Skip to main content
Log in

Frictional sliding of cylindrical punch on gradient nanostructured material coating

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The object of this work was to describe the behavior of sliding friction on gradient nanostructured material coating by considering the material gradient and size effect. A multi-layer couple stress elasticity model is proposed to simulate gradient nanostructured material coating with arbitrarily varying modulus. The singular integral equation of second kind is obtained to describe the sliding friction problem for gradient nanostructured material coating indented by a cylindrical punch with the help of the Fourier integral transform technology and transfer matrix method. The Gauss-Jacobi quadrature formula is applied to solve the singular integral equation numerically. A parametric study for the influence of characteristic material length, friction coefficient, and material gradient is conducted to investigate the sliding frictional contact problem of gradient nanostructured material coating. The results provide a way to improve the mechanical response in frictional contact by using the gradient nanostructured material coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang, Y.T., Ekinci, K.L., Huang, X., Schiavone, L.M., Roukes, M.L., Zorman, C.A., Mehregany, M.: Monocrystalline silicon carbide nanoelectromechanical systems. Appl. Phys. Lett. 78(2), 162–164 (2001). https://doi.org/10.1063/1.1338959

    Article  Google Scholar 

  2. Liao, F., Girshick, S.L., Mook, W.M., Gerberich, W.W., Zachariah, M.R.: Superhard nanocrystalline silicon carbide films. Appl. Phys. Lett. 86(17), 171913 (2005). https://doi.org/10.1063/1.1920434

    Article  Google Scholar 

  3. Bei, P., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., Espionsa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3(10), 626–631 (2008). https://doi.org/10.1038/nnano.2008.211

    Article  Google Scholar 

  4. Dong, Q., Liu, W.K., Zheng, Q.: Concurrent quantum/continuum coupling analysis of nanostructures. Comput. Method. Appl. M. 197(41–42), 3291–3323 (2008). https://doi.org/10.1016/j.cma.2008.01.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Bisheh, H.K., Wu, N.: Analysis of wave propagation characteristics in piezoelectric cylindrical composite shells reinforced with carbon nanotubes. Int. J. Mech. Sci. 145, 200–220 (2018). https://doi.org/10.1016/j.ijmecsci.2018.07.002

    Article  Google Scholar 

  6. Bisheh, H.K., Wu, N.: Wave propagation in smart laminated composite cylindrical shells reinforced with carbon nanotubes in hygrothermal environments. Compos. Part B-Eng. 162, 219–241 (2019). https://doi.org/10.1016/j.compositesb.2018.10.064

    Article  Google Scholar 

  7. Lu, K.: Making strong nanomaterials ductile with gradients. Science 345(6203), 1455–1456 (2014). https://doi.org/10.1126/science.1255940

    Article  Google Scholar 

  8. Huang, S.Q., Tang, P.J., Hou, P.F., Zhang, W.H.: A method of coating analysis based on cylindrical indenter loading on coated structure. Acta Mech. 234(5), 2223–2267 (2023). https://doi.org/10.1007/s00707-022-03434-w

    Article  MathSciNet  MATH  Google Scholar 

  9. Çömez, İ: Frictional moving contact problem between a functionally graded monoclinic layer and a rigid punch of an arbitrary profile. Acta Mech. 233(4), 1435–1453 (2022). https://doi.org/10.1007/s00707-022-03178-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Yilmaz, K.B., Sabuncuoglu, B., Yildirim, B.: Investigation of stress distributions between a frictional rigid cylinder and laminated glass fiber composites. Acta Mech. 232, 4379–4403 (2021). https://doi.org/10.1007/s00707-021-03021-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Çömez, İ: Dynamic contact problem for a viscoelastic orthotropic coated isotropic half plane. Acta Mech. 233(12), 5241–5253 (2022). https://doi.org/10.1007/s00707-022-03366-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Z., Zhang, H., Feng, H., Yan, Z., Dong, P.: Effects of surface gradient nanostructuring on the fatigue behavior of the friction stir welded AlZnMgCu alloy. Mater. Lett. 252, 329–332 (2019). https://doi.org/10.1016/j.matlet.2019.05.120

    Article  Google Scholar 

  13. Liu, C., Liu, D., Zhang, X., Ao, N., Xu, X., Liu, D., Yang, J.: Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process. Int. J. Fatigue 125, 249–260 (2019). https://doi.org/10.1016/j.ijfatigue.2019.03.042

    Article  Google Scholar 

  14. Zhao, Y.Y., Liang, M.T., Liu, S.J., Zhang, W.H.: Enhanced fatigue property by fabricating a gradient nanostructured surface layer in a reduced-activation steel. Prog. Nat. Sci-Mater. 32, 385–391 (2022). https://doi.org/10.1016/j.pnsc.2022.03.009

    Article  Google Scholar 

  15. Wei, Y., Du, Y., Shu, S., Zhu, C.: Size effect characterization for nanostructured material in nanoindentation test. Mat. Res. Soc. Symp. Proc. 788, L8.2 (2003). https://doi.org/10.1557/PROC-788-L8.2

    Article  Google Scholar 

  16. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995). https://doi.org/10.1557/jmr.1995.0853

    Article  Google Scholar 

  17. Zhao, M., Slaughter, W.S., Li, M., Mao, S.X.: Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater. 51(15), 4461–4469 (2003). https://doi.org/10.1016/S1359-6454(03)00281-7

    Article  Google Scholar 

  18. Durst, K., Backes, B., Franke, O., Göken, M.: Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54(9), 2547–2555 (2006). https://doi.org/10.1016/j.actamat.2006.01.036

    Article  Google Scholar 

  19. Pharr, G.M., Herbert, E.G., Gao, Y.: The Indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40(1), 271–292 (2010). https://doi.org/10.1146/annurev-matsci-070909-104456

    Article  Google Scholar 

  20. Raineesh, K.P., Prasad, K.E.: Indentation size effect in magnesium single crystals of different crystallographic orientations. J. Mater. Res. 37(3), 728–736 (2022). https://doi.org/10.1557/s43578-021-00480-3

    Article  Google Scholar 

  21. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962). https://doi.org/10.1007/BF00253946

    Article  MathSciNet  MATH  Google Scholar 

  22. Zisis, T., Gourgiotis, P.A., Baxevanakis, K.P., Georgiadis, H.G.: Some basic contact problems in couple stress elasticity. Int. J. Solids Struct. 51(11–12), 2084–2095 (2014). https://doi.org/10.1016/j.ijsolstr.2014.02.016

    Article  Google Scholar 

  23. Zisis, T., Gourgiotis, P.A., Corso, F.D.: A contact problem in couple stress thermoelasticity: the indentation by a hot flat punch. Int. J. Solids Struct. 63, 226–239 (2015). https://doi.org/10.1016/j.ijsolstr.2015.03.002

    Article  Google Scholar 

  24. Gourgiotis, P., Zisis, T.: Two-dimensional indentation of microstructured solids characterized by couple-stress elasticity. J. Strain. Anal. Eng. 51(4), 318–331 (2016). https://doi.org/10.1177/0309324715611524

    Article  Google Scholar 

  25. Zisis, T., Gourgiotis, P.A., Georgiadis, H.G.: Contact mechanics in the framework of couple stress elasticity. Gener Models Non-Class Approach. Complex Mater. 2, 279–306 (2018). https://doi.org/10.1007/978-3-319-77504-3_14

    Article  Google Scholar 

  26. Zisis, T.: Burmister’s problem extended to a microstructured layer. J. Mech. Mater. Struct. 13(2), 203–223 (2018). https://doi.org/10.2140/jomms.2018.13.203

    Article  MathSciNet  Google Scholar 

  27. Karuriya, A.N., Bhandakkar, T.K.: Plane strain indentation on finite thickness bonded layer in couple stress elasticity. Int. J. Solids Struct. 108, 275–288 (2017). https://doi.org/10.1016/j.ijsolstr.2016.12.027

    Article  Google Scholar 

  28. Song, H.X., Ke, L.L., Wang, Y.S.: Sliding frictional contact analysis of an elastic solid with couple stresses. Int. J. Mech. Sci. 133, 804–816 (2017). https://doi.org/10.1016/j.ijmecsci.2017.09.037

    Article  Google Scholar 

  29. Çömez, I., El-Borgi, S.: Sliding frictional contact problem of a layer indented by a rigid punch in couple stress elasticity. Math. Mech. Solids 28(3), 730–747 (2023). https://doi.org/10.1177/10812865221080551

    Article  MathSciNet  Google Scholar 

  30. Çömez, İ, El-Borgi, S.: Frictional contact problem of a coated half plane pressed by a rigid punch with coupled stress elasticity. Arch. Appl. Mech. (2023). https://doi.org/10.1007/s00419-023-02452-x

    Article  Google Scholar 

  31. Song, H.X., Ke, L.L., Wang, Y.S., Jiang, H.: Two-dimensional frictionless contact of a coated half-plane based on couple stress theory. Int. J. Appl. Mech. 10(05), 1850049 (2018). https://doi.org/10.1142/s1758825118500497

    Article  Google Scholar 

  32. Gourgiotis, P.A., Zisis, T., Giannakopoulos, A.E., Georgiadis, H.G.: The Hertz contact problem in couple-stress elasticity. Int. J. Solids Struct. 168, 228–237 (2019). https://doi.org/10.1016/j.ijsolstr.2019.03.032

    Article  Google Scholar 

  33. Wang, Y., Zhang, X., Shen, H., Liu, J., Zhang, B.: Couple stress-based 3D contact of elastic films. Int. J. Solids Struct. 191, 449–463 (2020). https://doi.org/10.1016/j.ijsolstr.2020.01.005

    Article  Google Scholar 

  34. Peng, C., Zeng, F., Yuan, B., Wang, Y.: An approximate model to describe the size effects of spherical contact tests, based on a modified couple stress elasticity. Acta Mech. 232(11), 4363–4377 (2021). https://doi.org/10.1007/s00707-021-03054-w

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, P., Liu, T.J.: The size effect in adhesive contact on a gradient nanostructured coating. Nanotechnology 32(23), 235704 (2021). https://doi.org/10.1088/1361-6528/abe9e6

    Article  Google Scholar 

  36. Li, P., Liu, T.J.: Axisymmetric adhesive contact of multi-layer couple-stress elastic structures involving graded nanostructured materials. Appl. Math. Model. 111, 501–520 (2022). https://doi.org/10.1016/j.apm.2022.06.044

    Article  MathSciNet  MATH  Google Scholar 

  37. Wongviboonsin, W., Le, T.M., Lawongkerd, J., Gourgiotis, P.A., Rungamornrat, J.: Microstructural effects on the response of a multi-layered elastic substrate. Int. J. Solids Struct. 241, 111394 (2022). https://doi.org/10.1016/j.ijsolstr.2021.111394

    Article  Google Scholar 

  38. Wongviboonsin, W., Gourgiotis, P.A., Van, C.N., Limkatanyu, S., Rungamornrat, J.: Size effects in two-dimensional layered materials modeled by couple stress elasticity. Front. Struct. Civ. Eng. 15(2), 425–443 (2021). https://doi.org/10.1007/s11709-021-0707-y

    Article  Google Scholar 

  39. Nikolopoulos, S., Gourgiotis, P.A., Zisis, T.: Analysis of the tilted shallow wedge problem in couple-stress elasticity. J. Elasticity. 144(2), 205–221 (2021). https://doi.org/10.1007/s10659-021-09844-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Zisis, T.: Anti-plane loading of microstructured materials in the context of couple stress theory of elasticity: half-planes and layers. Arch. Appl. Mech. 88, 97–110 (2018). https://doi.org/10.1007/s00419-017-1277-2

    Article  Google Scholar 

  41. Krenk, S.: On quadrature formulas for singular integral equations of the first and the second kind. Q. Appl. Math. 33(3), 225–232 (1975). https://doi.org/10.1090/qam/448967

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the National Natural Science Foundation of China (Project no. 12062019) and by the Natural Science Foundation of Inner Mongolia (Project no. 2020MS01022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Jun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Liu, TJ. Frictional sliding of cylindrical punch on gradient nanostructured material coating. Acta Mech 234, 6589–6606 (2023). https://doi.org/10.1007/s00707-023-03725-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03725-w

Navigation