Skip to main content
Log in

On the localised buckling of drillstrings in curved boreholes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A detailed assessment is made here of a recently proposed buckling model for a drillstring that remains in conformal contact with an axially toroidal borehole. Suitable rescaling of the relevant equations allows us to identify a particular regime of interest, which is subsequently explored in depth with a multiple-scale asymptotic strategy. In particular, the localisation phenomena previously reported in the literature are placed on firm ground and explained with the help of a small number of analytical formulae. Two new sets of qualitatively different solutions are also identified and discussed in detail. Our asymptotic predictions of the critical loads are shown to be in very good agreement with the direct numerical simulations of the corresponding linear bifurcation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Winkler, E.: Die Lehre von der Elasticität und Festigkeit. Verlag H. Dominikus, Prague (1967)

    Google Scholar 

  2. Fryba, L.: Vibration of Solids and Structures under Moving Loads, 3rd edn. Thomas Telford Ltd., London (1999)

    Google Scholar 

  3. Lamprea-Pineda, A.C., Connolly, D.P., Hussein, M.F.M.: Beams on elastic foundations: a review of railway applications and solutions. Transp. Geotech. 33, 100696 (2022)

    Google Scholar 

  4. Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 64, 491–498 (1964)

    Google Scholar 

  5. Allen, H.G.: Analysis and Design of Structural Sandwich Panels. Pergamon Press, Oxford (1969)

    Google Scholar 

  6. Hetenyi, M.: Beams on Elastic Foundation. The University of Michigan Press, Ann Arbor, MI (1946)

    Google Scholar 

  7. Selvadurai, A.E.: Elastic Analysis of Soil-Foundation Interaction. Elsevier, Amsterdam, The Netherlands (1979)

    Google Scholar 

  8. Stoker, J.J.: Nonlinear Elasticity. Gordon and Breach, New York (1968)

    Google Scholar 

  9. Amazigo, J.C., Budiansky, B., Carrier, G.F.: Asymptotic analysis of the buckling of imperfect columns on nonlinear elastic foundation. Int. J. Solids Struct. 6, 1341–1356 (1970)

    Google Scholar 

  10. Lange, C.G., Newell, A.C.: The post-buckling problem for thin elastic shells. J. SIAM Appl. Math. 21, 605–629 (1971)

    Google Scholar 

  11. Hunt, G.W., Wadee, M.K.: Comparative Lagrangian formulations for localized buckling. Proc. Royal Soc. Lond. A 434, 485–502 (1991)

    MathSciNet  Google Scholar 

  12. Hunt, G.W., Everall, P.R.: Arnold tongues and mode-jumping in the super-critical post-buckling of an archetypal elastic structure. Proc. Royal Soc. Lond. A 455, 125–140 (1998)

    Google Scholar 

  13. Budd, C.J., Hunt, G.W., Kuske, R.: Asymptotics of cellular buckling close to Maxwell load. Proc. Royal Soc. Lond. A 457, 2935–2964 (2001)

    MathSciNet  Google Scholar 

  14. Wadee, M.K., Coman, C.D., Bassom, A.P.: Solitary wave interaction phenomena in a strut buckling model incorporating restabilisation. Physica D 163, 26–48 (2002)

    MathSciNet  Google Scholar 

  15. Wadee, M.K., Bassom, A.P.: Unfolding of homoclinic and heteroclinic behaviour in a multiply-symmetric strut buckling problem. Q. J. Mech. Appl. Mech. 65, 141–160 (2011)

    MathSciNet  Google Scholar 

  16. Champneys, A.R., Hunt, G.W., Thompson, J.M.T.: Localization and Solitary Waves in Solid Mechanics. World Scientific, Singapore (1999)

    Google Scholar 

  17. Coullet, P., Elphick, C., Repaux, D.: Nature of spatial chaos. Phys. Rev. Lett. 58, 431–434 (1987)

    MathSciNet  Google Scholar 

  18. Dee, G.T., vam Sarloos, W.: Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett. 60, 2641–2644 (1988)

    Google Scholar 

  19. Swift, J.B., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Google Scholar 

  20. Lega, J., Moloney, J.V., Newell, A.C.: Swift-Hohenberg equation for lasers. Phys. Rev. Lett. 73, 2978–2981 (1994)

    Google Scholar 

  21. Manneville, P.: Instabilities. Chaos and Turbulence. Imperial College Press/World Scientific, Singapore (2004)

    Google Scholar 

  22. Lin, L., Adams, C.G.: Beams on a tensionless foundation. ASCE J. Eng. Mech. 113, 542–553 (1987)

    Google Scholar 

  23. McKenna, P.J., Walter, W.: Travelling waves in a suspension bridge. J. SIAM Appl. Math. 50, 703–715 (1990)

    MathSciNet  Google Scholar 

  24. Lazer, A.C., McKenna, P.J.: Large-amplitude oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32, 537–578 (1990)

    MathSciNet  Google Scholar 

  25. Kirchgässner, K.: Nonlinear resonant surface waves and homoclinic bifurcation. Adv. Appl. Mech. 26, 135–181 (1988)

    Google Scholar 

  26. Buffoni, B., Groves, M., Toland, J.F.: A plethora of capillary-gravity waves with near-critical Bond and Froude numbers. Philos. Transact. Royal Soc. Lond. A 354, 575–607 (1996)

    Google Scholar 

  27. Yang, T.-S., Akylas, T.R.: On asymmetric gravity-capillary solitary waves. J. Fluid Mech. 330, 215–232 (1997)

    Google Scholar 

  28. Steele, C.R.: Application of the WKB method in solid mechanics. In : Mechanics Today, Vol. 3, S. Nemat-Nasser (Ed.), 243–295. Pergamon Press: New York (1976)

  29. Luongo, A.: Mode localization in dynamics and buckling of linear imperfect continuous systems. Nonlinear Dyn. 25, 133–156 (2001)

    MathSciNet  Google Scholar 

  30. Luongo, A.: On the amplitude modulation and localization phenomena in interactive buckling problems. Int. J. Solids Struct. 27, 1943–1954 (1993)

    Google Scholar 

  31. Coman, C.D.: Secondary bifurcations and localisation in a three-dimensional buckling model. Z. Angew. Math. Phys. 55, 1050–1064 (2004)

    MathSciNet  Google Scholar 

  32. Freund, L.B., Suresh, S.: Thin Film Materials. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  33. Handge, U.A., Sokolov, I.M.: Blumen, a: modelling coatings under substrate compression. Phys. Rev. B 59, 8541–8550 (1999)

    Google Scholar 

  34. Coman, C.D.: Inhomogeneities and localised buckling patterns. IMA J. Appl. Math. 71, 133–152 (2006)

    MathSciNet  Google Scholar 

  35. Coman, C.D.: Localized elastic buckling: nonlinearities vs. inhomogeneities. IMA J. Appl. Math. 75, 461–474 (2010)

    MathSciNet  Google Scholar 

  36. Mitchell, R.F., Miska, S.Z.: Fundamentals of Drilling Engineering. Society for Petroleum Engineering, Richardson, TX (2010)

    Google Scholar 

  37. Aadnoy, B.S.: Mechanics of Drilling. Shaker Verlag, Aachen (2006)

    Google Scholar 

  38. Belayneh, M.: A Review of Buckling in Oil Wells. Shaker Verlag, Aachen (2006)

    Google Scholar 

  39. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability, 2nd edn. McGraw-Hill Book Company, New York (1961)

    Google Scholar 

  40. Leipholz, H.: Stability of Elastic Systems. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands (1980)

    Google Scholar 

  41. Atanackovic, T.M.: Stability Theory of Elastic Rods. World Scientific, Singapore (1997)

    Google Scholar 

  42. Paslay, P.R., Bogy, D.B.: The stability of a circular rod laterally constrained to be in contact with an inclined circular cylinder. ASME J. Appl. Mech. 31, 605–610 (1964)

    MathSciNet  Google Scholar 

  43. Musa, N., Gulyayev, V., Shlyun, N., Aldabas, H.: Critical buckling of drill strings in cylindrical cavities of inclined bore-holes. J. Mech. Eng. Autom. 6, 25–38 (2016)

    Google Scholar 

  44. Coman, C.D.: Lateral buckling of drillstrings revisited: localised “snaking”. Math. Mech. Solids (2023). https://doi.org//10.1177/1081286523116612

  45. Gulyayev, V.I., Gaidaichuk, V.V., Andrusenko, E.N., Shlyun, N.V.: Critical buckling of drill strings in curvilinear channels of directed bore-holes. J. Petrol. Sci. Eng. 129, 168–177 (2015)

    Google Scholar 

  46. Gulyayev, V.I., Shlyun, N.V.: Influence of friction on buckling of a drill string in the circular channel of a borehole. Pet. Sci. 13, 698–711 (2016)

    Google Scholar 

  47. Gulyayev, V., Glazunov, S., Glushakova, O., Vashchilina, E., Shevchuk, L., Shlyun, N., Andrusenko, E.: Modelling Emergency Situations in the Drilling of Deep Boreholes. Cambridge Scholars Publishing, Newcastle-upon-Tyne (2019)

    Google Scholar 

  48. Gheorghiu, C.I.: Spectral Methods for Non-Standard Eigenvalue Problems. Springer Nature B.V, New York (2014)

    Google Scholar 

  49. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications Inc., Mineola, NY (2000)

    Google Scholar 

  50. Coman, C.D., Bassom, A.P.: Singular perturbations and torsional wrinkling in a truncated hemispherical thin elastic shell. J. Elast. 150, 197–220 (2022)

    MathSciNet  Google Scholar 

  51. Coman, C.D., Bassom, A.P.: Wrinkling structures at the rim of an initially stretched circular thin plate subjected to transverse pressure. J. SIAM Appl. Math. 78, 1009–1029 (2018)

    MathSciNet  Google Scholar 

  52. Coman, C.D.: Oval cylindrical shells under asymmetric bending: a singular-perturbation solution. Z. Angew. Math. Phys. 69, 120 (2018)

    MathSciNet  Google Scholar 

  53. Coman, C.D.: Elastic instabilities caused by stress concentration. Int. J. Eng. Sci. 46, 877–890 (2008)

    MathSciNet  Google Scholar 

  54. Coman, C.D., Bassom, A.P.: Boundary layers and stress concentration in the circular shearing of thin films. Proc. Royal Soc. Lond. A 463, 3037–3053 (2007)

    MathSciNet  Google Scholar 

  55. Lebedev, N.N.: Special Functions and Their Applications. Dover Publications, Mineola, NY (2003)

    Google Scholar 

  56. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. Springer, Berlin (1999)

    Google Scholar 

  57. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. National Institute of Standards and Technology & Cambridge University Press, Cambridge, UK (2010)

    Google Scholar 

  58. Coman, C.D.: Asymptotic approximations for pure bending of thin cylindrical shells. Z. Angew. Math. Phys. 68, 82 (2017)

    MathSciNet  Google Scholar 

  59. Fedoryuk, M.V.: Asymptotic Analysis. Springer, Berlin (1993)

    Google Scholar 

  60. Cheng, H.: Advanced Analytic Methods in Applied Mathematics, Science, and Engineering. LuBan Press, Boston, MA (2007)

    Google Scholar 

  61. Coman, C.D.: Self-buckling of thin elastic shells: the case of a spherical equatorial segment. Z. Angew. Math. Phys. 73, 228 (2022)

    MathSciNet  Google Scholar 

  62. Coman, C.D.: Interactive boundary layers in a fourth-order ODE. (unpublished manuscript, 2023)

  63. Coman, C.D., Bassom, A.P.: Wrinkling of pre-stressed annular thin films under azimuthal shearing. Math. Mech. Solids 13, 513–531 (2008)

    MathSciNet  Google Scholar 

  64. Coman, C.D., Bassom, A.P.: On the wrinkling of a pres-stressed annular thin film in tension. J. Mech. Phys. Solids 55, 1601–1617 (2007)

    MathSciNet  Google Scholar 

  65. Fowkes, N.D., Mahony, J.J.: An Introduction to Mathematical Modelling. John Wiley & Sons, Chichester (1994)

    Google Scholar 

  66. Lin, C.C., Segel, L.A.: Mathematics Applied to Deterministic Problems in Natural Sciences. Society for Industrial and Applied Mathematics, Philladelphia (1988)

    Google Scholar 

  67. Dawson, R., Paslay, P.R.: Drillpipe buckling in inclined holes. J. Petrol. Technol. 36, 1734–1738 (1984)

    Google Scholar 

  68. Miska, S.Z.: Developments in Petroleum Engineering (vol. 1). Collected Works of Arthur Lubinski. Gulf Publishing Company, Houston, TX (1987)

  69. Gao, D.-L., Huang, W.-J.: A review of down-hole tubular string buckling in well engineering. Pet. Sci. 12, 443–457 (2015)

    Google Scholar 

  70. Mitchell, R.F.: Tubing buckling: the state of the art. SPE Dril Completion 23, 361–370 (2008)

    Google Scholar 

  71. Cunha, J.C.: Buckling of tubulars inside wellbores: a review of recent theoretical and experimental works. SPE Drill. Complet. 19, 13–19 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian D. Coman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coman, C.D. On the localised buckling of drillstrings in curved boreholes. Acta Mech 235, 369–390 (2024). https://doi.org/10.1007/s00707-023-03761-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03761-6

Navigation