Skip to main content
Log in

Vibration and dynamic instability analyses of functionally graded porous doubly curved panels with piezoelectric layers in supersonic airflow

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present study, for the first time, investigates the vibration and flutter analyses of a doubly curved panel composed of functionally graded porous material contained by piezoelectric layers in supersonic flow. In this regard, the first-order piston theory for aerodynamic loading and Reddy’s third-order shear deformation theory for doubly curved panel analysis is used. The governing equations of motion are obtained using Hamilton’s principle and Maxwell’s equation. The Galerkin method is used to discretize the equations of motion. Three types of piezoelectric layers are used, in both open-circuit and closed-circuit electrical boundary conditions. The FG porous material with three types of porosity structure is investigated, including uniform distribution, X-shaped distribution, and V-shaped distribution. Also, the effect of the power of the FG porous material and the porosity coefficient on the frequencies and the flutter boundaries of spherical, cylindrical, doubly curved shell with \(R_{y} = - R_{x}\) and plate structures are investigated. The comparison of the spherical panel, doubly curved panel, cylindrical panel, and plate shows that the spherical panel has the highest and the plate has the lowest stability regions. Also, as the radius to length of the panel increases, the critical flutter aerodynamic pressure increases and the flutter frequency decreases. Furthermore, the effects of piezoelectricity, electrical and mechanical boundary conditions, geometric parameters, and the radii of curvatures on the flutter boundaries and flutter frequencies of FG porous doubly curved panels are investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Krumhaar, H.: Investigation of the accuracy of linear piston theory when applied to cylindrical shells. AIAA J. (1963). https://doi.org/10.2514/3.1832

    Article  Google Scholar 

  2. Dowell, E.H.: Panel flutter-a review of the aeroelastic stability of plates and shells. AIAA J. 8(3), 385–399 (1970). https://doi.org/10.2514/3.5680

    Article  Google Scholar 

  3. Pidaparti, R.: Flutter analysis of cantilevered curved composite panels. Compos. Struct. 25(1–4), 89–93 (1993). https://doi.org/10.1016/0263-8223(93)90154-I

    Article  Google Scholar 

  4. Cunningham, P.R., White, R.G., Aglietti, G.: The effects of various design parameters on the free vibration of doubly curved composite sandwich panels. J. Sound Vib. 230(3), 617–648 (2000). https://doi.org/10.1006/jsvi.1999.2632

    Article  Google Scholar 

  5. Kumar, L.R., Datta, P., Prabhakara, D.: Dynamic instability characteristics of laminated composite doubly curved panels subjected to partially distributed follower edge loading. Int. J. Solids Struct. 42(8), 2243–2264 (2005). https://doi.org/10.1142/S0219455405001507

    Article  MATH  Google Scholar 

  6. Zhang, W.W., Zeng, Y., Zang, C.A.: Supersonic flutter analysis based on a local piston theory. AIAA J. 47(10), 2321–2328 (2009). https://doi.org/10.2514/1.37750

    Article  Google Scholar 

  7. Oh, I.K., Kim, D.H.: Vibration characteristics and supersonic flutter of cylindrical composite panels with large thermoelastic deflections. Compos. Struct. 90(2), 208–216 (2009). https://doi.org/10.1016/j.compstruct.2009.03.012

    Article  Google Scholar 

  8. Haddadpour, H., Navazi, H., Shadmehri, F.: Nonlinear oscillations of a fluttering functionally graded plate. Compos. Struct. 79(2), 242–250 (2007). https://doi.org/10.1016/j.compstruct.2006.01.006

    Article  Google Scholar 

  9. Chorfi, S., Houmat, A.: Nonlinear free vibration of a moderately thick doubly curved shallow shell of elliptical plan-form. Int. J. Comput. Methods 6(04), 615–632 (2009). https://doi.org/10.1142/S0219876209002030

    Article  MathSciNet  MATH  Google Scholar 

  10. Hosseini, M., Fazelzadeh, S.: Aerothermoelastic post-critical and vibration analysis of temperature-dependent functionally graded panels. J. Therm. Stresses 33(12), 1188–1212 (2010). https://doi.org/10.1080/01495739.2010.510754

    Article  Google Scholar 

  11. Kiani, Y., Shakeri, M., Eslami, M.: Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation. Acta Mech. 223(6), 1199–1218 (2012). https://doi.org/10.1007/s00707-012-0629-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, F.M., Song, Z.G.: Aeroelastic flutter analysis for 2D Kirchhoff and Mindlin panels with different boundary conditions in supersonic airflow. Acta Mech. 225(12), 3339–3351 (2014). https://doi.org/10.1007/s00707-014-1141-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, H.S., Chen, X., Guo, L., Wu, L., Huang, X.L.: Nonlinear vibration of FGM doubly curved panels resting on elastic foundations in thermal environments. Aerosp. Sci. Technol. 47, 434–446 (2015). https://doi.org/10.1016/j.ast.2015.10.011

    Article  Google Scholar 

  14. Wattanasakulpong, N., Chaikittiratana, A.: An analytical investigation on free vibration of FGM doubly curved shallow shells with stiffeners under thermal environment. Aerosp. Sci. Technol. 40, 181–190 (2015). https://doi.org/10.1016/j.ast.2013.12.002

    Article  Google Scholar 

  15. Ganji, H.F., Dowell, E.H.: Panel flutter prediction in two-dimensional flow with enhanced piston theory. J. Fluids Struct. 63, 97–102 (2016). https://doi.org/10.1016/j.jfluidstructs.2016.03.003

    Article  Google Scholar 

  16. Grover, N., Singh, B., Maiti, D.: An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates. Aerosp. Sci. Technol. 52, 41–51 (2016). https://doi.org/10.1016/j.ast.2016.02.017

    Article  Google Scholar 

  17. MalekzadehFard, K., Shokrollahi, S.: Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading. Struct. Eng. Mech. 60(1), 1–19 (2016). https://doi.org/10.12989/sem.2016.60.1.001

    Article  Google Scholar 

  18. Sankar, A., Natarajan, S., Ben Zine, T., Ganapathi, M.: Investigation of supersonic flutter of thick doubly curved sandwich panels with CNT reinforced face sheets using higher-order structural theory. Compos. Struct. 127, 340–355 (2015). https://doi.org/10.1016/j.compstruct.2015.02.047

    Article  Google Scholar 

  19. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017). https://doi.org/10.1016/j.compstruct.2016.09.070

    Article  Google Scholar 

  20. Zare Jouneghani, F., Dimitri, R., Bacciocchi, M., Tornabene, F.: Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory. Appl. Sci. 7(12), 1252 (2017). https://doi.org/10.3390/app7121252

    Article  Google Scholar 

  21. Rezaei, A.S., Saidi, A.R., Abrishamdari, M., PourMohammadi, M.H.: Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach. Thin-Walled Struct. 120, 366–377 (2017). https://doi.org/10.1016/j.tws.2017.08.003

    Article  Google Scholar 

  22. Pouresmaeeli, S., Fazelzadeh, S.A., Ghavanloo, E., Marzocca, P.: Uncertainty propagation in vibrational characteristics of functionally graded carbon nanotube-reinforced composite shell panels. Int. J. Mech. Sci. 149, 549–558 (2018). https://doi.org/10.1016/j.ijmecsci.2017.05.049

    Article  Google Scholar 

  23. Lei, Z.X., Zhang, L.W., Liew, K.M., Yu, J.L.: Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free KP-Ritz method. Compos. Struct. 113, 328–338 (2014). https://doi.org/10.1016/j.compstruct.2014.03.035

    Article  Google Scholar 

  24. Shahverdi, H., Khalafi, V., Noori, S.: Aerothermoelastic analysis of functionally graded plates using generalized differential quadrature method. Lat. Am. J. Solids Struct. 13(4), 796–818 (2016). https://doi.org/10.1590/1679-78252072

    Article  Google Scholar 

  25. Navazi, H., Haddadpour, H.: Aero-thermoelastic stability of functionally graded plates. Compos. Struct. 80(4), 580–587 (2007). https://doi.org/10.1016/j.compstruct.2006.07.014

    Article  MATH  Google Scholar 

  26. Kiani, Y.: Free vibration of FG-CNT reinforced composite spherical shell panels using Gram–Schmidt shape functions. Compos. Struct. 159, 368–381 (2017). https://doi.org/10.1016/j.compstruct.2016.09.079

    Article  Google Scholar 

  27. Mehar, K., Panda, S.K., Patle, B.K.: Thermoelastic vibration and flexural behaviour of FG-CNT reinforced composite curved panel. Int. J. Appl. Mech. 9(04), 1750046 (2017). https://doi.org/10.1142/S1758825117500466

    Article  Google Scholar 

  28. Zhou, J., Xu, M., Yang, Z.: Aeroelastic stability analysis of curved composite panels with embedded Macro Fiber Composite actuators. Compos. Struct. 208, 725–734 (2019). https://doi.org/10.1016/j.compstruct.2018.10.035

    Article  Google Scholar 

  29. Lin, H., Cao, D., Xu, Y.: Vibration, buckling and aeroelastic analyses of functionally graded multilayer graphene-nanoplatelets-reinforced composite plates embedded in piezoelectric layers. Int. J. Appl. Mech. 10(03), 1850023 (2018). https://doi.org/10.1142/S1758825118500230

    Article  Google Scholar 

  30. Saidi, A.R., Bahaadini, R., Majidi-Mozafari, K.: On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading. Compos. B Eng. 164, 778–799 (2019). https://doi.org/10.1016/j.compositesb.2019.01.074

    Article  Google Scholar 

  31. Bahaadini, R., Saidi, A.R., Majidi-Mozafari, K.: Aeroelastic flutter analysis of thick porous plates in supersonic flow. Int. J. Appl. Mech. 11(10), 1950096 (2019). https://doi.org/10.1142/S1758825119500960

    Article  Google Scholar 

  32. Muc, A., Flis, J., Augustyn, M.: Optimal design of plated/shell structures under flutter constraints—a literature review. Materials 12(24), 4215 (2019). https://doi.org/10.3390/ma12244215

    Article  Google Scholar 

  33. Arani, A.G., Kiani, F., Afshari, H.: Aeroelastic analysis of laminated FG-CNTRC cylindrical panels under yawed supersonic flow. Int. J. Appl. Mech. 11(06), 1950052 (2019). https://doi.org/10.1142/S1758825119500522

    Article  Google Scholar 

  34. Aditya, S., Haboussi, M., Shubhendu, S., Ganapathi, M., Polit, O.: Supersonic flutter study of porous 2D curved panels reinforced with graphene platelets using an accurate shear deformable finite element procedure. Compos. Struct. 241, 112058 (2020). https://doi.org/10.1016/j.compstruct.(2020).112058

    Article  Google Scholar 

  35. Bahaadini, R., Saidi, A.R., Hosseini, M.: Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes. Acta Mech. 229, 5013–5029 (2018). https://doi.org/10.1007/s00707-018-2286-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Majidi, M.H., Azadi, M., Fahham, H.: Effect of CNT reinforcements on the flutter boundaries of cantilever trapezoidal plates under yawed supersonic fluid flow. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1723107

    Article  Google Scholar 

  37. Esmaeili, H., Kiani, Y., Beni, Y.T.: Vibration characteristics of composite doubly curved shells reinforced with graphene platelets with arbitrary edge supports. Acta Mech. (2022). https://doi.org/10.1007/s00707-021-03140-z

    Article  MathSciNet  MATH  Google Scholar 

  38. An, X.M., Sun, W.: Study of aeroelastic response of cylindrical composite panels in A high-speed flow. Int. J. Modern Phys. B 34(14n16), 2040116 (2020). https://doi.org/10.1142/S0217979220401165

    Article  Google Scholar 

  39. Ye, L., Ye, Z., Ye, K., Wu, J.: Aeroelastic stability and nonlinear flutter analysis of viscoelastic heated panel in shock-dominated flows. Aerosp. Sci. Technol. 117, 106909 (2021). https://doi.org/10.1016/j.ast.2021.106909

    Article  Google Scholar 

  40. Rahmanian, M., Javadi, M.: Supersonic aeroelasticity and dynamic instability of functionally graded porous cylindrical shells using a unified solution formulation. Int. J. Struct. Stab. Dyn. 20(12), 2050132 (2020). https://doi.org/10.1142/S0219455420501321

    Article  MathSciNet  Google Scholar 

  41. Adamian, A., Hosseini Safari, K., Sheikholeslami, M., Habibi, M., Alforjan, M.S.H., Chen, G.: Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel. Appl. Sci. 10(9), 3251 (2020). https://doi.org/10.3390/app10093251

    Article  Google Scholar 

  42. Zhou, X., Wang, Y., Zhang, W.: Vibration and flutter characteristics of GPL-reinforced functionally graded porous cylindrical panels subjected to supersonic flow. Acta Astronaut. 183, 89–100 (2021). https://doi.org/10.1016/j.actaastro.2021.03.003

    Article  Google Scholar 

  43. AminYazdi, A.: Flutter of geometrical imperfect functionally graded carbon nanotubes doubly curved shells. Thin-Walled Struct. 164, 107798 (2021). https://doi.org/10.1016/j.tws.2021.107798

    Article  Google Scholar 

  44. Subramani, M., Subramani, M., Ramamoorthy, M., Arumugam, A.B., Selvaraj, R.: Free and forced vibration characteristics of CNT reinforced composite spherical sandwich shell panels with MR elastomer core. Int. J. Struct. Stab. Dyn. 21(10), 2150136 (2021). https://doi.org/10.1142/S0219455421501364

    Article  MathSciNet  Google Scholar 

  45. Majidi Mozafari, K., Bahaadini, R., Saidi, A.R.: Aeroelastic flutter analysis of functionally graded spinning cylindrical shells reinforced with graphene nanoplatelets in supersonic flow. Mater. Res. Express 8(11), 115012 (2021). https://doi.org/10.1088/2053-1591/ac2ce4

    Article  Google Scholar 

  46. Abdollahi, M., Saidi, A.R., Bahaadini, R.: Aeroelastic analysis of symmetric and non-symmetric trapezoidal honeycomb sandwich plates with FG porous face sheets. Aerosp. Sci. Technol. 119, 107211 (2021). https://doi.org/10.1016/j.ast.2021.107211

    Article  Google Scholar 

  47. Merdaci, S., Adda, H.M., Hakima, B., Dimitri, R., Tornabene, F.: Higher-order free vibration analysis of porous functionally graded plates. J. Compos. Sci. 5(11), 305 (2021). https://doi.org/10.3390/jcs5110305

    Article  Google Scholar 

  48. Houshangi, A., Jafari, A.A., Haghighi, S.E., Nezami, M.: Supersonic flutter characteristics of truncated sandwich conical shells with MR core. Thin-Walled Struct. 173, 108888 (2022). https://doi.org/10.1016/j.tws.2022.108888

    Article  Google Scholar 

  49. Chen, J., Han, R., Liu, D., Zhang, W.: Active flutter suppression and aeroelastic response of functionally graded multilayer graphene nanoplatelet reinforced plates with piezoelectric patch. Appl. Sci. 12(3), 1244 (2022). https://doi.org/10.3390/app12031244

    Article  Google Scholar 

  50. Arani, A.G., Eskandari, M., Haghparast, E.: The supersonic flutter behavior of sandwich plates with a magnetorheological elastomer core and GNP-reinforced face sheets. Int. J. Appl. Mech. (2022). https://doi.org/10.1142/S1758825122500156

    Article  Google Scholar 

  51. Khorshidi, K., Karimi, M., Amabili, M.: Aeroelastic analysis of rectangular plates coupled to sloshing fluid. Acta Mech. 231, 3183–3198 (2020). https://doi.org/10.1007/s00707-020-02696-6

    Article  MathSciNet  MATH  Google Scholar 

  52. Crawley, E.F., De Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987). https://doi.org/10.2514/3.9792

    Article  Google Scholar 

  53. Zhou, R.C., Lai, Z., Xue, D.Y., Huang, J.K., Mei, C.: Suppression of nonlinear panel flutter with piezoelectric actuators using finite element method. AIAA J. 33(6), 1098–1105 (1995). https://doi.org/10.2514/3.12530

    Article  MATH  Google Scholar 

  54. Song, Z.G., Li, F.M.: Active aeroelastic flutter analysis and vibration control of supersonic composite laminated plate. Compos. Struct. 94(2), 702–713 (2012). https://doi.org/10.1016/j.compstruct.2011.09.005

    Article  Google Scholar 

  55. Li, F.M.: Active aeroelastic flutter suppression of a supersonic plate with piezoelectric material. Int. J. Eng. Sci. 51, 190–203 (2012). https://doi.org/10.1016/j.ijengsci.2011.10.003

    Article  MathSciNet  MATH  Google Scholar 

  56. Tsushima, N., Su, W.: Flutter suppression for highly flexible wings using passive and active piezoelectric effects. Aerosp. Sci. Technol. 65, 78–89 (2017). https://doi.org/10.1016/j.ast.2017.02.013

    Article  Google Scholar 

  57. Li, F.M., Chen, Z.B., Cao, D.Q.: Improving the aeroelastic flutter characteristics of supersonic beams using piezoelectric material. J. Intell. Mater. Syst. Struct. 22(7), 615–629 (2011). https://doi.org/10.1177/1045389X11403820

    Article  Google Scholar 

  58. Xue, Y., Li, J., Li, F., Song, Z.: Flutter and thermal buckling properties and active control of functionally graded piezoelectric material plate in supersonic airflow. Acta Mech. Solida Sin. 33(5), 692–706 (2020). https://doi.org/10.1007/s10338-020-00159-y

    Article  Google Scholar 

  59. Wang, Q., Quek, S.T., Sun, C.T., Liu, X.: Analysis of piezoelectric coupled circular plate. Smart Mater. Struct. 10(2), 229 (2001). https://doi.org/10.1088/0964-1726/10/2/308

    Article  Google Scholar 

  60. Farsangi, M.A., Saidi, A.: Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers. Smart Mater. Struct. 21(9), 094017 (2012). https://doi.org/10.1088/0964-1726/21/9/094017

    Article  Google Scholar 

  61. Almeida, A., Donadon, M.V., De Faria, A.R., Almeida, S.F.M.: The effect of piezoelectrically induced stress stiffening on the aeroelastic stability of curved composite panels. Compos. Struct. 94(12), 3601–3611 (2012). https://doi.org/10.1016/j.compstruct.2012.06.008

    Article  Google Scholar 

  62. Zhang, L., Song, Z., Liew, K.: Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow. Comput. Methods Appl. Mech. Eng. 300, 427–441 (2016). https://doi.org/10.1016/j.cma.2015.11.029

    Article  MathSciNet  MATH  Google Scholar 

  63. Tian, W., Zhao, T., Yang, Z.: Nonlinear electro-thermo-mechanical dynamic behaviours of a supersonic functionally graded piezoelectric plate with general boundary conditions. Compos. Struct. 261, 113326 (2021). https://doi.org/10.1016/j.compstruct.2020.113326

    Article  Google Scholar 

  64. Tham, V., Tran, H., Tu, T.: Vibration characteristics of piezoelectric functionally graded carbon nanotube-reinforced composite doubly-curved shells. Appl. Math. Mech. 42(6), 819–840 (2021). https://doi.org/10.1007/s10483-021-2730-7

    Article  MathSciNet  MATH  Google Scholar 

  65. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  66. Ebrahimi, F., Jafari, A.: A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. J. Eng. (2016). https://doi.org/10.1155/2016/9561504

    Article  Google Scholar 

  67. Dowell, E.H.: Aeroelasticity of Plates and Shells, vol. 1. Springer Science & Business Media, Berlin (1974)

    MATH  Google Scholar 

  68. Wattanasakulpong, N., Ungbhakorn, V.: Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp. Sci. Technol. 32(1), 111–120 (2014). https://doi.org/10.1016/j.ast.2013.12.002

    Article  Google Scholar 

  69. Farsangi, M.A., Saidi, A.R., Batra, R.C.: Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. J. Sound Vib. 332(22), 5981–5998 (2013). https://doi.org/10.1016/j.jsv.2013.05.010

    Article  Google Scholar 

  70. Murakami, H.: Laminated composite plate theory with improved in-plane responses. J. Appl. Mech. 53(1), 661–666 (1986)

    Article  MATH  Google Scholar 

  71. Sciuva, D.M.: An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates. J. Appl. Mech. 54(1), 589–596 (1987)

    Article  MATH  Google Scholar 

  72. Matsunaga, H.: Free vibration and stability of functionally graded shallow shells according to a 2D higher-order deformation theory. Compos. Struct. 84(2), 132–146 (2008). https://doi.org/10.1016/j.compstruct.2007.07.006

    Article  Google Scholar 

  73. Akbari, H., Azadi, M., Fahham, H.: Flutter prediction of cylindrical sandwich panels with saturated porous core under supersonic yawed flow. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(16), 2968–2984 (2021). https://doi.org/10.1177/0954406220960786

    Article  Google Scholar 

  74. Prakash, T., Ganapathi, M.: Supersonic flutter characteristics of functionally graded flat panels including thermal effects. Compos. Struct. 72(1), 10–18 (2006). https://doi.org/10.1016/j.compstruct.2004.10.007

    Article  Google Scholar 

  75. Fung, Y.: On two-dimensional panel flutter. J. Aerosp. Sci. 25(3), 145–160 (1958). https://doi.org/10.2514/8.7557

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Saidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In Eq. (20), the terms expressing inertia and the resulting forces and moments are expressed as follows:

$$\left( {I_{0} ,I_{1} ,I_{2} ,I_{3} ,I_{4} ,I_{6} } \right) = \mathop \int \limits_{{ - h - h_{p} }}^{{h + h_{p} }} \rho \left( z \right)\left( {1,z,z^{2} ,z^{3} ,z^{4} ,z^{6} } \right) dz$$
(A.1)
$$\begin{aligned} \left( {N_{xx} , N_{xy} ,N_{yy} } \right) & = \mathop \int \limits_{{ - h - h_{p} }}^{{h + h_{p} }} \left( {\sigma_{xx} , \sigma_{xy} ,\sigma_{yy} } \right) dz \\ \left( {M_{xx} , M_{xy} ,M_{yy} } \right) & = \mathop \int \limits_{{ - h - h_{p} }}^{{h + h_{p} }} \left( {\sigma_{xx} , \sigma_{xy} ,\sigma_{yy} } \right) zdz \\ \left( {Q_{x} ,Q_{y} } \right) & = \mathop \int \limits_{{ - h - h_{p} }}^{{h + h_{p} }} \left( {\sigma_{xz} , \sigma_{yz} } \right) dz \\ \left( {S_{xx} , S_{xy} ,S_{yy} } \right) & = \mathop \int \limits_{{ - h - h_{p} }}^{{h + h_{p} }} \left( {\sigma_{xx} , \sigma_{xy} ,\sigma_{yy} } \right) z^{3} dz \\ \left( {P_{x} ,P_{y} } \right) & = \mathop \int \limits_{{ - h - h_{p} }}^{{h + h_{p} }} \left( {\sigma_{xz} , \sigma_{yz} } \right)z^{2} dz \\ \end{aligned}$$
(A.2)

The stiffness coefficients are presented in Eq. (21) as follows:

$$\begin{aligned} \left( {A_{11} ,A_{12} } \right) & = \mathop \int \limits_{ - h}^{ - h} (Q_{11}^{{}} ,Q_{12}^{{}} )dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} ,\overline{c}_{12} } \right) dz \\ A_{66} & = \mathop \int \limits_{ - h}^{ - h} Q_{66}^{{}} dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} - \overline{c}_{12} } \right) dz \\ \left( {B_{11} ,B_{12} ,B_{66} } \right) & = \mathop \int \limits_{ - h}^{ - h} (Q_{11}^{{}} ,Q_{12}^{{}} , Q_{66}^{{}} ) z dz \\ \left( {C_{11} ,C_{12} ,C_{66} } \right) & = \mathop \int \limits_{ - h}^{ - h} (Q_{11}^{{}} ,Q_{12}^{{}} , Q_{66}^{{}} ) cz^{3} dz \\ \left( {D_{11} ,D_{12} ,D_{66} } \right) & = \mathop \int \limits_{ - h}^{ - h} (Q_{11}^{{}} ,Q_{12}^{{}} , Q_{66}^{{}} ) z^{2} dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} ,\overline{c}_{12} ,\left( {\overline{c}_{11} - \overline{c}_{12} } \right)} \right) z^{2} dz \\ \left( {E_{11} ,E_{12} } \right) & = \mathop \int \limits_{ - h}^{ - h} (Q_{11}^{{}} ,Q_{12}^{{}} ) \left( {z^{2} - cz^{4} } \right) dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} ,\overline{c}_{12} } \right)\left( {z^{2} - cz^{4} } \right) dz \\ E_{66} & = \mathop \int \limits_{ - h}^{ - h} \left( {Q_{66}^{{}} } \right) \left( {z^{2} - cz^{4} } \right) dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} - \overline{c}_{12} } \right)\left( {z^{2} - cz^{4} } \right) dz \\ \left( {F_{11} ,F_{12} } \right) & = \mathop \int \limits_{ - h}^{ - h} (Q_{11}^{{}} ,Q_{12}^{{}} ) cz^{4} dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} ,\overline{c}_{12} } \right) cz^{4} dz + \eta_{3} \\ F_{66} & = 2\mathop \int \limits_{ - h}^{ - h} \left( {Q_{66}^{{}} } \right) cz^{4} dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} - \overline{c}_{12} } \right) cz^{4} dz \\ A_{55} & = \mathop \int \limits_{ - h}^{ - h} \left( {Q_{66}^{{}} } \right)\left( {1 - \beta z^{2} } \right) dz + + 2\mathop \int \limits_{h}^{{h + h_{p} }} \overline{c}_{55} \left( {1 - \beta z^{2} } \right) dz \\ \left( {G_{11}, G_{12}, G_{66} } \right) & = \mathop \int \limits_{ - h}^{ - h} (Q_{11}^{{}} ,Q_{12}^{{}} , Q_{66}^{{}} ) z^{3} dz \\ \left( {H_{11}, H_{12} } \right) & = \mathop \int \limits_{ - h}^{ - h} (Q_{11}^{{}} ,Q_{12}^{{}} ) \left( {z^{4} - cz^{6} } \right) dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} ,\overline{c}_{12} } \right)\left( {z^{4} - cz^{6} } \right) dz \\ H_{66} & = \mathop \int \limits_{ - h}^{ - h} \left( {Q_{66}^{{}} } \right)\left( {z^{4} - cz^{6} } \right) dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} - \overline{c}_{12} } \right)\left( {z^{4} - cz^{6} } \right) dz \\ \left( {L_{11} ,L_{12} } \right) & = \mathop \int \limits_{ - h}^{ - h} (Q_{11}^{{}} ,Q_{12}^{{}} ) cz^{6} dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} ,\overline{c}_{12} } \right) cz^{6} dz \\ L_{66} & = 2\mathop \int \limits_{ - h}^{ - h} \left( {Q_{66}^{{}} } \right)cz^{6} dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \left( {\overline{c}_{11} - \overline{c}_{12} } \right)cz^{6} dz \\ S_{55} & = \mathop \int \limits_{ - h}^{ - h} \left( {Q_{66}^{b} } \right)\left( {z^{2} - \beta z^{4} } \right) dz + 2\mathop \int \limits_{h}^{{h + h_{p} }} \overline{c}_{55} \left( {z^{2} - \beta z^{4} } \right) dz \\ \end{aligned}$$
(A.3)

The constant quantities in Eq. (22), can be expressed as follow:

$$\begin{aligned} ab_{1} & = A_{{11}} + 2c\frac{{F_{{11}} }}{{R_{x} }} + c^{2} \frac{{H_{{11}} }}{{R_{x}^{2} }} + T_{2} - \frac{{T_{8} }}{{R_{x}^{2} }} + \beta \frac{{T_{{8z2}} }}{{R_{x}^{2} }} - c\frac{{T_{{4z3}} }}{{R_{x}^{2} }} \\ ab_{2} & = A_{{66}} + 2c\frac{{F_{{66}} }}{{R_{x} }} + c^{2} \frac{{H_{{66}} }}{{R_{x}^{2} }} \\ ab_{3} & = \frac{1}{{R_{x}^{2} }}\left( {\beta D_{{55}} - A_{{55}} } \right) \\ ab_{4} & = A_{{12}} + A_{{66}} + \frac{c}{{R_{y} }}\left( {F_{{12}} + F_{{66}} } \right) \\ &\quad + \frac{c}{{R_{x} }}\left( {F_{{12}} + F_{{66}} } \right) + \frac{{c^{2} }}{{R_{x} R_{y} }}\left( {H_{{12}} + H_{{66}} } \right) + T_{2} + \frac{1}{{R_{x} R_{y} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right) \\ ab_{5} & = B_{{11}} - cF_{{11}} + c\frac{{G_{{11}} }}{{R_{x} }} - c^{2} \frac{{H_{{11}} }}{{R_{x} }} + \frac{1}{{R_{x} }}\left( {T_{7} + T_{8} } \right) - \frac{\beta }{{R_{x} }}\left( {T_{{7z2}} + T_{{8z2}} } \right) + \frac{c}{{R_{x} }}\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ ab_{6} & = B_{{66}} - c\left( {F_{{66}} - \frac{{G_{{66}} }}{{R_{x} }}} \right) - c^{2} \frac{{H_{{66}} }}{{R_{x} }} \\ ab_{7} & = \frac{1}{{R_{x} }}\left( {A_{{55}} - \beta D_{{55}} } \right) \\ ab_{8} & = B_{{12}} + B_{{66}} - c\left( {F_{{12}} + F_{{66}} } \right) + \frac{c}{{R_{x} }}\left( {G_{{12}} + G_{{66}} } \right)\\ &\quad - \frac{{c^{2} }}{{R_{x} }}\left( {H_{{12}} + H_{{66}} } \right) + \frac{1}{{R_{x} }}\left( {T_{7} + T_{8} } \right) - \frac{\beta }{{R_{x} }}\left( {T_{{7z2}} + T_{{8z2}} } \right) + \frac{c}{{R_{x} }}\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ ab_{9} & = - c\left( {F_{{11}} + \frac{c}{{R_{x} }}H_{{11}} } \right) + \frac{1}{{R_{x} }}\left( {T_{8} - \beta T_{{8z2}} + cT_{{4z3}} } \right) \\ ab_{{10}} & = - c\left( {F_{{12}} + 2F_{{66}} + \frac{c}{{R_{x} }}\left( {H_{{12}} + 2H_{{66}} } \right)} \right) + \frac{1}{{R_{x} }}\left( {T_{8} - \beta T_{{8z2}} + cT_{{4z3}} } \right) \\ ab_{{11}} & = \frac{1}{{R_{x} }}\left( {A_{{11}} + A_{{55}} - \beta D_{{55}} + \frac{{cF_{{11}} }}{{R_{x} }} + \frac{{A_{{12}} R_{x} }}{{R_{y} }} + \frac{{cF_{{12}} }}{{R_{y} }}} \right) + T_{2} \left( {\frac{1}{{R_{x} }} + \frac{1}{{R_{y} }}} \right) \\ ac_{1} & = A_{{21}} + A_{{66}} + \frac{c}{{R_{x} }}\left( {F_{{21}} + F_{{66}} } \right) + \frac{c}{{R_{y} }}\left( {F_{{21}} + F_{{66}} } \right) \\ &\quad + \frac{{c^{2} }}{{R_{x} R_{y} }}\left( {H_{{21}} + H_{{66}} } \right) + T_{2} + \frac{1}{{R_{x} R_{y} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right) \\ ac_{2} & = A_{{66}} + 2c\frac{{F_{{66}} }}{{R_{y} }} + c^{2} \frac{{H_{{66}} }}{{R_{y}^{2} }} \\ ac_{3} & = A_{{22}} + 2c\frac{{F_{{22}} }}{{R_{y} }} + c^{2} \frac{{H_{{22}} }}{{R_{y}^{2} }} + T_{2} + \frac{1}{{R_{y}^{2} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right) \\ ac_{4} & = \frac{1}{{R_{y}^{2} }}\left( {\beta D_{{44}} - A_{{44}} } \right) \\ ac_{5} & = B_{{21}} + B_{{66}} - c\left( {F_{{21}} + F_{{66}} } \right) + \frac{c}{{R_{y} }}\left( {G_{{21}} + G_{{66}} } \right) \\ &\quad + \frac{1}{{R_{y} }}\left( {T_{7} + T_{8} } \right) - \frac{{c^{2} }}{{R_{y} }}\left( {H_{{21}} + H_{{66}} } \right) + \frac{1}{{R_{y} }}\left( { - \beta \left( {T_{{8z2}} + T_{{7z2}} } \right) + c\left( {T_{{4z3}} + T_{{3z3}} } \right)} \right) \\ ac_{6} & = B_{{66}} - cF_{{66}} + c\frac{{G_{{66}} }}{{R_{y} }} - c^{2} \frac{{H_{{66}} }}{{R_{y} }} \\ ac_{7} & = B_{{22}} - cF_{{22}} + c\frac{{G_{{22}} }}{{R_{y} }} - c^{2} \frac{{H_{{22}} }}{{R_{y} }} + \frac{1}{{R_{y} }}\left( {T_{7} + T_{8} } \right) \\ &\quad + \frac{1}{{R_{y} }}\left( { - \beta \left( {T_{{8z2}} + T_{{7z2}} } \right) + c\left( {T_{{4z3}} + T_{{3z3}} } \right)} \right) \\ ac_{8} & = \frac{1}{{R_{y} }}\left( {A_{{44}} - \beta D_{{44}} } \right) \\ ac_{9} & = - c\left( {2F_{{66}} + F_{{21}} + 2\frac{c}{{R_{y} }}H_{{66}} + \frac{c}{{R_{y} }}H_{{21}} } \right) + \frac{1}{{R_{y} }}\left( {T_{8} - \beta T_{{8z2}} + cT_{{4z3}} } \right) \\ ac_{{10}} & = - c\left( {F_{{22}} + \frac{c}{{R_{y} }}H_{{22}} } \right) + \frac{1}{{R_{x} }}\left( {T_{8} - \beta T_{{8z2}} + cT_{{4z3}} } \right) \\ ac_{{11}} & = \frac{1}{{R_{y} }}\left( {A_{{21}} \frac{{R_{y} }}{{R_{x} }} + A_{{22}} + A_{{44}} - \beta D_{{44}} + \frac{{cF_{{21}} }}{{R_{x} }} + \frac{{cF_{{22}} }}{{R_{y} }}} \right) + T_{2} \left( {\frac{1}{{R_{x} }} + \frac{1}{{R_{y} }}} \right) \\ ad_{1} & = B_{{11}} + \frac{c}{{R_{x} }}G_{{11}} - cF_{{11}} - \frac{{c^{2} }}{{R_{x} }}H_{{11}} + \frac{1}{{R_{x} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right)A_{{66}} \\& \quad + 2c\frac{{F_{{11}} }}{{R_{x} }} + c^{2} \frac{{H_{{11}} }}{{R_{x}^{2} }} + T_{2} - \frac{{T_{8} }}{{R_{x}^{2} }} + \beta \frac{{T_{{8z2}} }}{{R_{x}^{2} }} - c\frac{{T_{{4z3}} }}{{R_{x}^{2} }} \\ ad_{2} & = A_{{66}} + 2c\frac{{F_{{66}} }}{{R_{x} }} + c^{2} \frac{{H_{{66}} }}{{R_{x}^{2} }} \\ ad_{3} & = \frac{1}{{R_{x}^{2} }}\left( {\beta D_{{55}} - A_{{55}} } \right) \\ ad_{4} & = A_{{12}} + A_{{66}} + \frac{c}{{R_{y} }}\left( {F_{{12}} + F_{{66}} } \right) + \frac{c}{{R_{x} }}\left( {F_{{12}} + F_{{66}} } \right) \\ &\quad + \frac{{c^{2} }}{{R_{x} R_{y} }}\left( {H_{{12}} + H_{{66}} } \right) + T_{2} + \frac{1}{{R_{x} R_{y} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right) \\ ad_{5} & = B_{{11}} - cF_{{11}} + c\frac{{G_{{11}} }}{{R_{x} }} - c^{2} \frac{{H_{{11}} }}{{R_{x} }} + \frac{1}{{R_{x} }}\left( {T_{7} + T_{8} } \right) - \frac{\beta }{{R_{x} }}\left( {T_{{7z2}} + T_{{8z2}} } \right) + \frac{c}{{R_{x} }}\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ ad_{6} & = B_{{66}} - c\left( {F_{{66}} - \frac{{G_{{66}} }}{{R_{x} }}} \right) - c^{2} \frac{{H_{{66}} }}{{R_{x} }} \\ ad_{7} & = \frac{1}{{R_{x} }}\left( {A_{{55}} - \beta D_{{55}} } \right) \\ ad_{8} & = B_{{12}} + B_{{66}} - c\left( {F_{{12}} + F_{{66}} } \right) + \frac{c}{{R_{x} }}\left( {G_{{12}} + G_{{66}} } \right) - \frac{{c^{2} }}{{R_{x} }}\left( {H_{{12}} + H_{{66}} } \right) \\ &\quad + \frac{1}{{R_{x} }}\left( {T_{7} + T_{8} } \right) - \frac{\beta }{{R_{x} }}\left( {T_{{7z2}} + T_{{8z2}} } \right) + \frac{c}{{R_{x} }}\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ ad_{9} & = - c\left( {F_{{11}} + \frac{c}{{R_{x} }}H_{{11}} } \right) + \frac{1}{{R_{x} }}\left( {T_{8} - \beta T_{{8z2}} + cT_{{4z3}} } \right) \\ ad_{{10}} & = - c\left( {F_{{12}} + 2F_{{66}} + \frac{c}{{R_{x} }}\left( {H_{{12}} + 2H_{{66}} } \right)} \right) + \frac{1}{{R_{x} }}\left( {T_{8} - \beta T_{{8z2}} + cT_{{4z3}} } \right) \\ ad_{{11}} & = \frac{1}{{R_{x} }}\left( {A_{{11}} + A_{{55}} - \beta D_{{55}} + \frac{{cF_{{11}} }}{{R_{x} }} + \frac{{A_{{12}} R_{x} }}{{R_{y} }} + \frac{{cF_{{12}} }}{{R_{y} }}} \right) + T_{2} \left( {\frac{1}{{R_{x} }} + \frac{1}{{R_{y} }}} \right) \\ af_{1} & = A_{{21}} + A_{{66}} + \frac{c}{{R_{x} }}\left( {F_{{21}} + F_{{66}} } \right) + \frac{c}{{R_{y} }}\left( {F_{{12}} + F_{{66}} } \right) + \frac{{c^{2} }}{{R_{x} R_{y} }}\left( {H_{{12}} + H_{{66}} } \right) \\ &\quad + T_{2} + \frac{1}{{R_{x} R_{y} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right)A_{{66}} + 2c\frac{{F_{{11}} }}{{R_{x} }} + c^{2} \frac{{H_{{11}} }}{{R_{x}^{2} }} + T_{2} - \frac{{T_{8} }}{{R_{x}^{2} }} + \beta \frac{{T_{{8z2}} }}{{R_{x}^{2} }} - c\frac{{T_{{4z3}} }}{{R_{x}^{2} }} \\ af_{2} & = A_{{66}} + 2c\frac{{F_{{66}} }}{{R_{x} }} + c^{2} \frac{{H_{{66}} }}{{R_{x}^{2} }} \\ af_{3} & = \frac{1}{{R_{x}^{2} }}\left( {\beta D_{{55}} - A_{{55}} } \right) \\ af_{4} & = A_{{12}} + A_{{66}} + \frac{c}{{R_{y} }}\left( {F_{{12}} + F_{{66}} } \right) + \frac{c}{{R_{x} }}\left( {F_{{12}} + F_{{66}} } \right) + \frac{{c^{2} }}{{R_{x} R_{y} }}\left( {H_{{12}} + H_{{66}} } \right) + T_{2} + \frac{1}{{R_{x} R_{y} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right) \\ af_{5} & = B_{{11}} - cF_{{11}} + c\frac{{G_{{11}} }}{{R_{x} }} - c^{2} \frac{{H_{{11}} }}{{R_{x} }} + \frac{1}{{R_{x} }}\left( {T_{7} + T_{8} } \right) - \frac{\beta }{{R_{x} }}\left( {T_{{7z2}} + T_{{8z2}} } \right) + \frac{c}{{R_{x} }}\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ af_{6} & = B_{{66}} - c\left( {F_{{66}} - \frac{{G_{{66}} }}{{R_{x} }}} \right) - c^{2} \frac{{H_{{66}} }}{{R_{x} }} \\ af_{7} & = \frac{1}{{R_{x} }}\left( {A_{{55}} - \beta D_{{55}} } \right) \\ af_{8} & = B_{{12}} + B_{{66}} - c\left( {F_{{12}} + F_{{66}} } \right) + \frac{c}{{R_{x} }}\left( {G_{{12}} + G_{{66}} } \right) - \frac{{c^{2} }}{{R_{x} }}\left( {H_{{12}} + H_{{66}} } \right) \\ &\quad + \frac{1}{{R_{x} }}\left( {T_{7} + T_{8} } \right) - \frac{\beta }{{R_{x} }}\left( {T_{{7z2}} + T_{{8z2}} } \right) + \frac{c}{{R_{x} }}\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ af_{9} & = - c\left( {F_{{11}} + \frac{c}{{R_{x} }}H_{{11}} } \right) + \frac{1}{{R_{x} }}\left( {T_{8} - \beta T_{{8z2}} + cT_{{4z3}} } \right) \\ af_{{10}} & = - c\left( {F_{{12}} + 2F_{{66}} + \frac{c}{{R_{x} }}\left( {H_{{12}} + 2H_{{66}} } \right)} \right) + \frac{1}{{R_{x} }}\left( {T_{8} - \beta T_{{8z2}} + cT_{{4z3}} } \right) \\ af_{{11}} & = \frac{1}{{R_{x} }}\left( {A_{{11}} + A_{{55}} - \beta D_{{55}} + \frac{{cF_{{11}} }}{{R_{x} }} + \frac{{A_{{12}} R_{x} }}{{R_{y} }} + \frac{{cF_{{12}} }}{{R_{y} }}} \right) + T_{2} \left( {\frac{1}{{R_{x} }} + \frac{1}{{R_{y} }}} \right) \\ ag_{1} & = \frac{1}{{R_{x} }}\left( { - A_{{55}} + \beta D_{{55}} - A_{{11}} - \frac{c}{{R_{x} }}F_{{11}} - \frac{{R_{x} }}{{R_{y} }}A_{{21}} - \frac{c}{{R_{y} }}F_{{21}} } \right) - T_{2} \left( {\frac{1}{{R_{x} }} + \frac{1}{{R_{y} }}} \right) \\ ag_{2} & = c\left( {F_{{11}} + \frac{c}{{R_{x} }}H_{{11}} } \right) + \frac{1}{{R_{x} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right) \\ ag_{3} & = c\left( {2F_{{66}} + 2\frac{c}{{R_{x} }}H_{{66}} + F_{{21}} + \frac{c}{{R_{x} }}H_{{21}} } \right) + \frac{1}{{R_{x} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right) \\ ag_{4} & = \frac{1}{{R_{y} }}\left( { - A_{{44}} + \beta D_{{44}} - A_{{22}} - \frac{c}{{R_{x} }}F_{{12}} - \frac{{R_{y} }}{{R_{x} }}A_{{12}} - \frac{c}{{R_{y} }}F_{{22}} } \right) - T_{2} \left( {\frac{1}{{R_{x} }} + \frac{1}{{R_{y} }}} \right) \\ ag_{5} & = c\left( {F_{{12}} + \frac{c}{{R_{y} }}H_{{12}} + 2F_{{66}} + 2\frac{c}{{R_{y} }}H_{{66}} } \right) + \frac{1}{{R_{y} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right) \\ ag_{6} & = c\left( {F_{{22}} + \frac{c}{{R_{y} }}H_{{22}} } \right) + \frac{1}{{R_{y} }}\left( { - T_{8} + \beta T_{{8z2}} - cT_{{4z3}} } \right) \\ ag_{7} & = A_{{55}} - \beta D_{{55}} - \frac{{B_{{11}} }}{{R_{x} }} + \frac{c}{{R_{x} }}F_{{11}} - \frac{{B_{{21}} }}{{R_{y} }} + \frac{c}{{R_{y} }}F_{{21}} \\ ag_{8} & = c\left( {G_{{12}} - cH_{{11}} } \right) + T_{7} + T_{8} - \beta \left( {T_{{8z2}} + T_{{7z2}} } \right) + c\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ ag_{9} & = c\left( {2G_{{66}} - 2cH_{{66}} + G_{{21}} - cH_{{21}} } \right) + T_{7} + T_{8} - \beta \left( {T_{{8z2}} + T_{{7z2}} } \right) + c\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ ag_{{10}} & = A_{{44}} - \beta D_{{44}} - \frac{{B_{{12}} }}{{R_{x} }} + \frac{c}{{R_{x} }}F_{{12}} - \frac{{B_{{22}} }}{{R_{y} }} + \frac{c}{{R_{y} }}F_{{22}} \\ ag_{{11}} & = c\left( {G_{{22}} - cH_{{22}} } \right) + T_{7} + T_{8} - \beta \left( {T_{{8z2}} + T_{{7z2}} } \right) + c\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ ag_{{12}} & = c\left( {2G_{{66}} - 2cH_{{66}} + G_{{12}} - cH_{{12}} } \right) + T_{7} + T_{8} - \beta \left( {T_{{8z2}} + T_{{7z2}} } \right) + c\left( {T_{{3z3}} + T_{{4z3}} } \right) \\ ag_{{13}} & = - c^{2} H_{{11}} + T_{8} - \beta T_{{8z2}} + cT_{{4z3}} \\ ag_{{14}} & = - c^{2} H_{{22}} + T_{8} - \beta T_{{8z2}} + cT_{{4z3}} \\ ag_{{15}} & = - c^{2} \left( {4H_{{66}} + H_{{21}} + H_{{12}} } \right) + 2T_{8} - 2\beta T_{{8z2}} + 2cT_{{4z3}} \\ ag_{{16}} & = A_{{55}} - \beta D_{{55}} + 2\frac{c}{{R_{x} }}F_{{11}} + \frac{c}{{R_{y} }}\left( {F_{{21}} + F_{{12}} } \right) \\ ag_{{17}} & = A_{{44}} - \beta D_{{44}} + 2\frac{c}{{R_{y} }}F_{{22}} + \frac{c}{{R_{x} }}\left( {F_{{21}} + F_{{12}} } \right) \\ ag_{{18}} & = - \left( {\frac{{A_{{11}} }}{{R_{x}^{2} }} + \frac{1}{{R_{x} R_{y} }}\left( {A_{{12}} + A_{{21}} } \right) + \frac{{A_{{22}} }}{{R_{y}^{2} }}} \right) - T_{2} \left( {\frac{1}{{R_{x}^{2} }} + \frac{1}{{R_{x} R_{y} }}} \right) - T_{2} \left( {\frac{1}{{R_{y}^{2} }} + \frac{1}{{R_{x} R_{y} }}} \right) \\ \end{aligned}$$
(A.4)

For open-circuit condition:

$$\begin{aligned} T_{1} & = \bar{e}_{{31}} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\partial \varphi ^{t} }}{{\partial z}}~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\partial \varphi ^{b} }}{{\partial z}}~dz} \right) \\ T_{2} & = \mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}~dz \\ T_{3} & = \mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}(h + h_{p} )~dz - \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}(h + h_{p} )~dz \\ T_{4} & = - \mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}c(h + h_{p} )^{3} ~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}c(h + h_{p} )^{3} ~dz \\ T_{5} & = e_{{15}} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \varphi ^{t} ~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \varphi ^{b} ~dz} \right) \\ T_{6} & = \frac{{e_{{15}} \bar{e}_{{31}} }}{{\bar{\Xi }_{{33}} }}\left( {\mathop \int \limits_{h}^{{h + h_{p} }} \left( {z - h} \right)dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \left( {z + h} \right)dz} \right) \\ T_{7} & = \frac{{e_{{15}} \bar{e}_{{31}} }}{{\bar{\Xi }_{{33}} }}\left( {h + h_{p} } \right)\left( {\mathop \int \limits_{h}^{{h + h_{p} }} \left( {z - h} \right)dz - \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \left( {z + h} \right)dz} \right) \\ T_{8} & = c\frac{{e_{{15}} \bar{e}_{{31}} }}{{\bar{\Xi }_{{33}} }}\left( {h + h_{p} } \right)^{3} \left( { - \mathop \int \limits_{h}^{{h + h_{p} }} \left( {z - h} \right)dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \left( {z + h} \right)dz} \right) \\ T_{{1z}} & = \bar{e}_{{31}} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\partial \varphi ^{t} }}{{\partial z}}z~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\partial \varphi ^{b} }}{{\partial z}}z~dz} \right) \\ T_{{2z}} & = \mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}z~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}z~dz \\ T_{{3z}} & = \mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}(h + h_{p} )z~dz - \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}(h + h_{p} )z~dz \\ T_{{4z}} & = - \mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}cz(h + h_{p} )^{3} ~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}cz(h + h_{p} )^{3} ~dz \\ T_{{1z3}} & = \bar{e}_{{31}} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\partial \varphi ^{t} }}{{\partial z}}z^{3} ~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\partial \varphi ^{b} }}{{\partial z}}z^{3} ~dz} \right) \\ T_{{2z3}} & = \mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}z^{3} ~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}z^{3} ~dz \\ T_{{3z3}} & = \mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}(h + h_{p} )z^{3} ~dz - \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}(h + h_{p} )z^{3} ~dz \\ T_{{4z3}} & = - \mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}cz^{3} (h + h_{p} )^{3} ~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \frac{{\bar{e}_{{31}}^{2} }}{{\bar{\Xi }_{{33}} }}cz^{3} (h + h_{p} )^{3} ~dz \\ T_{{5z2}} & = e_{{15}} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} z^{2} \varphi ^{t} ~dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} z^{2} \varphi ^{b} ~dz} \right) \\ T_{{6z2}} & = \frac{{e_{{15}} \bar{e}_{{31}} }}{{\bar{\Xi }_{{33}} }}\left( {\mathop \int \limits_{h}^{{h + h_{p} }} \left( {z - h} \right)z^{2} dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \left( {z + h} \right)z^{2} dz} \right) \\ T_{{7z2}} & = \frac{{e_{{15}} \bar{e}_{{31}} }}{{\bar{\Xi }_{{33}} }}\left( {h + h_{p} } \right)\left( {\mathop \int \limits_{h}^{{h + h_{p} }} \left( {z - h} \right)z^{2} dz - \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \left( {z + h} \right)z^{2} dz} \right) \\ T_{{8z2}} & = c\frac{{e_{{15}} \bar{e}_{{31}} }}{{\bar{\Xi }_{{33}} }}\left( {h + h_{p} } \right)^{3} \left( { - \mathop \int \limits_{h}^{{h + h_{p} }} \left( {z - h} \right)z^{2} dz + \mathop \int \limits_{{ - h - h_{p} }}^{{ - h}} \left( {z + h} \right)z^{2} dz} \right) \\ \end{aligned}$$
(A.5)

and for closed-circuit condition:

$$\begin{aligned} T_{1} & = \overline{e}_{31} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\partial \varphi^{t} }}{\partial z} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \frac{{\partial \varphi^{b} }}{\partial z} dz} \right), \\ T_{5} & = e_{15} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \varphi^{t} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \varphi^{b} dz} \right), \\ T_{1z} & = \overline{e}_{31} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\partial \varphi^{t} }}{\partial z}z dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \frac{{\partial \varphi^{b} }}{\partial z}z dz} \right), \\ T_{1z3} & = \overline{e}_{31} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \frac{{\partial \varphi^{t} }}{\partial z}z^{3} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \frac{{\partial \varphi^{b} }}{\partial z}z^{3} dz} \right), \\ T_{5z2} & = e_{15} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} z^{2} \varphi^{t} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} z^{2} \varphi^{b} dz} \right) \\ T_{2} & = T_{3} = T_{4} = T_{6} = T_{7} = T_{8} = T_{2z} = T_{3z} = T_{4z} = T_{2z3} = T_{3z3} = T_{4z3} = T_{6z2} = T_{7z2} = T_{8z2} = 0, \\ \end{aligned}$$
(A.6)

Appendix B

In Eq. (26), the definitions of constant quantities are expressed as follows:

For open-circuit condition:

$$\begin{aligned} \varphi^{t} & = 1 - \left( {\frac{{z - h - h_{p} /2}}{{h_{p} /2}}} \right)^{2} , \varphi^{b} = 1 - \left( {\frac{{ - z - h - h_{p} /2}}{{h_{p} /2}}} \right)^{2} \\ S_{1} & = \mathop \int \limits_{h}^{{h + h_{p} }} e_{15} \left( {1 - \beta z^{2} } \right) dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} e_{15} \left( {1 - \beta z^{2} } \right) dz \\ S_{2} & = {\Xi }_{11} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \varphi^{t} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \varphi^{b} dz} \right) \\ S_{3} & = \mathop \int \limits_{h}^{{h + h_{p} }} \overline{e}_{31} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \overline{e}_{31} dz \\ S_{4} & = \mathop \int \limits_{h}^{{h + h_{p} }} \overline{e}_{31} \beta z^{2} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \overline{e}_{31} \beta z^{2} dz \\ S_{5} & = {\overline{\Xi }}_{33} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \frac{{d^{2} \varphi^{t} }}{{dz^{2} }} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \frac{{d^{2} \varphi^{b} }}{{dz^{2} }} dz} \right) \\ S_{6} & = S_{7} = S_{8} = 0 \\ \end{aligned}$$
(B.1)

and for closed-circuit condition:

$$\begin{aligned} \varphi^{t} & = 1 + \frac{{4\left( {z - h} \right)}}{{h_{p} }} - \left( {\frac{{z - h - h_{p} /2}}{{h_{p} /2}}} \right)^{2} \\ \varphi^{b} & = 1 - \frac{{4\left( {z + h} \right)}}{{h_{p} }} - \left( {\frac{{ - z - h - h_{p} /2}}{{h_{p} /2}}} \right)^{2} \\ S_{1} & = \mathop \int \limits_{h}^{{h + h_{p} }} e_{15} \left( {1 - \beta z^{2} } \right) dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} e_{15} \left( {1 - \beta z^{2} } \right) dz \\ S_{2} & = {\Xi }_{11} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \varphi^{t} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \varphi^{b} dz} \right) \\ S_{3} & = \mathop \int \limits_{h}^{{h + h_{p} }} \overline{e}_{31} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \overline{e}_{31} dz \\ S_{4} & = \mathop \int \limits_{h}^{{h + h_{p} }} \overline{e}_{31} \beta z^{2} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \overline{e}_{31} \beta z^{2} dz \\ S_{5} & = {\overline{\Xi }}_{33} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \varphi^{t} dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \varphi^{b} dz} \right) \\ S_{6} & = \frac{{{\Xi }_{11} \overline{e}_{31} }}{{{\overline{\Xi }}_{33} }}\left( {\mathop \int \limits_{h}^{{h + h_{p} }} \left( {z - h} \right)dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \left( {z + h} \right)dz} \right) \\ S_{7} & = \frac{{{\Xi }_{11} \overline{e}_{31} }}{{{\overline{\Xi }}_{33} }}\left( {h + h_{p} } \right)\left( { - \mathop \int \limits_{h}^{{h + h_{p} }} \left( {z - h} \right)dz + \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \left( {z + h} \right)dz} \right) \\ S_{8} & = \frac{{{\Xi }_{11} \overline{e}_{31} }}{{{\overline{\Xi }}_{33} }}\left( {h + h_{p} } \right)^{3} \left( {\mathop \int \limits_{h}^{{h + h_{p} }} \left( {z - h} \right)dz - \mathop \int \limits_{{ - h - h_{p} }}^{ - h} \left( {z + h} \right)dz} \right) \\ \end{aligned}$$
(B.2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaslou, M., Saidi, A.R. & Bahaadini, R. Vibration and dynamic instability analyses of functionally graded porous doubly curved panels with piezoelectric layers in supersonic airflow. Acta Mech 234, 6131–6167 (2023). https://doi.org/10.1007/s00707-023-03699-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03699-9

Navigation