\frac{\partial {\pi }_{z}}{\partial {q}_{3}}{\pi }_{r}+{Q}_{j}^{*}\left({q}_{1}\right){Q}_{0}\left({q}_{1}\right){Q}_{k}^{*}\left({q}_{3}\right)\frac{\partial {q}_{3}^{l}}{\partial {q}_{3}}{Q}_{0}\left({q}_{3}\right){\pi }_{r}{\pi }_{z}+2{Q}_{j}^{*}\left({q}_{1}\right){Q}_{0}\left({q}_{1}\right){Q}_{k}^{*}\left({q}_{3}\right){q}_{3}^{l+2}{Q}_{0}\left({q}_{3}\right){\pi }_{r}{\pi }_{z}\right)$$
$$\begin{aligned} {k12}_{m,n}^{\left(1\right)} &={\overline{e} }_{15}^{l}{\beta }^{l}a\left(\left(\frac{1}{b}{\int }_{-1}^{1}{Q}_{0}^{*}\left({q}_{1}\right){q}_{1}\frac{\partial {Q}_{m}\left({q}_{1}\right)}{\partial {q}_{1}}d{q}_{1}+{\int }_{-1}^{1}{Q}_{0}^{*}\left({q}_{1}\right)\frac{\partial {Q}_{m}\left({q}_{1}\right)}{\partial {q}_{1}}d{q}_{1}\right)\right. \\ &\quad +\left. \frac{1}{b}{\int }_{-1}^{1}{Q}_{0}^{*}\left({q}_{1}\right){Q}_{m}\left({q}_{1}\right)d{q}_{1}\right){\int }_{-1}^{1}{Q}_{0}^{*}\left({q}_{3}\right){q}_{3}^{l}{Q}_{n}\left({q}_{3}\right)d{q}_{3}\end{aligned}$$
$${k12}_{m,n}^{(2)}={\overline{e} }_{33}^{l}{\beta }^{l}\left(\left(\frac{1}{b}{\int }_{-1}^{1}{Q}_{0}^{*}\left({q}_{1}\right){q}_{1}{Q}_{m}\left({q}_{1}\right)d{q}_{1}+{\int }_{-1}^{1}{Q}_{0}^{*}\left({q}_{1}\right){Q}_{m}\left({q}_{1}\right)d{q}_{1}\right)\right){\int }_{-1}^{1}{Q}_{0}^{*}\left({q}_{3}\right){q}_{3}^{l}\frac{\partial {Q}_{n}\left({q}_{3}\right)}{\partial {q}_{3}}d{q}_{3}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalfi, H., Naciri, I., Raghib, R. et al. Axisymmetric free vibration modeling of a functionally graded piezoelectric resonator by a double Legendre polynomial method. Acta Mech 235, 615–631 (2024). https://doi.org/10.1007/s00707-023-03766-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03766-1

Navigation