Skip to main content
Log in

Analytical and numerical techniques for damage localization of rectangular plates using higher-order moments of inertia

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

A Correction to this article was published on 25 January 2024

This article has been updated

Abstract

A new analytical technique for damage shape/location detection of rectangular plates weakened by some holes using a suitable number of higher-order inertia depending on the number and the shape of the holes is presented. The technique is examined for three cases, namely a plate with a triangular hole, a plate with two triangular holes and a plate with a quadrilateral hole. It is shown that the higher-order moments of inertia evaluated by strain/stress fields of the plate can capture the geometrical specifications of the holes. The results, notably, show that seven moments of inertia for one triangular hole and thirteen moments of inertia for two triangular holes are needed to locate them inside a rectangular plate. A benchmark is developed to distinguish whether the plate weakened by one triangular cavity or more. Zero-order and first-order moments of inertia give us an initial estimate of how big the shape is and where it is located. Depending on how much and in which direction the cavity is spread, we may need higher-order moments of inertia to specify the cavity shape. For a general cavity shape, an infinite number of moments of inertia are required to characterize it uniquely. The final results show that by increasing the number/size of defects, the increase in the variation percentage for higher-order moments is more than that of lower ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Gravin, N., Lasserre, J., Pasechnik, D.V., Robins, S.: The inverse moment problem for convex polytopes. Discrete Comput. Geom. 48, 596–621 (2012). https://doi.org/10.1007/s00454-012-9426-4

    Article  MathSciNet  Google Scholar 

  2. Milanfar P., Putinar M., Varah J., Gustafsson B., and Golub G.: Shape reconstruction from moments: theory, algorithms, and applications. In: An invited paper appearing in the proceedings of SPIE conference 4116, advanced signal processing algorithms, architectures, and implementations X, San Diego (2000).

  3. Editors: Nobari, A.S., Ferri, Aliabadi, M.H.: Vibration-based techniques for damage detection and localization in engineering structures. In: World Scientific. Series: Computational and Experimental Methods in Structures; vol. 10 (2018)

  4. Pieczonka, L., Ambroziński, L., Staszewski, W.J., Barnoncel, D., Pérèsb, P.: Damage detection in composite panels based on mode-converted Lamb waves sensed using 3D laser scanning vibrometer. Opt. Lasers Eng. 99, 80–87 (2017)

    Article  Google Scholar 

  5. Tian, Z., Howden, S., Ma, Z., Xiao, W., Yu, L.: Pulsed laser-scanning laser Doppler vibrometer (PL-SLDV) phased arrays for damage detection in aluminum plates. Mech. Syst. Signal Process. 121, 158–170 (2019)

    Article  ADS  Google Scholar 

  6. Qiu, L., Liu, B., Yuan, S., Su, Z., Ren, Y.: A scanning spatial-wavenumber filter and PZT 2-D cruciform array based on line damage imaging method of composite structure. Sens. Actuator A Phys. 248, 62–72 (2016)

    Article  CAS  Google Scholar 

  7. Hu, H., Wu, C., Lu, W.J.: Damage detection of circular hollow cylinder using modal strain energy and scanning damage index methods. Comput. Struct. 89, 149–160 (2011)

    Article  Google Scholar 

  8. Hu, H., Wu, C.: Development of scanning damage index for the damage detection of plate structures using modal strain energy method. Mech. Syst. Signal Process. 23, 274–287 (2009)

    Article  ADS  Google Scholar 

  9. Xu, Y.F., Chen, D.-M., Zhu, W.D.: Damage identification of beam structures using free response shapes obtained by use of a continuously scanning laser Doppler vibrometer system. Mech. Syst. Signal Process. 92, 226–247 (2017)

    Article  ADS  Google Scholar 

  10. Chen, D.-M., Xu, Y.F., Zhu, W.D.: Identification of damage in plates using full-field measurement with a continuously scanning laser Doppler vibrometer system. J. Sound Vib. 422, 542–567 (2018)

    Article  ADS  Google Scholar 

  11. Xu, Y.F., Chen, D.M., Zhu, W.D.: Modal parameter estimation using free response measured by a continuously scanning laser Doppler vibrometer system with application to structural damage identification. J. Sound Vib. 27, 115536 (2020)

    Article  Google Scholar 

  12. Khan, A.Z., Stanbridge, A.B., Ewins, D.J.: Detecting damage in vibrating structures with a scanning LDV. Opt. Lasers Eng. 32, 583–592 (2000)

    Article  Google Scholar 

  13. Jeon, J.Y., Kim, D., Park, G., Flynn, E., Kangand, T., Han, S.: 2D-wavelet wavenumber filtering for structural damage detection using full steady-state wave field laser scanning. NDT E Int. 116, 102343 (2020)

    Article  Google Scholar 

  14. Park, J., Lee, M.J., Jeon, J.Y., Jung, H.K., Park, G., Kang, T., Han, S.W.: Compressive sensing approaches for condition monitoring and Laser-scanning based damage visualization. Procedia Eng. 188, 80–87 (2017)

    Article  Google Scholar 

  15. Fomitchov, P.A., Kromin, A.K., Krishnaswamy, S., Achenbach, J.D.: Imaging of damage in sandwich composite structures using a scanning laser source technique. Compos. B Eng. 35, 557–562 (2004)

    Article  Google Scholar 

  16. Skarżyński, L., Tejchman, J.: Experimental investigations of damage evolution in concrete during bending by continuous micro-CT scanning. Mater Charact 154, 40–52 (2019)

    Article  Google Scholar 

  17. Khomenko, A., Karpenko, O., Koricho, E., Haq, M., Cloud, G.L., Udpa, L.: Theory and validation of optical transmission scanning for quantitative NDE of impact damage in GFRP composites. Compos. B Eng. 107, 182–191 (2016)

    Article  CAS  Google Scholar 

  18. Liu, H., Du, W., Yazdani Nezhad, H., Starr, A., Zhao, Y.: A dissection and enhancement technique for combined damage characterization in composite laminates using laser-line scanning thermography. Compos. Struct. 271, 114168 (2021)

    Article  CAS  Google Scholar 

  19. Kersemans, M., De Baere, I., Degrieck, J., Van Den Abeele, K., Pyl, L., Zastavnik, F., Sol, H., Van Paepegem, W.: Nondestructive damage assessment in fiber reinforced composites with the pulsed ultrasonic polar scan. Polym. Test. 34, 85–96 (2014)

    Article  CAS  Google Scholar 

  20. Soerjadi, R.: On the computation of the moments of a polygon, with some applications. Heron 16, 43–58 (1968)

    Google Scholar 

  21. Endo, B., Takahashi, H.: Various methods for measuring the geometrical properties of the long bone cross section with respect to mechanics. J. Anthrop. Soc. Nippon. 90, 1–16 (1982)

    Article  Google Scholar 

  22. Zhu, S., Liu, H.: Finite element analysis of the three-dimensional crack and defects in piezoelectric materials under the electro-mechanical coupling field. J. Intell. Mater. Syst. Struct. 32, 15 (2021). https://doi.org/10.1177/1045389X20983884

    Article  Google Scholar 

  23. Zhu, S., Yu, H., Wu, X., Huang, C., Zhao, M., Guo, L.: Interaction integral method for crack-tip intensity factor evaluations of magneto-electro-elastic materials with residual strain. Eng. Fract. Mech. (2021). https://doi.org/10.1016/j.engfracmech.2021.108084

    Article  Google Scholar 

  24. Zhu, S., Yu, H., Hao, L., Huang, C., Shen, Z., Wang, J., Guo, L.: Influences of magneto-electro-elastic layer properties of piezoelectric/piezomagnetic composites on dynamic intensity factors. Appl. Math. Model. 120, 535–557 (2023). https://doi.org/10.1016/j.apm.2023.03.035

    Article  MathSciNet  Google Scholar 

  25. Zhu, S., Yu, H., Hao, L., Shen, Z., Wang, J., Guo, L.: Interaction integral method for thermal fracture of nonhomogeneous magneto-electro-elastic materials. Eur. J. Mech. A/Solids (2023). https://doi.org/10.1016/j.euromechsol.2022.104871

    Article  MathSciNet  Google Scholar 

  26. Zhu, S., Yu, H., Hao, L., Wang, B., Yang, Y., Huang, K., Li, Z., Guo, L.: Exploring the dynamic fracture performance of epoxy/cement based piezoelectric composites with complex interfaces. Compos. Struct. (2023). https://doi.org/10.1016/j.compstruct.2022.116497

  27. Zhu, S., Yu, H., Wang, B., Hao, L., Liu, S., Wang, J., Guo, L.: A Domain-independent interaction integral for dynamic fracture in nonhomogeneous magneto-electro-elastic materials. Eng. Fract. Mech. (2023). https://doi.org/10.1016/j.engfracmech.2023.109168

  28. http://paulbourke.net/geometry/polygonmesh/

  29. Spiegel, M.R., Lipshutz, S.: Schaum’s Outline Mathematical Handbook of Formulas and Tables, 5th edn. McGraw Hill (2017)

    Google Scholar 

  30. Bates, D.J., Sommese, A.J., Hauenstein, J.D., Wampler, C.W.: Numerically solving polynomial systems with Bertini. Society for Industrial and Applied Mathematics, Philadelphia (2013)

    Book  Google Scholar 

Download references

Funding

This research did receive no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza T. Faal.

Ethics declarations

Conflict of interest

The authors report that there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix A: derivation of Eq (6) using Eq. (3)

Employing Eq. (3), we have

$$\begin{aligned} M_{p,,0}^{1} & = - \frac{p!}{{\left( {p + 2} \right)!}}\left[ {\left( {\mathop \sum \limits_{i = 0}^{p} x_{2}^{i + 1} x_{0}^{p - i} - \mathop \sum \limits_{i = 0}^{p} x_{0}^{i} x_{1}^{p + 1 - i} } \right)y_{0} + \left( {\mathop \sum \limits_{i = 0}^{p} x_{0}^{i + 1} x_{1}^{p - i} } \right.} \right. \\ & \quad \left. {\left. { - \mathop \sum \limits_{i = 0}^{p} x_{1}^{i} x_{2}^{p + 1 - i} } \right)y_{1} + \left( {\mathop \sum \limits_{i = 0}^{p} x_{1}^{i + 1} x_{2}^{p - i} - \mathop \sum \limits_{i = 0}^{p} x_{2}^{i} x_{0}^{p + 1 - i} } \right)y_{2} } \right],\;p = 0,1, \ldots ,\infty \\ M_{0,q}^{1} & = - \frac{q!}{{\left( {q + 2} \right)!}}\left[ {\left( {\mathop \sum \limits_{j = 0}^{q} y_{0}^{j} y_{1}^{q + 1 - j} - \mathop \sum \limits_{j = 0}^{q} y_{2}^{j + 1} y_{0}^{q - j} } \right)x_{0} + \left( {\mathop \sum \limits_{j = 0}^{q} y_{1}^{j} y_{2}^{q + 1 - j} } \right.} \right. \\ & \quad \left. {\left. { - \mathop \sum \limits_{j = 0}^{q} y_{0}^{j + 1} y_{1}^{q - j} } \right)x_{1} + \left( {\mathop \sum \limits_{j = 0}^{q} y_{2}^{j} y_{0}^{q + 1 - j} - \mathop \sum \limits_{j = 0}^{q} y_{1}^{j + 1} y_{2}^{q - j} } \right)x_{2} } \right],q = 0,1, \ldots ,\infty . \\ \end{aligned}$$
(A.1)

Using the relation \(\sum_{i=0}^{p}{A}^{i+1}{B}^{p-i}=\sum_{i=0}^{p}{A}^{p+1-i}{B}^{i}\) in which, each \(A\) and \(B\) can be replaced with one of the variables \({x}_{0}, {x}_{1}, {x}_{2}, {y}_{0}, {y}_{1}, {y}_{2},\) Eq. (A.1) can be simplified as below

$$\begin{aligned} M_{p,0}^{1} & = - \frac{p!}{{\left( {p + 2} \right)!}}\left[ {y_{0} \mathop \sum \limits_{i = 0}^{p} \left( {x_{2}^{p + 1 - i} - x_{1}^{p + 1 - i} } \right)x_{0}^{i} + y_{1} } \right. \\ & \quad \left. { \times \mathop \sum \limits_{i = 0}^{p} \left( {x_{0}^{p + 1 - i} - x_{2}^{p + 1 - i} } \right)x_{1}^{i} + y_{2} \mathop \sum \limits_{i = 0}^{p} \left( {x_{1}^{p + 1 - i} - x_{0}^{p + 1 - i} } \right)x_{2}^{i} } \right],p = 0,1, \ldots ,\infty \\ M_{0,q}^{1} & = - \frac{q!}{{\left( {q + 2} \right)!}}\left[ {x_{0} \mathop \sum \limits_{j = 0}^{q} \left( {y_{1}^{q + 1 - j} - y_{2}^{q + 1 - j} } \right)y_{0}^{j} + x_{1} } \right. \\ & \quad \left. { \times \mathop \sum \limits_{j = 0}^{q} \left( {y_{2}^{q + 1 - j} - y_{0}^{q + 1 - j} } \right)y_{1}^{j} + x_{2} \mathop \sum \limits_{j = 0}^{q} \left( {y_{0}^{q + 1 - j} - y_{1}^{q + 1 - j} } \right)y_{2}^{j} } \right], \\ q & = 0,1, \ldots ,\infty \\ \end{aligned}$$
(A.2)

Making use of the relation \(\sum_{i=0}^{p}{(A}^{p+1-i}-{B}^{p+1-i}){C}^{i}=\left(A-B\right)\sum_{r+s+t=p}{C}^{r}{B}^{s}{A}^{t},\) in which, each of \(A,B\) and \(C\) can be replaced with one of the variables \({x}_{0},{x}_{1},{x}_{2},{y}_{0},{y}_{1},{y}_{2},\) Eq. (A.2) can be more simplified. In this relation, the counting numbers \(r,s,t\le p\) are chosen such that \(r+s+t=p.\) These relations can be proved by the mathematical induction. The summation \(\sum_{r+s+t=p}{x}_{0}^{r}{x}_{1}^{s}{x}_{2}^{t}\) runs over all monomials \({x}_{0}^{r}{x}_{1}^{s}{x}_{2}^{t},\) of degree \(p.\) Finally, employing the simplified form of Eq. (A.2) and viewing the first equation of (1) results in Eq. (6).

Appendix B

Since the coordinates \({x}_{0},{x}_{1},{x}_{2}\) and \({y}_{0},{y}_{1},{y}_{2}\) are the roots of Eq. (11), respectively, then

$$\begin{aligned} & x_{0}^{p} - X_{1} x_{0}^{p - 1} + X_{2} x_{0}^{p - 2} - X_{3} x_{0}^{p - 3} = 0 \\ & x_{1}^{p} - X_{1} x_{1}^{p - 1} + X_{2} x_{1}^{p - 2} - X_{3} x_{1}^{p - 3} = 0 \\ & x_{2}^{p} - X_{1} x_{2}^{p - 1} + X_{2} x_{2}^{p - 2} - X_{3} x_{3}^{p - 3} = 0 \\ & y_{0}^{p} - Y_{1} y_{0}^{p - 1} + Y_{2} y_{0}^{p - 2} - Y_{3} y_{0}^{p - 3} = 0 \\ & y_{1}^{p} - Y_{1} y_{1}^{p - 1} + Y_{2} y_{1}^{p - 2} - Y_{3} y_{1}^{p - 3} = 0 \\ & y_{2}^{p} - Y_{1} y_{2}^{p - 1} + Y_{2} y_{2}^{p - 2} - Y_{3} y_{3}^{p - 3} = 0 \\ \end{aligned}$$
(B.1)

Summing up the first and second triple sets of the above equations, we find

$$\begin{aligned} S_{p} & = X_{1} S_{p - 1} - X_{2} S_{p - 2} + X_{3} S_{p - 3} ,p \ge 3 \\ R_{p} & = Y_{1} R_{p - 1} - Y_{2} R_{p - 2} + Y_{3} R_{p - 3} \\ \end{aligned}$$
(B.2)

where \({S}_{p}={x}_{0}^{p}+{x}_{1}^{p}+{x}_{2}^{p}\) and \({R}_{p}={y}_{0}^{p}+{y}_{1}^{p}+{y}_{2}^{p}.\) Furthermore, \({S}_{0}=3,{S}_{1}={X}_{1},{S}_{2}={({X}_{1})}^{2}-2{X}_{2}\) and \({R}_{0}=3,{R}_{1}={Y}_{1},{R}_{2}={({Y}_{1})}^{2}-2{Y}_{2}.\) Also, we can easily prove that the set of variables \({x}_{1}{x}_{2}, {x}_{0}{x}_{2}, {x}_{0}{x}_{1}\) and \({y}_{1}{y}_{2}, {y}_{0}{y}_{2}, {y}_{0}{y}_{1}\) are the zeros of the equation \({z}^{3}-{X}_{2}{z}^{2}+{X}_{3}{X}_{1}z-{\left({X}_{3}\right)}^{2}=0,\) and \({w}^{3}-{Y}_{2}{w}^{2}+{Y}_{3}{Y}_{1}w-{\left({Y}_{3}\right)}^{2}=0,\), respectively. Therefore, by following up the similar procedure of obtaining Eq. (B.2), we have

$$\begin{aligned} D_{p} & = X_{2} D_{p - 1} - X_{3} X_{1} D_{p - 2} + \left( {X_{3} } \right)^{2} D_{p - 3} \\ E_{p} & = X_{2} E_{p - 1} - X_{3} X_{1} E_{p - 2} + \left( {X_{3} } \right)^{2} E_{p - 3} \\ \end{aligned}$$
(B.3)

where \({D}_{p}={x}_{0}^{p}{x}_{1}^{p}+{x}_{1}^{p}{x}_{2}^{p}+{x}_{0}^{p}{x}_{2}^{p}\) and \({E}_{p}={y}_{0}^{p}{y}_{1}^{p}+{y}_{1}^{p}{y}_{2}^{p}+{y}_{0}^{p}{y}_{2}^{p}.\) Furthermore, \({D}_{0}=3,{D}_{1}={X}_{2},{D}_{2}={\left({X}_{2}\right)}^{2}-2{X}_{3}{X}_{1}\) and \({E}_{0}=3,{E}_{1}={Y}_{2},{E}_{2}={\left({Y}_{2}\right)}^{2}-2{Y}_{3}{Y}_{1}.\) Using Eq. (B.2) and (B.3), we arrive at

$$\begin{aligned} S_{3} & = \left( {X_{1} } \right)^{3} - 3X_{1} X_{2} + 3X_{3} \\ S_{4} & = \left( {X_{1} } \right)^{4} - 4\left( {X_{1} } \right)^{2} X_{2} + 4X_{1} X_{3} + 2\left( {X_{2} } \right)^{2} \\ S_{5} & = \left( {X_{1} } \right)^{5} - 5\left( {X_{1} } \right)^{3} X_{2} + 5\left( {X_{1} } \right)^{2} X_{3} + 5X_{1} \left( {X_{2} } \right)^{2} - 5X_{2} X_{3} \\ S_{6} & = \left( {X_{1} } \right)^{6} - 6\left( {X_{1} } \right)^{4} X_{2} + 6\left( {X_{1} } \right)^{3} X_{3} + 9\left( {X_{1} X_{2} } \right)^{2} - 12X_{1} X_{2} X_{3} - 2\left( {X_{2} } \right)^{3} + 3\left( {X_{3} } \right)^{2} \\ D_{3} & = \left( {X_{2} } \right)^{3} - 3X_{2} X_{3} X_{1} + 3\left( {X_{3} } \right)^{2} \\ \end{aligned}$$
(B.4)

Some terms of Eq. (15) can be rewritten in terms of variables \({X}_{1},{X}_{2},{X}_{3}\) by use of relations (B.4) as follows

$$\begin{aligned} & x_{0}^{6} + x_{1}^{6} + x_{2}^{6} + x_{0}^{5} \left( {x_{1} + x_{2} } \right) + x_{1}^{5} \left( {x_{0} + x_{2} } \right) + x_{2}^{5} \left( { x_{0} + x_{1} } \right) \\ & \qquad + x_{0} x_{1} x_{2} \left( {x_{0} + x_{1} + x_{2} } \right)\left( {x_{0}^{2} + x_{1}^{2} + x_{2}^{2} } \right) + \left( {x_{0}^{2} + x_{1}^{2} } \right)x_{0}^{2} x_{1}^{2} \\ & \qquad + x_{0}^{2} x_{2}^{2} \left( { x_{0}^{2} + x_{2}^{2} } \right) + x_{1}^{2} x_{2}^{2} \left( {x_{1}^{2} + x_{2}^{2} } \right) + x_{0}^{3} x_{1}^{3} + x_{1}^{3} x_{2}^{3} + x_{0}^{3} x_{2}^{3} + x_{0}^{2} x_{1}^{2} x_{2}^{2} \\ &\quad = X_{1} S_{5} + X_{3} X_{1} S_{2} + S_{2} D_{2} + D_{3} - 2 \left( {X_{3} } \right)^{2} \\ &\quad = X_{1}^{6} - 5X_{1}^{4} X_{2} + 4X_{1}^{3} X_{3} + 6X_{1}^{2} X_{2}^{2} - 6X_{1} X_{2} X_{3} - X_{2}^{3} + X_{3}^{2} , \\ & \qquad + x_{0}^{2} x_{2}^{2} \left( { x_{0}^{2} + x_{2}^{2} } \right) + x_{1}^{2} x_{2}^{2} \left( {x_{1}^{2} + x_{2}^{2} } \right) + x_{0}^{3} x_{1}^{3} + x_{1}^{3} x_{2}^{3} + x_{0}^{3} x_{2}^{3} + x_{0}^{2} x_{1}^{2} x_{2}^{2} \\ &\quad = X_{1} S_{5} + X_{3} X_{1} S_{2} + S_{2} D_{2} + D_{3} - 2 \left( {X_{3} } \right)^{2} \\ &\quad = X_{1}^{6} - 5X_{1}^{4} X_{2} + 4X_{1}^{3} X_{3} + 6X_{1}^{2} X_{2}^{2} - 6X_{1} X_{2} X_{3} - X_{2}^{3} + X_{3}^{2} , \\ & x_{0}^{5} + x_{1}^{5} + x_{2}^{5} + x_{0}^{4} \left( {x_{1} + x_{2} } \right) + x_{1}^{4} \left( { x_{0} + x_{2} } \right) + x_{2}^{4} \left( { x_{0} + x_{1} } \right) \\ & \qquad + x_{0}^{3} \left( {x_{1}^{2} + x_{1} x_{2} + x_{2}^{2} } \right) + x_{1}^{3} \left( { x_{0}^{2} + x_{0} x_{2} + x_{2}^{2} } \right) + x_{2}^{3} \left( {x_{0}^{2} + x_{0} x_{1} + x_{1}^{2} } \right) \\ & \qquad + x_{0} x_{1} x_{2} \left( {x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{1} } \right) = X_{1} S_{4} + X_{3} S_{2} + S_{2} S_{3} - S_{5} + X_{3} D_{1} \\ &\quad = X_{1}^{5} - 4X_{1}^{3} X_{2} + 3X_{3} X_{1}^{2} + 3X_{1} X_{2}^{2} - 2 X_{3} X_{2} , \\ & x_{0}^{4} + x_{1}^{4} + x_{2}^{4} + x_{0}^{3} \left( {x_{1} + x_{2} } \right) + x_{1}^{3} \left( { x_{0} + x_{2} } \right) + x_{2}^{3} \left( {x_{0} + x_{1} } \right) \\ & \qquad + x_{0} x_{1} x_{2} \left( {x_{0} + x_{1} + x_{2} } \right) + x_{0}^{2} x_{1}^{2} + x_{1}^{2} x_{2}^{2} + x_{0}^{2} x_{2}^{2} = X_{1} S_{3} + X_{3} X_{1} + D_{2} \\ &\quad = X_{1}^{4} - 3X_{1}^{2} X_{2} + 2X_{3} X_{1} + X_{2}^{2} , \\ & x_{0}^{3} + x_{1}^{3} + x_{2}^{3} + x_{0}^{2} \left( {x_{1} + x_{2} } \right) + x_{1}^{2} \left( {x_{0} + x_{2} } \right) + x_{2}^{2} \left( { x_{0} + x_{1} } \right) + x_{0} x_{1} x_{2} \\ &\quad = X_{1} S_{2} + X_{3} = \left( {X_{1} } \right)^{3} - 2X_{1} X_{2} + X_{3} \\ \end{aligned}$$
(B.5)

Appendix C

$$\begin{aligned} C_{{30}} & = 2\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} + 1} \right)^{2} , \\ C_{{22}} & = - 3\left( {m_{{0,0}}^{1} } \right)^{2} \left( {m_{{0,0}}^{1} - 1} \right)\left( {m_{{0,0}}^{1} + 1} \right)^{2} , \\ C_{{21}} & = - 6\left( {m_{{0,0}}^{1} } \right)^{2} m_{{1,0}}^{t} \left[ {\left( {m_{{0,0}}^{1} } \right)^{2} ~ + ~4m_{{0,0}}^{1} ~ + ~3} \right], \\ C_{{20}} & = - 9\left( {m_{{0,0}}^{1} } \right)^{2} \left[ {4m_{{0,0}}^{1} \left( {m_{{0,0}}^{1} + 1} \right)m_{{2,0}}^{t} ~ - ~5m_{{0,0}}^{1} \left( {m_{{1,0}}^{t} } \right)^{2} - 3\left( {m_{{1,0}}^{t} } \right)^{2} } \right], \\ C_{{14}} & = 3m_{{0,0}}^{1} \left( {m_{{0,0}}^{1} + 1} \right)^{2} \left( {\left( {m_{{0,0}}^{1} } \right)^{2} + 1} \right), \\ C_{{13}} & = - 12m_{{0,0}}^{1} m_{{1,0}}^{t} [\left( {m_{{0,0}}^{1} } \right)^{3} + ~3\left( {m_{{0,0}}^{1} } \right)^{2} ~ + ~5m_{{0,0}}^{1} + ~3 \\ C_{{12}} & = 6m_{{0,0}}^{1} \left( {m_{{0,0}}^{1} + 1} \right)\left[ {2m_{{0,0}}^{1} \left( {2m_{{0,0}}^{1} - 3} \right)m_{{2,0}}^{t} + 9\left( {m_{{0,0}}^{1} + 3} \right)\left( {m_{{1,0}}^{t} } \right)^{2} } \right], \\ C_{{11}} & = 36m_{{0,0}}^{1} m_{{1,0}}^{t} \left[ {2m_{{0,0}}^{1} \left( {2m_{{0,0}}^{1} + 3} \right)m_{{2,0}}^{t} - 9\left( {m_{{0,0}}^{1} + 1} \right)\left( {m_{{1,0}}^{t} } \right)^{2} } \right], \\ C_{{10}} & = 3m_{{0,0}}^{1} \left\{ { - ~10m_{{4,0}}^{t} \left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} + 1} \right) + ~40\left( {m_{{0,0}}^{1} } \right)^{3} m_{{3,0}}^{t} m_{{1,0}}^{t} } \right. \\ & \quad \left. { + 24\left( {m_{{0,0}}^{1} + 3} \right)\left( {m_{{0,0}}^{1} } \right)^{2} \left( {m_{{2,0}}^{t} } \right)^{2} - 108m_{{0,0}}^{1} \left( {m_{{0,0}}^{1} + 1} \right)\left( {m_{{1,0}}^{t} } \right)^{2} m_{{2,0}}^{t} + 27\left( {2m_{{0,0}}^{1} + 3} \right)\left( {m_{{1,0}}^{t} } \right)^{4} } \right\}, \\ C_{{06}} & = - \left[ {\left( {m_{{0,0}}^{1} } \right)^{3} - ~1} \right]\left( {m_{{0,0}}^{1} + ~1} \right)^{2} , \\ C_{{05}} & = 6m_{{1,0}}^{t} \left[ {\left( {m_{{0,0}}^{1} } \right)^{4} + \left( {m_{{0,0}}^{1} } \right)^{3} - ~2\left( {m_{{0,0}}^{1} } \right)^{2} - ~5m_{{0,0}}^{1} - ~3} \right], \\ C_{{04}} & = 18\left( {m_{{1,0}}^{t} } \right)^{2} ~ - 3\left[ {\left( {m_{{0,0}}^{1} } \right)^{3} ~ + ~1} \right]\left[ {3\left( {m_{{1,0}}^{t} } \right)^{2} + 4m_{{0,0}}^{1} m_{{2,0}}^{t} } \right] \\ & - 18\left[ {\left( {m_{{0,0}}^{1} } \right)^{2} - 1} \right]\left[ {m_{{0,0}}^{1} m_{{2,0}}^{t} - 3\left( {m_{{1,0}}^{t} } \right)^{2} } \right] - 12\left( {m_{{0,0}}^{1} + 1} \right)\left[ {2m_{{0,0}}^{1} m_{{2,0}}^{t} - 15\left( {m_{{1,0}}^{t} } \right)^{2} } \right], \\ C_{{03}} & = 4\left( {m_{{0,0}}^{1} + 1} \right)\left[ { - 5m_{{3,0}}^{t} \left( {m_{{0,0}}^{1} } \right)^{3} + 54m_{{0,0}}^{1} m_{{2,0}}^{t} m_{{1,0}}^{t} - 135\left( {m_{{1,0}}^{t} } \right)^{3} } \right] \\ & \quad + 108\left( {m_{{0,0}}^{1} } \right)^{2} \left[ {m_{{0,0}}^{1} m_{{2,0}}^{t} m_{{1,0}}^{t} - \left( {m_{{1,0}}^{t} } \right)^{3} } \right], \\ C_{{02}} & = 3\left\{ {5\left( {m_{{0,0}}^{1} } \right)^{3} \left[ {1 - \left( {m_{{0,0}}^{1} } \right)^{2} } \right]m_{{4,0}}^{t} + 20\left( {m_{{0,0}}^{1} } \right)^{3} \left( {~m_{{0,0}}^{1} + 2} \right)m_{{3,0}}^{t} m_{{1,0}}^{t} } \right.~ \\ & \quad + 12\left( {m_{{0,0}}^{1} } \right)^{2} \left[ {\left( {m_{{0,0}}^{1} } \right)^{2} - 2m_{{0,0}}^{1} + ~3} \right]\left( {m_{{2,0}}^{t} } \right)^{2} - 54m_{{0,0}}^{1} \left[ {~\left( {m_{{0,0}}^{1} } \right)^{2} + 4m_{{0,0}}^{1} + 6} \right]\left( {m_{{1,0}}^{t} } \right)^{2} m_{{2,0}}^{t} \\ & \quad \left. { + 27\left[ {~\left( {m_{{0,0}}^{1} } \right)^{2} + 10m_{{0,0}}^{1} ~ + 15} \right]\left( {m_{{1,0}}^{t} } \right)^{4} } \right\}, \\ C_{{01}} & = 6\left\{ {\left( {m_{{0,0}}^{1} } \right)^{4} \left[ {7\left( {m_{{0,0}}^{1} + 1} \right)m_{{5,0}}^{t} - ~40m_{{3,0}}^{t} m_{{2,0}}^{t} } \right]} \right. \\ & \quad - ~15\left( {m_{{0,0}}^{1} } \right)^{3} \left[ {m_{{4,0}}^{t} m_{{1,0}}^{t} + 2\left( {m_{{1,0}}^{t} } \right)^{2} m_{{3,0}}^{t} } \right] + 36\left( {m_{{0,0}}^{1} } \right)^{2} \left( {m_{{0,0}}^{1} - 3} \right)m_{{1,0}}^{t} \left( {m_{{2,0}}^{t} } \right)^{2} ~ \\ & \quad \left. { + 108m_{{0,0}}^{1} \left( {m_{{0,0}}^{1} + 3} \right)\left( {m_{{1,0}}^{t} } \right)^{3} m_{{2,0}}^{t} ~ - ~81\left( {m_{{0,0}}^{1} + 3} \right)\left( {m_{{1,0}}^{t} } \right)^{5} } \right\}, \\ C_{{00}} & = - 9\left\{ {2~\left( {m_{{0,0}}^{1} } \right)^{4} \left( {7m_{{5,0}}^{t} m_{{1,0}}^{t} - 10m_{{4,0}}^{t} m_{{2,0}}^{t} } \right) + 3\left( {m_{{0,0}}^{1} } \right)^{3} \left[ { - 5m_{{4,0}}^{t} \left( {m_{{1,0}}^{t} } \right)^{2} + 16\left( {m_{{2,0}}^{t} } \right)^{3} } \right]} \right. \\ & \quad \left. { - ~108\left( {m_{{0,0}}^{1} } \right)^{2} \left( {m_{{1,0}}^{t} } \right)^{2} \left( {m_{{2,0}}^{t} } \right)^{2} + ~162m_{{0,0}}^{1} \left( {m_{{1,0}}^{t} } \right)^{4} m_{{2,0}}^{t} - ~81\left( {m_{{1,0}}^{t} } \right)^{6} } \right\}, \\ \end{aligned}$$
$$\begin{aligned} D_{{40}} & = \left( {m_{{0,0}}^{1} } \right)^{4} \left( {m_{{0,0}}^{1} ~ + ~1} \right)^{3} , \\ D_{{32}} & = - 6\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} ~ + ~1} \right)^{2} \left[ {\left( {m_{{0,0}}^{1} } \right)^{2} ~ - 1} \right], \\ D_{{31}} & = - 12\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} + ~1} \right)^{2} \left( {m_{{0,0}}^{1} + 3} \right)m_{{1,0}}^{1} , \\ D_{{30}} & = - 6\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} ~ + ~1} \right)\left[ {4\left( {\left( {m_{{0,0}}^{1} } \right)^{2} + m_{{0,0}}^{1} } \right)m_{{2,0}}^{t} - 3\left( {5m_{{0,0}}^{1} + 3} \right)\left( {m_{{1,0}}^{t} } \right)^{2} } \right], \\ D_{{24}} & = 3\left( {m_{{0,0}}^{1} } \right)^{2} \left( {m_{{0,0}}^{1} + ~1} \right)^{3} \left[ {\left( {m_{{0,0}}^{1} } \right)^{2} ~ - ~8m_{{0,0}}^{1} ~ + ~1} \right], \\ D_{{23}} & = 12\left( {m_{{0,0}}^{1} } \right)^{2} m_{{1,0}}^{t} \left( {m_{{0,0}}^{1} ~ + ~1} \right)^{2} \left[ {7\left( {m_{{0.0}}^{1} } \right)^{2} + ~14m_{{0,0}}^{1} - ~3} \right], \\ D_{{22}} & = - 6\left( {m_{{0,0}}^{1} } \right)^{2} \left( {m_{{0,0}}^{1} ~ + ~1} \right)\left\{ {3\left[ {25\left( {m_{{0,0}}^{1} } \right)^{2} + ~12m_{{0,0}}^{1} - 9} \right]\left( {m_{{1,0}}^{t} } \right)^{2} } \right. \\ & \quad \left. { + 2m_{{0,0}}^{1} \left[ { - ~10\left( {m_{{0,0}}^{1} } \right)^{2} - m_{{0,0}}^{1} + 9} \right]m_{{2,0}}^{t} } \right\}, \\ D_{{21}} & = 36\left( {m_{{0,0}}^{1} } \right)^{2} m_{{1,0}}^{t} \left\{ {3\left[ {\left( {m_{{0,0}}^{1} } \right)^{2} - 6m_{{0,0}}^{1} - 3} \right]\left( {m_{{1,0}}^{t} } \right)^{2} } \right. \\ & \quad \left. { + 2m_{{0.0}}^{1} \left[ {2\left( {m_{{0.0}}^{1} } \right)^{2} + 11m_{{0,0}}^{1} + 9} \right]m_{{2,0}}^{t} } \right\}, \\ D_{{20}} & = 3\left( {m_{{0,0}}^{1} } \right)^{2} \left\{ {9\left[ {6\left( {m_{{0,0}}^{1} } \right)^{2} + 39m_{{0,0}}^{1} + 9} \right]\left( {m_{{1,0}}^{t} } \right)^{4} + 24\left( {m_{{0,0}}^{1} } \right)^{2} [\left( {m_{{0,0}}^{1} } \right)^{2} + 4m_{{0,0}}^{1} } \right. \\ & \quad + 3]\left( {m_{{2,0}}^{t} } \right)^{2} - 36m_{{0,0}}^{1} \left[ {3\left( {m_{{0,0}}^{1} } \right)^{2} + 14m_{{0,0}}^{1} + 9} \right]\left( {m_{{1,0}}^{t} } \right)^{2} m_{{2,0}}^{t} - 10\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} + 1} \right)^{2} m_{{4,0}}^{t} \\ & \quad \left. { + 40\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} + 1} \right)m_{{3,0}}^{t} m_{{1,0}}^{t} } \right\}, \\ D_{{16}} & = - 2m_{{0,0}}^{1} \left( {m_{{0,0}}^{1} + 1} \right)^{3} \left( {m_{{0,0}}^{1} - 1} \right)\left[ {\left( {m_{{0,0}}^{1} } \right)^{2} - ~5m_{{0,0}}^{1} ~ + ~1} \right], \\ D_{{15}} & = - 12m_{{0,0}}^{1} m_{{1,0}}^{t} \left( {m_{{00}}^{1} + 1} \right)^{2} \left[ {3\left( {m_{{0,0}}^{1} } \right)^{3} + 2\left( {m_{{0,0}}^{1} } \right)^{2} - 12m_{{0,0}}^{1} ~ + ~3} \right], \\ D_{{14}} & = - 6m_{{00}}^{1} \left( {m_{{00}}^{1} ~ + ~1} \right)\left\{ {3\left[ { - ~7\left( {m_{{0,0}}^{1} } \right)^{3} + 32\left( {m_{{0,0}}^{1} } \right)^{2} + 30m_{{0,0}}^{1} - 15} \right]\left( {m_{{1,0}}^{t} } \right)^{2} } \right. \\ & \quad \left. { + 2m_{{0,0}}^{1} \left[ {2\left( {m_{{0,0}}^{1} } \right)^{3} - 21\left( {m_{{0,0}}^{1} } \right)^{2} - 20m_{{0,0}}^{1} + 3} \right]m_{{2,0}}^{t} } \right\}, \\ D_{{13}} & = 8m_{{0,0}}^{1} \left\{ {10\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} + 1} \right)^{2} m_{{3,0}}^{t} + 27\left[ {5\left( {m_{{0,0}}^{1} } \right)^{3} + 12\left( {m_{{0,0}}^{1} } \right)^{2} - 5} \right]\left( {m_{{1,0}}^{t} } \right)^{3} } \right. \\ & \quad \left. { - 18m_{{0,0}}^{1} \left[ {9\left( {m_{{0,0}}^{1} } \right)^{3} + 22\left( {m_{{0,0}}^{1} } \right)^{2} + 10m_{{0,0}}^{1} - 3} \right]m_{{2,0}}^{t} m_{{1,0}}^{t} } \right\}, \\ D_{{12}} & = - 6m_{{0,0}}^{1} \left\{ {25\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} + 1} \right)\left[ {1 - \left( {m_{{0,0}}^{1} } \right)^{2} } \right]m_{{4,0}}^{t} } \right. \\ & \quad + 20\left( {m_{{0,0}}^{1} } \right)^{3} \left( {5m_{{0,0}}^{1} + 1} \right)\left( {m_{{0,0}}^{1} + 1} \right)m_{{3,0}}^{t} m_{{1,0}}^{t} \\ & \quad + 12\left( {m_{{0,0}}^{1} } \right)^{2} \left[ {11\left( {m_{{0,0}}^{1} } \right)^{2} + 5\left( {m_{{0,0}}^{1} } \right)^{3} - 3m_{{0,0}}^{1} - 9} \right]\left( {m_{{2,0}}^{t} } \right)^{2} \\ & \quad + 18m_{{0,0}}^{1} \left[ { - ~53\left( {m_{{0,0}}^{1} } \right)^{2} - 15\left( {m_{{0,0}}^{1} } \right)^{3} - 18m_{{0,0}}^{1} + 18} \right]\left( {m_{{1,0}}^{t} } \right)^{2} m_{{2,0}}^{t} \\ & \quad \left. { + ~27\left[ {5\left( {m_{{0,0}}^{1} } \right)^{3} + 17\left( {m_{{0,0}}^{1} } \right)^{2} - 15m_{{0,0}}^{1} - ~15} \right]\left( {m_{{1,0}}^{t} } \right)^{4} } \right\}, \\ \end{aligned}$$
$$\begin{aligned} D_{{11}} & = - 36m_{{0,0}}^{1} m_{{1,0}}^{t} \{ 5\left( {m_{{0,0}}^{1} } \right)^{3} \left[ {\left( {m_{{0,0}}^{1} } \right)^{2} - 4m_{{0,0}}^{1} - 5} \right]m_{{4,0}}^{t} + 20\left( {m_{{0,0}}^{1} } \right)^{3} \left( {2 - m_{{0,0}}^{1} } \right)m_{{3,0}}^{t} m_{{1,0}}^{t} \\ & \quad + 12\left( {m_{{0,0}}^{1} } \right)^{2} \left[ { - \left( {m_{{0,0}}^{1} } \right)^{2} + 6m_{{0,0}}^{1} + 9} \right]\left( {m_{{2,0}}^{t} } \right)^{2} + 18m_{{0,0}}^{1} \left[ {3\left( {m_{{0,0}}^{1} } \right)^{2} - 8m_{{0,0}}^{1} - 6} \right]\left( {m_{{1,0}}^{t} } \right)^{2} m_{{2,0}}^{t} \\ & \quad + 9\left[ { - 3\left( {m_{{0,0}}^{1} } \right)^{2} + 18m_{{0,0}}^{1} + 9} \right]\left( {m_{{1,0}}^{t} } \right)^{4} \} , \\ D_{{10}} & = 18m_{{0,0}}^{1} \left\{ {20\left( {m_{{0,0}}^{1} } \right)^{4} \left[ {\left( {m_{{0,0}}^{1} + 1} \right)m_{{4,0}}^{t} m_{{2,0}}^{t} - ~4m_{{1,0}}^{t} m_{{2,0}}^{t} m_{{3,0}}^{t} } \right]} \right. \\ & \quad + ~324\left( {m_{{0,0}}^{1} } \right)^{2} \left( {m_{{0,0}}^{1} + 1} \right)\left( {m_{{1,0}}^{t} } \right)^{2} \left( {m_{{2,0}}^{t} } \right)^{2} \\ & \quad + 3\left( {m_{{0,0}}^{1} } \right)^{3} \left[ {60m_{{3,0}}^{t} \left( {m_{{1,0}}^{t} } \right)^{3} - 16\left( {m_{{0,0}}^{1} + 1} \right)\left( {m_{{2,0}}^{t} } \right)^{3} - 5\left( {3m_{{0,0}}^{1} + 5} \right)m_{{4,0}}^{t} \left( {m_{{1,0}}^{t} } \right)^{2} } \right] \\ & \quad \left. { - 54m_{{0,0}}^{1} \left( {11m_{{0,0}}^{1} + 3} \right)\left( {m_{{1,0}}^{t} } \right)^{4} m_{{2,0}}^{t} ~ + 81\left( {3m_{{0,0}}^{1} + 1} \right)\left( {m_{{1,0}}^{t} } \right)^{6} } \right\}, \\ D_{{08}} & = \left( {m_{{0,0}}^{1} ~ + ~1} \right)^{3} \left[ {\left( {m_{{0,0}}^{1} } \right)^{2} - m_{{0,0}}^{1} ~ + ~1} \right]^{2} , \\ D_{{07}} & = - 24m_{{1,0}}^{t} \left( {m_{{0,0}}^{1} ~ + ~1} \right)^{2} \left( {\left( {m_{{0,0}}^{1} } \right)^{2} - m_{{0,0}}^{1} + ~1} \right), \\ D_{{06}} & = 12\left( {m_{{0,0}}^{1} + ~1} \right)\left\{ {\left[ {9\left( {m_{{0,0}}^{1} } \right)^{3} + ~21} \right]\left( {m_{{1,0}}^{t} } \right)^{2} + m_{{0,0}}^{1} \left[ { - ~5\left( {m_{{0,0}}^{1} } \right)^{3} + 4m_{{0,0}}^{1} - 1} \right]m_{{2,0}}^{t} } \right\}, \\ D_{{05}} & = 72m_{{1,0}}^{t} \left( {m_{{0,0}}^{1} + ~1} \right)\{ m_{{0,0}}^{1} \left[ {4\left( {m_{{0,0}}^{1} } \right)^{3} + \left( {m_{{0,0}}^{1} } \right)^{2} - 9m_{{0,0}}^{1} + 3} \right]m_{{2,0}}^{t} \\ & \quad \left. { - 3\left[ {\left( {m_{{0,0}}^{1} } \right)^{3} + 7} \right]\left( {m_{{1,0}}^{t} } \right)^{2} } \right\}, \\ D_{{04}} & = \left\{ {120\left( {m_{{0,0}}^{1} } \right)^{3} \left[ {\left( {m_{{0,0}}^{1} } \right)^{3} + 1} \right]m_{{3,0}}^{t} m_{{1,0}}^{t} - ~30\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} + 1} \right)\left[ {\left( {m_{{0,0}}^{1} } \right)^{3} + 1} \right]m_{{4,0}}^{t} } \right. \\ & \quad + 162\left( {m_{{0,0}}^{1} + 1} \right)\left[ {\left( {m_{{0,0}}^{1} } \right)^{3} + 35} \right]\left( {m_{{1,0}}^{t} } \right)^{3} + 36\left( {m_{{0,0}}^{1} } \right)^{2} [2\left( {m_{{0,0}}^{1} } \right)^{4} ~ + 2\left( {m_{{0,0}}^{1} } \right)^{3} - 20\left( {m_{{0,0}}^{1} } \right)^{2} \\ & \quad - 17m_{{0,0}}^{1} + 3\left] {\left( {m_{{2,0}}^{t} } \right)^{2} + 108m_{{0,0}}^{1} } \right[24\left( {m_{{0,0}}^{1} } \right)^{2} - 5\left( {m_{{0,0}}^{1} } \right)^{3} - 15 + ~15m_{{0,0}}^{1} \\ & \quad \left. { - 3\left( {m_{{0,0}}^{1} } \right)^{4} ]\left( {m_{{1,0}}^{t} } \right)^{2} m_{{2,0}}^{t} } \right\}, \\ D_{{03}} & = 24\left\{ { - 20\left( {m_{{0,0}}^{1} } \right)^{5} m_{{3,0}}^{t} m_{{2,0}}^{t} - 20\left( {m_{{0,0}}^{1} } \right)^{4} m_{{3,0}}^{t} m_{{2,0}}^{t} - 60\left( {m_{{0,0}}^{1} } \right)^{3} m_{{3,0}}^{t} \left( {m_{{1,0}}^{t} } \right)^{2} } \right. \\ & \quad + 15\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{0,0}}^{1} + 1} \right)m_{{4,0}}^{t} m_{{1,0}}^{t} + 18\left( {m_{{0,0}}^{1} } \right)^{2} \left[ {10\left( {m_{{0,0}}^{1} } \right)^{2} + 10m_{{0,0}}^{1} - 3} \right]m_{{1,0}}^{t} \left( {m_{{2,0}}^{t} } \right)^{2} \\ & \quad \left. { + 54m_{{0,0}}^{1} \left[ { - 4\left( {m_{{0,0}}^{1} } \right)^{2} + 5} \right]\left( {m_{{1,0}}^{t} } \right)^{3} m_{{2,0}}^{t} - 567\left( {m_{{0,0}}^{1} + 1} \right)\left( {m_{{1,0}}^{t} } \right)^{5} } \right\}, \\ D_{{02}} & = 4\left\{ {\left( {m_{{0,0}}^{1} + 1} \right)[5103\left( {m_{{1,0}}^{t} } \right)^{6} - 3645m_{{0,0}}^{1} \left( {m_{{1,0}}^{t} } \right)^{4} m_{{2,0}}^{t} - 405\left( {m_{{0,0}}^{1} } \right)^{3} m_{{4,0}}^{t} \left( {m_{{1,0}}^{t} } \right)^{2} } \right. \\ & \quad \left. { + 225\left( {m_{{0,0}}^{1} } \right)^{4} m_{{4,0}}^{t} m_{{2,0}}^{t} ~ - 28\left( {m_{{0,0}}^{1} } \right)^{5} \left( {m_{{0,0}}^{1} + 1} \right)m_{{6,0}}^{t} + 100\left( {m_{{0,0}}^{1} } \right)^{5} \left( {m_{{3,0}}^{t} } \right)^{2} } \right] \\ & \quad + 972\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{1,0}}^{t} } \right)^{4} m_{{2,0}}^{t} + 1620\left( {m_{{0,0}}^{1} } \right)^{3} \left( {m_{{1,0}}^{t} } \right)^{3} m_{{3,0}}^{t} \\ & \quad + 162\left( {m_{{0,0}}^{1} } \right)^{2} \left[ {~ - 10\left( {m_{{0,0}}^{1} } \right)^{2} - 9m_{{0,0}}^{1} + 9} \right]\left( {m_{{1,0}}^{t} m_{{2,0}}^{t} } \right)^{2} \\ & \quad \left. { + 108\left( {m_{{0,0}}^{1} } \right)^{3} \left[ {2\left( {m_{{0,0}}^{1} } \right)^{2} - m_{{0,0}}^{1} - 3} \right]\left( {m_{{2,0}}^{t} } \right)^{3} + 180\left( {m_{{0,0}}^{1} } \right)^{4} \left( {1 + 2m_{{0,0}}^{1} } \right)m_{{1,0}}^{t} m_{{2,0}}^{t} m_{{3,0}}^{t} } \right\}, \\ \end{aligned}$$
$$\begin{aligned} D_{01} & = 24m_{1,0}^{t} \left\{ {\left( {m_{0,0}^{1} + 1} \right)\left[ {28\left( {m_{0,0}^{1} } \right)^{5} m_{6,0}^{t} - 729\left( {m_{1,0}^{t} } \right)^{6} + 135\left( {m_{0,0}^{1} } \right)^{3} m_{4,0}^{t} \left( {m_{1,0}^{t} } \right)^{2} } \right]} \right. \\ & \quad - 162\left( {4m_{0,0}^{1} + 3} \right)\left( {m_{0,0}^{1} } \right)^{2} \left( {m_{1,0}^{t} m_{2,0}^{t} } \right)^{2} - 45\left( {m_{0,0}^{1} } \right)^{4} \left( { 4m_{0,0}^{1} + 5} \right)m_{4,0}^{t} m_{2,0}^{t} \\ & \quad + 108\left( {2m_{0,0}^{1} + 3} \right)\left( {m_{0,0}^{1} } \right)^{3} \left( {m_{2,0}^{t} } \right)^{3} + 729m_{0,0}^{1} \left( {2m_{0,0}^{1} + 1} \right)\left( {m_{1,0}^{t} } \right)^{4} m_{2,0}^{t} \\ & \quad \left. { - 100\left( {m_{0,0}^{1} } \right)^{5} \left( {m_{3,0}^{t} } \right)^{2} + 360\left( {m_{0,0}^{1} } \right)^{4} m_{1,0}^{t} m_{2,0}^{t} m_{3,0}^{t} - 540\left( {m_{0,0}^{1} } \right)^{3} \left( {m_{1,0}^{t} } \right)^{3} m_{3,0}^{t} } \right\}, \\ D_{00} & = 9\left\{ {m_{0,0}^{1} [ - 27\left( {m_{1,0}^{t} } \right)^{4} + 5\left( {m_{0,0}^{1} } \right)^{3} m_{4,0}^{t} - 4\left( {m_{0,0}^{1} } \right)^{2} \left[ {3\left( {m_{2,0}^{t} } \right)^{2} + 5m_{1,0}^{t} m_{3,0}^{t} } \right]} \right. \\ & \quad + 54m_{0,0}^{1} \left( {m_{1,0}^{t} } \right)^{2} m_{2,0}^{t} ]^{2} + [5\left( {m_{0,0}^{1} } \right)^{3} m_{4,0}^{t} - 12\left( {m_{0,0}^{1} } \right)^{2} \left( {m_{2,0}^{t} } \right)^{2} + 54m_{0,0}^{1} \left( {m_{1,0}^{t} } \right)^{2} m_{2,0}^{t} \\ & \quad - 27\left( {m_{1,0}^{t} } \right)^{4} ]\left[ {5\left( {m_{0,0}^{1} } \right)^{3} m_{4,0}^{t} - 12\left( {m_{0,0}^{1} } \right)^{2} \left( {m_{2,0}^{t} } \right)^{2} + 126m_{0,0}^{1} \left( {m_{1,0}^{t} } \right)^{2} m_{2,0}^{t} - 27\left( {m_{1,0}^{t} } \right)^{4} } \right] \\ & \quad + 16m_{0,0}^{1} \left( {m_{1,0}^{t} } \right)^{2} \{ 27m_{2,0}^{t} \left[ {2\left( {m_{00}^{1} } \right)^{2} \left( {m_{2,0}^{t} } \right)^{2} - 15m_{0,0}^{1} \left( {m_{1,0}^{t} } \right)^{2} m_{2,0}^{t} + 9\left( {m_{1,0}^{t} } \right)^{4} } \right] \\ & \quad \left. { - 7\left( {m_{0,0}^{1} } \right)^{4} m_{6,0}^{t} } \right\} \\ \end{aligned}$$
(C.1)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teimoori, H., Faal, R.T. & Bagheri, M. Analytical and numerical techniques for damage localization of rectangular plates using higher-order moments of inertia. Acta Mech 235, 851–889 (2024). https://doi.org/10.1007/s00707-023-03750-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03750-9

Navigation