Skip to main content
Log in

Dynamic response of a piezoelectric quasicrystal rod with the generalized thermoelasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the generalized thermoelastic theory, the physical changes of a finite length rod, which is composed of one-dimensional (1D) hexagonal piezoelectric quasicrystals (PQCs) fixed on both sides and subjected to a moving heat source, are studied. The numerical solutions are obtained using the Laplace transform and its numerical inversion. The effects of displacement, stress, temperature and electric potential on velocity of moving heat source and time were studied. It can be seen from the distribution that the temperature, displacement, electric potential and stress of the rod all increase when the time increases, while the influence of the heat source velocity is opposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)

    Google Scholar 

  2. Levine, D., Steinhardt, P.J.: Quasicrystals. J. Non-cryst. Solids 75(1–3), 85–89 (1985)

    Google Scholar 

  3. Louzguine-Luzgin, D.V., Inoue, A.: Formation and properties of quasicrystals. Annu. Rev. Mater. Res. 38(1), 403–423 (2008)

    Google Scholar 

  4. Li, L.H., Liu, G.T.: Stroh formalism for icosahedral quasicrystal and its application. Phys. Lett. A 376(8), 987–990 (2012)

    Google Scholar 

  5. Li, X.F.: Elastohydrodynamic problems in quasicrystal elasticity theory and wave propagation. Philos. Mag. 93(13), 1500–1519 (2013)

    Google Scholar 

  6. Li, X.Y., Li, P.D., Wu, T.H., Shi, M.X., Zhu, Z.W.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A 378(10), 826–834 (2014)

    MathSciNet  Google Scholar 

  7. Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and its Applications. Science Press, Beijing (2011)

    Google Scholar 

  8. Hu, C.Z., Wang, R.H., Ding, D.H., Yang, W.G.: Piezoelectric effects in quasicrystals. Phys. Rev. B 56(5), 2463–2468 (1997)

    Google Scholar 

  9. Altay, G., Dömeci, M.C.: On the fundamental equations of piezoelasticity of quasicrystal media. Int. J. Solids Struct. 49(23–24), 3255–3262 (2012)

    Google Scholar 

  10. Guo, J.H., Zhang, Z.Y., Xing, Y.M.: Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Philos. Mag. 96(4), 349–369 (2016)

    Google Scholar 

  11. Zhou, Y.B., Li, X.F.: Two collinear mode-\(III\) cracks in one-dimensional hexagonal piezoelectric quasicrystal strip. Eng. Fract. Mech 189, 133–147 (2017)

    Google Scholar 

  12. Zhou, Y.B., Li, X.F.: A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals. Appl. Math. Model. 65, 148–163 (2019)

    MathSciNet  Google Scholar 

  13. Zhou, Y.B., Li, X.F.: Elasto-hydrodynamics of quasicrystals with a crack under sudden impacts. Philos. Mag. Lett. 1–18 (2019)

  14. Zhao, M.H., Dang, H.Y., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 1: theoretical solution. Eng. Fract. Mech. 179, 59–78 (2017)

    Google Scholar 

  15. Dang, H.Y., Zhao, M.H., Fan, C.Y., Chen, Z.T.: Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 2: numerical method. Eng. Fract. Mech. 180, 268–281 (2017)

    Google Scholar 

  16. Sun, T.Y., Guo, J.H., Zhan, X.Y.: Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect. Appl. Math. Mech. 39(3), 335–352 (2018)

    MathSciNet  Google Scholar 

  17. Zhou, Y.B., Li, X.F.: Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal. Philos. Mag. 98(19), 1780–1798 (2018)

    Google Scholar 

  18. Suo, Y.R., Zhou, Y.B., Liu, G.T.: Effect of T-stress on the fracture in an infinite two-dimensional decagonal quasicrystals of a cruciform crack with unequal arms. Int. J. Solids Struct. 232, 111181 (2021)

    Google Scholar 

  19. Zhao, Z.N., Guo, J.H.: Surface effects on a mode-\(III\) reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals. Appl. Math. Mech. 42(5), 625–640 (2021)

    MathSciNet  Google Scholar 

  20. Cheng, J.X., Liu, B.J., Huang, X.Z., Li, Z.X.: Anti-plane fracture analysis of 1D hexagonal piezoelectric quasicrystals with the effects of damage due to materials degradation. Theor. Appl. Fract. Mech. 113, 102939 (2021)

    Google Scholar 

  21. Huang, R.K., Ding, S.H., Zhang, X., Li, X.: Frictional contact problem of a rigid charged indenter on two dimensional hexagonal piezoelectric quasicrystals coating. Philos. Mag. 101(19), 2123–2156 (2021)

    Google Scholar 

  22. Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995)

    Google Scholar 

  23. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Google Scholar 

  24. Roy Choudhuri, S.K.: On A Thermoelastic Three-Phase-Lag Model. J Therm Stress 30(3), 231–238 (2007)

    Google Scholar 

  25. Guo, Z.Y., Hou, Q.W.: On a thermoelastic three-phase-lag model. J. Heat Transf. 132(7), 072403 (2010)

    Google Scholar 

  26. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Google Scholar 

  27. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Google Scholar 

  28. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    MathSciNet  Google Scholar 

  29. Hetnarski, R.B., Ignacza, J.: Greneralized thermoelasticity. J. Therm. Stress. 22(4–5), 451–476 (1999)

    Google Scholar 

  30. Abbas, I.A., Zenkour, A.M.: Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation Times. J. Comput. Theor. Nanosci. 11(2), 331–338 (2014)

    Google Scholar 

  31. Li, X.Y., Li, P.D.: Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A 376(26–27), 2004–2009 (2012)

    Google Scholar 

  32. Li, X.Y., Wang, T., Zheng, R.F., Kang, G.Z.: Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. Z. Angew. Math. Mech. 95(5), 457–468 (2013)

    MathSciNet  Google Scholar 

  33. Yang, L.Z., Li, Y., Gao, Y., Pan, E.N.: Three-dimensional exact thermo-elastic analysis of multilayered two-dimensional quasicrystal nanoplates. Appl. Math. Model. 63, 203–218 (2018)

    MathSciNet  Google Scholar 

  34. Chen, Z.T., Akbarzadeh, A.: Advanced Thermal Stress Analysis of Smart Materials and Structures. Springer International Publishing, Berlin (2020)

    Google Scholar 

  35. Li, C.L., Liu, Y.Y.: The physical property tensors of one-dimensional quasicrystals. Chin. Phys. 13(6), 924–931 (2004)

    Google Scholar 

  36. Rochal, S.B., Lorman, V.L.: Anisotropy of acoustic-phonon properties of an icosahedral quasicrystal at high temperature due to phonon-phason coupling. Phys. Rev. B Condens. 62(2), 874–879 (2000)

    Google Scholar 

  37. Ding, D.H., Yang, W.G., Hu, C.Z., Wang, R.H.: Generalized elasticity theory of quasicrystals. Phys. Rev. B 48(10), 7003–7010 (1993)

    Google Scholar 

  38. Li, X.F., Xie, L.Y., Fan, T.Y.: Elasticity and dislocations in quasicrystals with 18-fold symmetry. Phys. Rev. A 377(39), 2810–2814 (2013)

    MathSciNet  Google Scholar 

  39. Hu, C.Z., Wang, R.H., Ding, D.H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63(2000), 1–39 (2000)

    MathSciNet  Google Scholar 

  40. Fan, T.Y., Li, X.F., Sun, Y.F.: A moving screw dislocation in a one-dimensional hexagonal quasicrystal. Acta Phys. Sin-Ch Ed. 8(4), 288–295 (1999)

    Google Scholar 

  41. Babaei, M.H., Chen, Z.T.: Dynamic response of a thermopiezoelectric rod due to a moving heat source. Smart Mater. Struct. 18(2), 025003 (2009)

    Google Scholar 

  42. Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput. J. 17(4), 371–376 (1974)

    MathSciNet  Google Scholar 

  43. Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 10(1), 113–132 (1984)

    MathSciNet  Google Scholar 

  44. He, T.H., Cao, L., Li, S.R.: Dynamic response of a piezoelectric rod with thermal relaxation. J. Sound Vib. 306(3–5), 897–907 (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.11962026), the Natural Science Foundation of Inner Mongolia China (No. 2020LH01011), the Talent Development Fund Project of Inner Mongolia (No. 5909002123) and the Fundamental Research Funds for the Inner Mongolia Normal University (No. 2022JBQN076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Zhou.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The constants appearing in Eqs. (29)–(32) are

$$\begin{aligned} \begin{array}{l} g_{1}=\frac{R_{2}c_{1}}{C_{33}c_{2}},g_{2}=\frac{e_{33}^{2}L}{C_{33} \lambda _{33}},g_{3}=\frac{\gamma _{33}T_{0}}{C_{33}},g_{4}=\frac{\rho c_{1} ^{2}}{C_{33}},\\ h_{1}=\frac{R_{2}}{K_{1}},h_{2}=\frac{c_{1}}{c_{2}},h_{3}=\frac{e_{33}d_{33} L}{K_{1}\lambda _{33}},h_{4}=\frac{\rho c_{1}^{3}}{K_{1}c_{2}},\\ k_{1}=\frac{d_{33}c_{1}}{e_{33}c_{2}},k_{2}=\frac{p_{3}T_{0}}{e_{33}},\eta _{1}=\frac{\gamma _{33}}{\rho C_{E}},\eta _{2}=\frac{p_{3}e_{33}L}{\lambda _{33}\rho C_{E}}. \end{array} \end{aligned}$$
(A1)

The constants appearing in Eq. (40) are

$$\begin{aligned} \begin{array}{l} a=h_{3}\left( g_{1}k_{2}+g_{3}k_{1}\right) -h_{2}\left( g_{2}k_{2} -g_{3}L\right) ,b=h_{4}\left( g_{2}k_{2}-g_{3}L\right) ,\\ c=-h_{3}\left( g_{3}+k_{2}\right) +h_{1}\left( g_{2}k_{2}-g_{3}L\right) ,d=h_{3}k_{2}g_{4},\\ l_{1}=k_{2}+g_{3}+c\left( g_{1}k_{2}+g_{3}k_{1}\right) /a,l_{2}=g_{2} k_{2}-g_{3}L,\\ l_{3}=\left( \frac{\left( ad-bc\right) \left( g_{1}k_{2}+g_{3} k_{1}\right) }{a^{2}}-k_{2}g_{4}\right) s^{2},m_{1}=\frac{\left( cg_{1}+a\right) k_{2}}{asg_{3}\left( 1+\tau _{0}s\right) },\\ m_{2}=\frac{a+ck_{1}}{a}-\frac{sk_{2}\left[ a^{2}g_{4}-\left( ad-bc\right) g_{1}\right] }{a^{2}g_{3}\left( 1+\tau _{0}s\right) }-k_{2}\eta _{1},m_{3}=\frac{\left( ad-bc\right) k_{1}s^{2}}{a^{2}},\\ n_{1}=\frac{k_{2}g_{2}}{sg_{3}\left( 1+\tau _{0}s\right) },n_{2}=k_{2} \eta _{2}-L. \end{array} \end{aligned}$$
(A2)

The constants appearing in Eq. (45) are

$$\begin{aligned} \begin{array}{l} a_{1}=a_{2}=\frac{c}{a}+\frac{\left( ad-bc\right) s^{2}}{a^{2}\gamma _{1} ^{2}},a_{3}=a_{4}=\frac{c}{a}+\frac{\left( ad-bc\right) s^{2}}{a^{2} \gamma _{3}^{2}},a_{5}=\frac{c}{a}+\frac{\left( ad-bc\right) v^{2}}{a^{2}},\\ b_{1}=b_{2}=-\frac{\left( l_{1}+l_{3}/\gamma _{1}^{2}\right) }{l_{2}},b_{3}=b_{4}=-\frac{\left( l_{1}+l_{3}/\gamma _{3}^{2}\right) }{l_{2}},b_{5}=-\frac{l_{1}+l_{3}v^{2}/s^{2}}{l_{2}};\\ d_{1}=-d_{2}=-\frac{\gamma _{1}\left( 1+k_{1}a_{1}-Lb_{1}\right) }{k_{2} },d_{3}=-d_{4}=-\frac{\gamma _{3}\left( 1+k_{1}a_{3}-Lb_{3}\right) }{k_{2} },d_{5}=\frac{s\left( 1+k_{1}a_{5}-Lb_{5}\right) }{vk_{2}}. \end{array} \end{aligned}$$
(A3)

The Matrices appearing in Eq. (40) are

$$\begin{aligned} \textbf{M}&=\left[ \begin{array}{cccccccc} 1 &{} 1 &{} 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ \exp \left( \gamma _{1}L\right) &{} \exp \left( \gamma _{2}L\right) &{} \exp \left( \gamma _{3}L\right) &{} \exp \left( \gamma _{4}L\right) &{} 0 &{} 0 &{} 0 &{} 0\\ a_{1} &{} a_{2} &{} a_{3} &{} a_{4} &{} 0 &{} 1 &{} 0 &{} 0\\ a_{1}\exp \left( \gamma _{1}L\right) &{} a_{2}\exp \left( \gamma _{2}L\right) &{} a_{3}\exp \left( \gamma _{3}L\right) &{} a_{4}\exp \left( \gamma _{4}L\right) &{} L &{} 1 &{} 0 &{} 0\\ b_{1} &{} b_{2} &{} b_{3} &{} b_{4} &{} 0 &{} 0 &{} 0 &{} 1\\ b_{1}\exp \left( \gamma _{1}L\right) &{} b_{2}\exp \left( \gamma _{2}L\right) &{} b_{3}\exp \left( \gamma _{3}L\right) &{} b_{4}\exp \left( \gamma _{4}L\right) &{} 0 &{} 0 &{} L &{} 1\\ \Delta _{1} &{} \Delta _{2} &{} \Delta _{3} &{} \Delta _{4} &{} 0 &{} 0 &{} 0 &{} 0\\ \Lambda _{1}\exp \left( \gamma _{1}L\right) &{} \Lambda _{2}\exp \left( \gamma _{2}L\right) &{} \Lambda _{3}\exp \left( \gamma _{3}L\right) &{} \Lambda _{4} \exp \left( \gamma _{4}L\right) &{} 0 &{} 0 &{} 0 &{} 0 \end{array} \right] ,\nonumber \\ \textbf{U}&=\left[ \begin{array}{cccccccc} \alpha _{1}&\alpha _{2}&\alpha _{3}&\alpha _{4}&\mu _{1}&\mu _{2}&\mu _{3}&\mu _{4} \end{array} \right] ^{T},\nonumber \\ \textbf{V}&=\left\{ \begin{array}{c} \frac{u_{0}c_{1}\eta _{0}}{s}-\chi \\ \frac{u_{L}c_{1}\eta _{0}}{s}-\chi \exp \left( -\frac{sL}{v}\right) \\ \frac{w_{0}c_{2}\eta _{0}}{s}-a_{5}\chi \\ \frac{w_{L}c_{2}\eta _{0}}{s}-a_{5}\chi \exp \left( -\frac{sL}{v}\right) \\ \frac{c_{1}\eta _{0}\lambda _{33}\phi _{0}}{se_{33}L}-b_{5}\chi \\ \frac{c_{1}\eta _{0}\lambda _{33}\phi _{L}}{se_{33}L}-b_{5}\chi \exp \left( -\frac{sL}{v}\right) \\ \frac{\Theta _{0}}{sT_{0}}+\Delta _{5}\\ \frac{\Theta _{L}}{sT_{0}}+\Lambda _{5}\exp \left( -\frac{sL}{v}\right) \end{array} \right\} , \end{aligned}$$
(A4)

where \(\Delta _{i}=d_{i}\left( \delta _{10}+\delta _{20}\gamma _{i}\right) ,\Lambda _{i}=d_{i}\left( \delta _{1\,L}+\delta _{2\,L}\gamma _{i}\right) (i=1,2,3,4),\Delta _{5}=d_{5}\chi \left( \delta _{20}\frac{s}{v}-\delta _{10}\right) ,\Lambda _{5}=d_{5}\chi \left( \delta _{2\,L}\frac{s}{v}-\delta _{1\,L}\right) .\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, Y. Dynamic response of a piezoelectric quasicrystal rod with the generalized thermoelasticity. Acta Mech 235, 323–335 (2024). https://doi.org/10.1007/s00707-023-03747-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03747-4

Navigation