Skip to main content
Log in

Non-linear homogenization of Forchheimer law for porous media with cylindrical and spherical impervious inclusions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates, with the help of micromechanics, the overall nonlinear filtration law of a porous solid containing impervious inclusions. At the microscopic scale, we assume that the fluid flow in the porous region is described by the Forchheimer law. More specifically, the nonlinear variational homogenization approach is considered to derive closed-form bounds for the macroscopic filtration law, which is based on velocity or pressure gradient-dependent potentials applied to a unit cell with uniform boundary conditions. The approach is developed in the case of a porous solid with impervious cylinders or spheres, for which we derive explicit analytic upper and lower bounds, considering appropriate simple trial fields. The closed-form expressions of the non-linear bounds are provided and compared to FFT solutions for various microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aulisa, E., Bloshanskaya, L., Efendiev, Y., Ibragimov, A.: Upscaling of Nonlinear Forchheimer Flows (2013). arXiv:1303.4789

  2. Auriault, J.-L., Geindreau, C., Orgéas, L.: Upscaling Forchheimer law. Transp. Porous Media 70(2), 213–229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahloff, M., Mikelic, A., Wheeler, M.F.: Polynomial filtration law for low Reynolds number flows through porous media. Transp. Porous Media 81, 36–60 (2010)

    MathSciNet  Google Scholar 

  4. Bonnet, G.: Effective properties of elastic periodic composite media with fibers. J. Mech. Phys. Solids 55(5), 881–899 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Z., Lyons, S.L., Qin, G.: Derivation of the Forchheimer law via homogenization. Transp. Porous Med. 44, 325–335 (2001)

    Article  MathSciNet  Google Scholar 

  6. Chauveteau, G., Thirriot, C.: Régimes d’écoulement en milieu poreux et limite de la loi de Darcy. La Houille Blanche 2, 141–148 (1967)

    Article  Google Scholar 

  7. Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Victor Dalmond (1856)

  8. Eyre, D.J., Milton, G.W.: A fast numerical scheme for computing the response of composites using grid refinement. Eur. Phys. J.-Appl. Phys. 6(1), 41–47 (1999)

    Article  Google Scholar 

  9. Forchheimer, P.: Wasserbewegung durch Boden. VDIZ 45, 1782–1788 (1901)

    Google Scholar 

  10. Garibotti, C.R., Peszynska, M.: Upscaling Non-Darcy Flow. Transp. Porous Media 80, 401–430 (2009)

    Article  MathSciNet  Google Scholar 

  11. Giorgi, T.: Derivation of the Forchheimer law via matched asymptotic expansions. Transp. Porous Media 29, 191–206 (1997)

    Article  Google Scholar 

  12. Katz, D., Lee, R.L.: Natural Gas Engineering: Production and Storage. McGraw-Hill Economics Department (1990)

  13. Mei, C.C., Auriault, J.-L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Michel, J.C., Suquet, P.: The constitutive law of nonlinear viscous and porous materials. J. Mech. Phys. Solids 40(4), 783–812 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Michel, J.C., Moulinec, H., Suquet, P.: A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int. J. Numer. Meth. Eng. 52, 139–160 (2001)

    Article  Google Scholar 

  16. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam (1999)

    MATH  Google Scholar 

  17. Monchiet, V., Bonnet, G.: A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast. Int. J. Num. Meth. Eng. 89(11), 1419–1436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moulinec, H., Suquet, P.: A fast numerical method for computing the linear and nonlinear mechanical properties of composites. C. R. Acad. Sci. 318(11), 1417–1423 (1994)

    MATH  Google Scholar 

  19. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods. Appl. Mech. Eng. 157, 69–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nguyen, T.-K., Monchiet, V., Bonnet, G.: A Fourier based numerical method for computing the dynamic permeability of porous media. Eur. J. Mech. B/Fluids 37, 90–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ponte Castaneda, P.: The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39(1), 45–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ponte Castaneda, P., Suquet, P.: Nonlinear Composites, pp. 171–302. Elsevier, Amsterdam (1997)

    MATH  Google Scholar 

  23. Scheidegger, A.E.: The Physics of Flow Through Porous Media, 3rd edn. University of Toronto Press, Toronto (2020)

    MATH  Google Scholar 

  24. Schneider, M.: A review of nonlinear FFT-based computational homogenization methods. Acta Mech. 232(6), 2051–2100 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Skjetne, E., Thovert, J.-F., Adler, P.M.: High-Velocity Flow in Spatially Periodic Porous, pp. 9–82. Norwegian University of Science and Technology, Trondheim (1995)

    Google Scholar 

  26. Skjetne, E., Auriault, J.L.: New insights on steady, non-linear flow in porous media. Eur. J. Mech. B. Fluids 18(1), 131–145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tek, M.R., Coats, K.H., Katz, D.L.: The effect of turbulence on flow of natural gas through porous reservoirs. J. Petrol. Technol. 14(7), 799–806 (1962)

    Article  Google Scholar 

  28. To, V.T., To, Q.D., Monchiet, V.: On the Inertia Effects on the Darcy Law: Numerical Implementation and Confrontation of Micromechanics-Based Approaches. Transp. Porous Media 111, 171–191 (2016)

    Article  MathSciNet  Google Scholar 

  29. Venkataraman, P., Rama Mohan Rao, P.: Darcian, transitional, and turbulent flow through porous media. J. Hydrol. Eng. 124(8), 840–846 (1998)

    Article  Google Scholar 

  30. Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Media 25(1), 27–61 (1996)

    Article  Google Scholar 

  31. Willis, J.R.: The structure of overall constitutive relations for a class of nonlinear composites. IMA J. Appl. Math. 43(3), 231–242 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Willis, J.R.: On methods for bounding the overall properties of nonlinear composites. J. Mech. Phys. Solids 39(1), 73–86 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wodie, J.-C., Levy, T.: Correction non lineaire de la Loi de Darcy. C. R. Acad. Sci. Paris Serie II 312, 157–161 (1991)

    MATH  Google Scholar 

  34. Wu, Y.S.: Numerical simulation of single-phase and multiphase non-Darcy flow in porous and fractured reservoirs. Transp. Porous Media 49, 209–240 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Monchiet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Derivation of analytic bounds for the spherical inclusion

A Derivation of analytic bounds for the spherical inclusion

1.1 A.1 The lower bound

The values of \(\alpha ^{hom}\) and \(\gamma ^{hom}\) are given by (introducing the variable change \(u=a^3/r^3\)):

$$\begin{aligned} \alpha ^{hom}= & {} \frac{\alpha f}{2(1-f)^2}\int _{u=f}^{u=1}\int _{\varphi =0}^{\varphi =\pi }\frac{R(u)}{u^2}\sin (\varphi )dud\varphi \end{aligned}$$
(64)
$$\begin{aligned} \gamma ^{hom}= & {} \frac{\alpha f}{2(1-f)^3}\int _{u=f}^{u=1}\int _{\varphi =0}^{\varphi =\pi }\frac{R(u)^{3/2}}{u^2}\sin (\varphi )dud\varphi \end{aligned}$$
(65)

with:

$$\begin{aligned} R(u)=\frac{1}{4}[u^2+4u+4+3u(u-4)\cos ^2(\varphi )] \end{aligned}$$
(66)

The calculation of \(\gamma ^{hom}\) is performed by considering a Taylor expansion of \(R(u)^{3/2}\) at \(u=0\):

$$\begin{aligned} R(u)^{3/2}\simeq \frac{1}{8}\left[ 1+\frac{3}{2}(1-3\cos ^2(\varphi ))u+\frac{3}{8}(2-3\cos ^2(\varphi )+9\cos ^4(\varphi ))u^2\right] \end{aligned}$$
(67)

By keeping only the first two terms of the Taylor series, we obtain for \(\gamma ^{hom}\) the expression given in Eq. (43).

1.2 A.2 The upper bound

Considering the trial field (44) in Eq. (9), we obtain the following dual potential:

$$\begin{aligned} U_D^+({\varvec{J}})=\frac{\alpha ^3 f}{12\gamma ^2}\int _{u=f}^{u=1}\frac{P^*(u)}{u^2}du \end{aligned}$$
(68)

where \(P^*(u)\) is defined as:

$$\begin{aligned} P^*(u)=\frac{1}{2}\int _{\varphi =0}^{\varphi =\pi }\left\{ \Big [1+QR(u)^{1/2}\Big ]^{3/2}-\frac{3Q}{2}R(u)^{1/2}-1\right\} \sin (\varphi )d\varphi \end{aligned}$$
(69)

and the coefficient Q is given by:

$$\begin{aligned} Q=\frac{8\gamma J_3}{\alpha ^2(2+f)} \end{aligned}$$
(70)

Exact closed-form expression for \(U_D^+({\varvec{J}})\) cannot be derived and thus an approximation is needed. To this end, we use a Taylor series to approximate \(P^*(u)\):

$$\begin{aligned} P^*(u)=(1+Q)^{3/2}-\frac{3Q}{2}-1+\frac{9Q}{40}\left[ \frac{3+4Q}{3\sqrt{1+Q}}-1\right] u^2+O(u^4) \end{aligned}$$
(71)

which leads to the following expression for \(U_D^+({\varvec{J}})\):

$$\begin{aligned} U_D^+({\varvec{J}})=\frac{\alpha ^3(1-f)}{12\gamma ^2}\left\{ (1+Q)^{3/2}-\frac{3Q}{2}-1+f\frac{9Q}{40} \left[ \frac{3+4Q}{3\sqrt{1+Q}}-1\right] \right\} \end{aligned}$$
(72)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monchiet, V. Non-linear homogenization of Forchheimer law for porous media with cylindrical and spherical impervious inclusions. Acta Mech 234, 6607–6627 (2023). https://doi.org/10.1007/s00707-023-03732-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03732-x

Navigation