Skip to main content

Advertisement

Log in

Dynamic response of imperfect interfaces on the reflection and transmission of the waves in context of generalised thermo-elasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The imperfection at the interface among two materials exists to various reasons such as thin inter phase, chemical action or interface damage. The interfaces such as mechanical, thermal and electrical significantly affect the performance of structural component that are utilized in various fields. The present mathematical study analyzes the reflection and transmission phenomenon of thermo-elastic wave being incident at the distinct types of separating interfaces in an initially stressed rotating structure with two different type half-spaces comprised of piezo-thermo-elastic (PTE) materials. The mathematical model of this study is performed under three-phase-lag model of generalised thermo-elasticity for normal stiffness interface (NSI), transverse stiffness interface (TSI), thermal conductance interface (TCI), electric imperfect interface (EII), and welded contact interface (WCI). The mathematical expressions for the amplitude and energy ratios are derived for the reflected and transmitted qP, qSV, qT and EA waves. The effects of initial stresses, rotation, phase lag and bonding parameters on amplitude ratios are performed, and energy balance law is established to validate the model. The validation of the result has been made with an existing problem for the correctness of the results. Numerical computations have been executed to demonstrate the mathematical findings by the graphical mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gutenberg, B.: Energy ratio of reflected and refracted seismic waves. Bull. Seismol. Soc. Am. 34, 85–102 (1944)

    Article  Google Scholar 

  2. Borcherdt, R.D.: Reflection and refraction of type-II S waves in elastic and inelastic media. Bull. Seismol. Soc. Am. 67, 43–67 (1977)

    Article  Google Scholar 

  3. Rokhlin, S.I., Boland, T.K., Adler, L.: Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media. J. Acoust. Soc. Am. 79, 906–918 (1986)

    Article  Google Scholar 

  4. Singh, P., Chattopadhyay, A., Srivastava, A., Singh, A.K.: Reflection and transmission of P-waves in an intermediate layer lying between two semi-infinite media. Pure Appl. Geophys. 175(12), 4305–4319 (2018)

    Article  Google Scholar 

  5. Singh, P., Singh, A.K., Chattopadhyay, A., Guha, S.: Mathematical study on the reflection and refraction phenomena of three-dimensional plane waves in a structure with floating frozen layer. Appl. Math. Comput. 386, 125488 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Sahu, S.A., Paswan, B., Chattopadhyay, A.: Reflection and transmission of plane waves through isotropic medium sandwiched between two highly anisotropic half space. Waves Random Complex Media 26(1), 42–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lavrentyev, A.I., Rokhlin, S.I.: Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids. J. Acoust. Soc. Am. 103, 657–664 (1998)

    Article  Google Scholar 

  8. Kapuria, S., Kumar, A.: Three-dimensional piezoelasticity solution for piezo laminated angle-ply cylindrical shells featuring imperfect interfacial bonding. Behavior and mechanics of multifunctional materials and composites. Proc. Soc. Photo Opt. Instrum. 7644, 76441Z (2010)

    Google Scholar 

  9. Rokhlin, S.I., Wang, Y.J.: Analysis of boundary conditions for elastic wave interaction with an interface between two solids. J. Acoust. Soc. Am. 89, 503–515 (1991)

    Article  Google Scholar 

  10. Kumar, R., Singh, M.: Reflection/transmission of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic half-spaces. Mater. Sci. Eng. A 472, 83–96 (2008)

    Article  Google Scholar 

  11. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lord, H.W., Shulman, Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  13. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  14. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermo-mechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    Article  MATH  Google Scholar 

  15. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  16. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tzou, D.: A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  18. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  19. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  20. Choudhuri, S.R.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007)

    Article  Google Scholar 

  21. Othman, M.I.A., Hasona, W.M., Mansour, N.T.: The effect of magnetic field on generalized thermoelastic medium with two temperature under three phase lag model. Multidiscip. Model. Mater. Struct. 11(4), 544–557 (2015)

    Article  Google Scholar 

  22. Kalkal, K.K., Deswal, S.: Effects of phase lags on three-dimensional wave propagation with temperature-dependent properties. Int. J. Thermophys. 35(5), 952–969 (2014)

    Article  Google Scholar 

  23. El-karamany, A.S., Ezzat, M.A.: On the three-phase-lag linear micropolar thermoelasticity theory. Eur. J. Mech. A Solids 40, 198–208 (2013)

    Article  MathSciNet  Google Scholar 

  24. Said, S.M., Othman, M.I.A.: Effects of gravitational and hydrostatic initial stress on a two-temperature fiber-reinforced thermoelastic medium for three-phase-lag. J. Solid Mech. 8(4), 806–822 (2016)

    Google Scholar 

  25. Othman, M.I.A., Said, S.M.: 2D problem of magneto-thermoelasticity fiber-reinforced medium under temperature dependent properties with three-phase-lag model. Meccanica 49(5), 1225–1241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Biswas, S., Mukhopadhyay, B., Shaw, S.: Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model. J. Therm. Stress. 40(4), 403–419 (2017)

    Article  Google Scholar 

  27. Guo, X., Wei, P.: Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces. Int. J. Solids Struct. 51, 3735–3751 (2014)

    Article  Google Scholar 

  28. Yuan, X., Jiang, Q., Yang, F.: Wave reflection and transmission in rotating and stressed pyroelectric half-planes. Appl. Math. Comput. 289, 281–297 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Othmani, C., Zhang, H.: Lamb wave propagation in anisotropic multilayered piezoelectric laminates made of PVDF-with initial stresses. Compos. Struct. 240, 112085 (2020)

    Article  Google Scholar 

  30. Biot, M.A.: The influence of initial stress on elastic waves. J. Appl. Phys. 11(8), 522–530 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fang, H., Yang, J., Jiang, Q.: Rotation sensitivity of waves propagating in a rotating piezoelectric plate. Int. J. Solids Struct. 39(20), 5241–5251 (2002)

    Article  MATH  Google Scholar 

  32. Mahmoud, S.R.: An analytical solution for the effect of initial stress, rotation, magnetic field and a periodic loading in a thermo-viscoelastic medium with a spherical cavity. Mech. Adv. Mater. Struct. 23(1), 1–7 (2015)

    Article  Google Scholar 

  33. Guha, S., Singh, A.K.: Effects of initial stresses on reflection phenomenon of plane waves at the free surface of a rotating piezo-thermoelastic fiber-reinforced composite half-space. Int. J. Mech. Sci. 181, 105766 (2020)

    Article  Google Scholar 

  34. Pal, M.K., Singh, A.K.: Analysis of reflection and transmission phenomenon at distinct bonding interfaces in a rotating pre-stressed functionally graded piezoelectric–orthotropic structure. Appl. Math. Comput. 409, 126398 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Aljadani, M.H., Zenkour, A.M.: Effect of hydrostatic initial stress on a rotating half-space in the context of a two-relaxation power-law model. Mathematics 10, 4727 (2022)

    Article  Google Scholar 

  36. Nayfeh, A.H.: Wave Propagation in Layered Anisotropic Media: with Application to Composites. Elsevier, Amsterdam (1995)

    MATH  Google Scholar 

  37. Sharma, J.N., Pal, M., Chand, D.: Propagation characteristics of Rayleigh waves in transversely isotropic piezo-thermoelastic materials. J. Sound Vib. 284(1–2), 227–248 (2005)

    Article  Google Scholar 

  38. Kuang, Z.B., Yuan, X.G.: Reflection and transmission of waves in pyroelectric and piezoelectric materials. J. Sound Vib. 330, 1111–1120 (2011)

    Article  Google Scholar 

  39. Sharma, J.N., Walia, V., Gupta, S.K.: Reflection of piezo-thermoelastic waves from the charge and stress-free boundary of a transversely isotropic half space. Int. J. Eng. Sci. 46, 131–146 (2008)

    Article  MATH  Google Scholar 

  40. Alshaikh, F.A.: Reflection of quasi vertical transverse waves in the thermo-piezoelectric material under initial stress (Green–Lindsay model). Int. J. Pure Appl. Sci. Technol. 13, 27–39 (2012)

    Google Scholar 

Download references

Acknowledgements

Authors deeply acknowledge the valuable contribution of Reviewer in light of useful suggestions and valuable comments provided for the improvement of this manuscript. The First author is grateful to Guru Ghasidas Vishwavidyalaya Bilaspur, Chhattisgarh, India, for approving the proposal under "Research Seed Money Grant Scheme" and is also thankful to the Department of Science and Technology, New Delhi, India, for approving FIST program (Ref. No. SR/FST/MS-I/2022/122 dated 19 December 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

$$\begin{aligned} \varepsilon^{\left( i \right)} & = \frac{{T_{0}^{\left( i \right)} \left( {\beta_{11}^{\left( i \right)} } \right)^{2} }}{{\rho^{\left( i \right)} c_{E}^{\left( i \right)} c_{11}^{\left( i \right)} }},\,\,\overline{\beta }^{\left( i \right)} = \frac{{\beta_{33}^{\left( i \right)} }}{{\beta_{11}^{\left( i \right)} }},\,\,\overline{K}^{\left( i \right)} = \frac{{K_{33}^{\left( i \right)} }}{{K_{11}^{\left( i \right)} }},\,\,\overline{\varepsilon }^{\left( i \right)} = \frac{{\varepsilon_{11}^{\left( i \right)} }}{{\varepsilon_{33}^{\left( i \right)} }},\,\,p^{\left( i \right)} = \frac{{p_{3}^{\left( i \right)} c_{11}^{\left( i \right)} }}{{\beta_{11}^{\left( i \right)} e_{33}^{\left( i \right)} }},\,\,\eta^{\left( i \right)} = \frac{{\varepsilon_{33}^{\left( i \right)} c_{11}^{\left( i \right)} }}{{\left( {e_{33}^{\left( i \right)} } \right)^{2} }},\,\,c_{1}^{\left( i \right)} = \frac{{c_{33}^{\left( i \right)} }}{{c_{11}^{\left( i \right)} }}, \\ c_{2}^{\left( i \right)} & = \frac{{c_{44}^{\left( i \right)} }}{{c_{11}^{\left( i \right)} }},c_{3}^{\left( i \right)} = \frac{{c_{13}^{\left( i \right)} + c_{44}^{\left( i \right)} }}{{c_{11}^{\left( i \right)} }},\,\,e_{1}^{\left( i \right)} = \frac{{e_{15}^{\left( i \right)} + e_{31}^{\left( i \right)} }}{{e_{33}^{\left( i \right)} }},e_{2}^{\left( i \right)} = \frac{{e_{15}^{\left( i \right)} }}{{e_{33}^{\left( i \right)} }},\,\,e_{3}^{\left( i \right)} = \frac{{e_{31}^{\left( i \right)} }}{{e_{33}^{\left( i \right)} }},\,\,\overline{K}_{1}^{\left( i \right)} = \frac{{K_{11}^{ * \left( i \right)} }}{{\omega^{ * } K_{11}^{\left( i \right)} }},\,\,\overline{K}_{2}^{\left( i \right)} = \frac{{K_{33}^{ * \left( i \right)} }}{{\omega^{ * } K_{11}^{\left( i \right)} }}, \\ \end{aligned}$$
$$\begin{aligned} q_{11}^{\left( i \right)} & = \left( {1 + \tau_{xx}^{0} } \right) + \left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)\left( {m^{\left( i \right)} } \right)^{2} + 2\tau_{xz}^{0} m^{\left( i \right)} - \chi_{1}^{\left( i \right)} ,\,\,q_{12}^{\left( i \right)} = c_{3}^{\left( i \right)} m^{\left( i \right)} - \chi_{2}^{\left( i \right)} ,\,\,q_{13}^{\left( i \right)} = e_{1}^{\left( i \right)} m^{\left( i \right)} ,\,\, \\ q_{14}^{\left( i \right)} & = i\frac{c}{\omega },\,\,q_{21}^{\left( i \right)} = c_{3}^{\left( i \right)} m^{\left( i \right)} + \chi_{2}^{\left( i \right)} ,\,\,q_{22}^{\left( i \right)} = \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} } \right) + \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)\left( {m^{\left( i \right)} } \right)^{2} + 2\tau_{xz}^{0} m^{\left( i \right)} - \chi_{1}^{\left( i \right)} , \\ q_{23}^{\left( i \right)} & = e_{2}^{\left( i \right)} + \left( {m^{\left( i \right)} } \right)^{2} ,\,\,q_{24}^{\left( i \right)} = i\overline{\beta }^{\left( i \right)} m^{\left( i \right)} \frac{c}{\omega },\,\,q_{31}^{\left( i \right)} = e_{1}^{\left( i \right)} m^{\left( i \right)} ,\,\,q_{32}^{\left( i \right)} = e_{2}^{\left( i \right)} + \left( {m^{\left( i \right)} } \right)^{2} ,\,\, \\ q_{33}^{\left( i \right)} & = - \eta^{\left( i \right)} \left( {\overline{\varepsilon }^{\left( i \right)} + \left( {m^{\left( i \right)} } \right)^{2} } \right),\,\,q_{34}^{\left( i \right)} = - ip^{\left( i \right)} m^{\left( i \right)} \frac{c}{\omega },\,\,q_{41}^{\left( i \right)} = \varepsilon^{\left( i \right)} ,\,\,q_{42}^{\left( i \right)} = \overline{\beta }^{\left( i \right)} m^{\left( i \right)} \varepsilon^{\left( i \right)} ,\,q_{43}^{\left( i \right)} = - p^{\left( i \right)} m^{\left( i \right)} \varepsilon^{\left( i \right)} , \\ q_{44}^{\left( i \right)} & = - i\frac{c}{\omega }\left( {1 - \frac{i}{{c^{2} \omega }}\tau_{2} \left( {\overline{K}_{1}^{\left( i \right)} + \left( {m^{\left( i \right)} } \right)^{2} \overline{K}_{2}^{\left( i \right)} } \right) - \frac{1}{{c^{2} }}\tau_{1} \left( {1 + \left( {m^{\left( i \right)} } \right)^{2} \overline{K}^{\left( i \right)} } \right)} \right), \\ \chi_{1}^{\left( i \right)} & = c^{2} + \frac{{\Omega^{2} c^{2} }}{{\omega^{2} }},\,\,\chi_{2}^{\left( i \right)} = 2i\frac{\Omega }{\omega }c^{2} ,\,\,\tau_{1} = \frac{{\tau_{T} + \frac{i}{\omega }}}{{\frac{{\tau_{q}^{2} }}{2} + i\frac{{\tau_{q} }}{\omega } - \frac{1}{{\omega^{2} }}}},\,\,\tau_{2} = \frac{{\tau_{\upsilon } + \frac{i}{\omega }}}{{\frac{{\tau_{q}^{2} }}{2} + i\frac{{\tau_{q} }}{\omega } - \frac{1}{{\omega^{2} }}}}, \\ \end{aligned}$$
$$\begin{aligned} H_{1\zeta }^{\left( 1 \right)} & = c_{4}^{\left( 1 \right)} + c_{1}^{\left( 1 \right)} m_{\zeta }^{\left( 1 \right)} W_{\zeta }^{\left( 1 \right)} + m_{\zeta }^{\left( 1 \right)} \Phi_{\zeta }^{\left( 1 \right)} + i\frac{c}{\omega }\overline{\beta }^{\left( 1 \right)} E_{\zeta }^{\left( 1 \right)} ,\,\,H_{2\zeta }^{\left( 1 \right)} = c_{2}^{\left( 1 \right)} m_{\zeta }^{\left( 1 \right)} + c_{2}^{\left( 1 \right)} W_{\zeta }^{\left( 1 \right)} + e_{2}^{\left( 1 \right)} \Phi_{\zeta }^{\left( 1 \right)} , \\ H_{3\zeta }^{\left( 1 \right)} & = e_{3}^{\left( 1 \right)} + m_{\zeta }^{\left( 1 \right)} W_{\zeta }^{\left( 1 \right)} - \eta^{\left( 1 \right)} m_{\zeta }^{\left( 1 \right)} \Phi_{\zeta }^{\left( 1 \right)} - i\frac{c}{\omega }p^{\left( 1 \right)} E_{\zeta }^{\left( 1 \right)} ,\,\,H_{1\xi }^{\left( 1 \right)} = c_{4}^{\left( 1 \right)} + c_{1}^{\left( 1 \right)} m_{\xi }^{\left( 1 \right)} W_{\xi }^{\left( 1 \right)} + m_{\xi }^{\left( 1 \right)} \Phi_{\xi }^{\left( 1 \right)} + i\frac{c}{\omega }\overline{\beta }^{\left( 1 \right)} E_{\xi }^{\left( 1 \right)} , \\ H_{2\xi }^{\left( 1 \right)} & = c_{2}^{\left( 1 \right)} m_{\xi }^{\left( 1 \right)} + c_{2}^{\left( 1 \right)} W_{\xi }^{\left( 1 \right)} + e_{2}^{\left( 1 \right)} \Phi_{\xi }^{\left( 1 \right)} ,\,\,H_{3\xi }^{\left( 1 \right)} = e_{3}^{\left( 1 \right)} + m_{\xi }^{\left( 1 \right)} W_{\xi }^{\left( 1 \right)} - \eta^{\left( 1 \right)} m_{\xi }^{\left( 1 \right)} \Phi_{\xi }^{\left( 1 \right)} - i\frac{c}{\omega }p^{\left( 1 \right)} E_{\xi }^{\left( 1 \right)} , \\ H_{1\xi }^{\left( 2 \right)} & = c_{4}^{\left( 2 \right)} + c_{1}^{\left( 2 \right)} m_{\xi }^{\left( 2 \right)} W_{\xi }^{\left( 2 \right)} + m_{\xi }^{\left( 2 \right)} \Phi_{\xi }^{\left( 2 \right)} + i\frac{c}{\omega }\overline{\beta }^{\left( 2 \right)} E_{\xi }^{\left( 2 \right)} ,\,\,H_{2\xi }^{\left( 2 \right)} = c_{2}^{\left( 2 \right)} m_{\xi }^{\left( 2 \right)} + c_{2}^{\left( 2 \right)} W_{\xi }^{\left( 2 \right)} + e_{2}^{\left( 2 \right)} \Phi_{\xi }^{\left( 2 \right)} , \\ H_{3\xi }^{\left( 2 \right)} & = e_{3}^{\left( 2 \right)} + m_{\xi }^{\left( 2 \right)} W_{\xi }^{\left( 2 \right)} - \eta^{\left( 2 \right)} m_{\xi }^{\left( 2 \right)} \Phi_{\xi }^{\left( 2 \right)} - i\frac{c}{\omega }p^{\left( 2 \right)} E_{\xi }^{\left( 2 \right)} \\ \end{aligned}$$
$$\begin{aligned} L^{\left( i \right)} \left( {m_{\xi }^{\left( i \right)} } \right) & = i\frac{c}{\omega }\left[ {\left( {m^{\left( i \right)} } \right)^{4} \left\{ {c_{3}^{\left( i \right)} \left( {\overline{\beta }^{\left( i \right)} \eta^{\left( i \right)} - p^{\left( i \right)} } \right) - 1 - \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)\eta^{\left( i \right)} + \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)p^{\left( i \right)} e_{1}^{\left( i \right)} + e_{1}^{\left( i \right)} \overline{\beta }^{\left( i \right)} } \right\}} \right. \\ & \quad + \left( {m^{\left( i \right)} } \right)^{3} \left\{ {2\tau_{xz}^{0} p^{\left( i \right)} e_{1}^{\left( i \right)} - \left( {\overline{\beta }^{\left( i \right)} \eta^{\left( i \right)} - p^{\left( i \right)} } \right)\chi_{2}^{\left( i \right)} - 2\tau_{xz}^{0} \eta^{\left( i \right)} } \right\} + \left( {m^{\left( i \right)} } \right)^{2} \left\{ {c_{3}^{\left( i \right)} \left( {\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \overline{\beta }^{\left( i \right)} - p^{\left( i \right)} e_{2}^{\left( i \right)} } \right)} \right. \\ & \quad \left. { + \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)e_{1}^{\left( i \right)} p^{\left( i \right)} + \overline{\beta }^{\left( i \right)} e_{1}^{\left( i \right)} e_{2}^{\left( i \right)} - 2e_{2}^{\left( i \right)} - \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)\eta^{\left( i \right)} - \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} } \right\} \\ & \quad \left. { + m^{\left( i \right)} \left\{ { - \chi_{2}^{\left( i \right)} \left( {\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \overline{\beta }^{\left( i \right)} - p^{\left( i \right)} e_{2}^{\left( i \right)} } \right) - 2\tau_{xz}^{0} \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} } \right\} - \left\{ {\left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} + \left( {e_{2}^{\left( i \right)} } \right)^{2} } \right\}} \right], \\ \end{aligned}$$
$$\begin{aligned} L_{1}^{\left( i \right)} \left( {m_{\xi }^{\left( i \right)} } \right) & = i\frac{c}{\omega }\left[ { - \left( {m^{\left( i \right)} } \right)^{5} \left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)\left( {\overline{\beta }^{\left( i \right)} \eta^{\left( i \right)} - p^{\left( i \right)} } \right) - \left( {m^{\left( i \right)} } \right)^{4} 2\tau_{xz}^{0} \left( {\overline{\beta }^{\left( i \right)} \eta^{\left( i \right)} - p^{\left( i \right)} } \right)} \right. \\ & \quad - \left( {m^{\left( i \right)} } \right)^{3} \left\{ {\left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)} \right.\left( {\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \overline{\beta }^{\left( i \right)} - p^{\left( i \right)} e_{2}^{\left( i \right)} } \right)\\ &\quad - \left( {c_{3}^{\left( i \right)} \eta^{\left( i \right)} + e_{1}^{\left( i \right)} } \right) + e_{1}^{\left( i \right)} c_{3}^{\left( i \right)} p^{\left( i \right)} + \left( {e_{1}^{\left( i \right)} } \right)^{2} \overline{\beta }^{\left( i \right)} + \left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) \\ & \quad \left. {\left( {\overline{\beta }^{\left( i \right)} \eta^{\left( i \right)} - p^{\left( i \right)} } \right)} \right\} - \left( {m^{\left( i \right)} } \right)^{2} \left\{ {e_{1}^{\left( i \right)} \chi_{2}^{\left( i \right)} p^{\left( i \right)} + 2\tau_{xz}^{0} \left( {\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \overline{\beta }^{\left( i \right)} - p^{\left( i \right)} e_{2}^{\left( i \right)} } \right) - \chi_{2}^{\left( i \right)} \eta^{\left( i \right)} } \right\} \\ & \quad \left. { - m^{\left( i \right)} \left\{ {\left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)\left( {\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \overline{\beta }^{\left( i \right)} - p^{\left( i \right)} e_{2}^{\left( i \right)} } \right) - \left( {c_{3}^{\left( i \right)} \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} + e_{1}^{\left( i \right)} e_{2}^{\left( i \right)} } \right)} \right\} + \chi_{2}^{\left( i \right)} \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} } \right], \\ \end{aligned}$$
$$\begin{aligned} L_{2}^{\left( i \right)} \left( {m_{\xi }^{\left( i \right)} } \right) & = i\frac{c}{\omega }\left[ { - \left( {m^{\left( i \right)} } \right)^{5} \left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)\left\{ {\left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)p^{\left( i \right)} + \overline{\beta }^{\left( i \right)} } \right\} - \left( {m^{\left( i \right)} } \right)^{4} \left\{ {2\tau_{xz}^{0} p^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)} \right.} \right. \\ & \quad \left. { + 2\tau_{xz}^{0} \left( {\left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)p^{\left( i \right)} + \overline{\beta }^{\left( i \right)} } \right)} \right\} + \left( {m^{\left( i \right)} } \right)^{3} \left\{ {\left( {p^{\left( i \right)} c_{3}^{\left( i \right)} + \overline{\beta }^{\left( i \right)} e_{1}^{\left( i \right)} } \right)c_{3}^{\left( i \right)} } \right.\\ &\quad - \left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)\left( {\left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)p^{\left( i \right)} + \overline{\beta }^{\left( i \right)} } \right) \\ & \quad \left. { - \left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)\left( {\left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)p^{\left( i \right)} + \overline{\beta }^{\left( i \right)} e_{2}^{\left( i \right)} } \right) - 4\left( {\tau_{xz}^{0} } \right)^{2} p^{\left( i \right)} - \left( {\left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)e_{1}^{\left( i \right)} - c_{3}^{\left( i \right)} } \right)} \right\} \\ & \quad + \left( {m^{\left( i \right)} } \right)^{2} \left\{ {p^{\left( i \right)} c_{3}^{\left( i \right)} \chi_{2}^{\left( i \right)} } \right. - \chi_{2}^{\left( i \right)} \left( {p^{\left( i \right)} c_{3}^{\left( i \right)} + \overline{\beta }^{\left( i \right)} e_{1}^{\left( i \right)} } \right) \\ &\quad- 2\tau_{xz}^{0} p^{\left( i \right)} \left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) - 2\tau_{xz}^{0} \left( {\left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)p^{\left( i \right)} + \overline{\beta }^{\left( i \right)} e_{2}^{\left( i \right)} } \right) \\ & \quad \left. { - \left( {2\tau_{xz}^{0} e_{1}^{\left( i \right)} - \chi_{2}^{\left( i \right)} } \right)} \right\} + m^{\left( i \right)} \left\{ { - p^{\left( i \right)} \left( {\chi_{2}^{\left( i \right)} } \right)^{2} - \left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)\left( {\left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)p^{\left( i \right)} + \overline{\beta }^{\left( i \right)} e_{2}^{\left( i \right)} } \right)} \right. \\ & \quad \left. { - \left. {\left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)e_{1}^{\left( i \right)} - e_{2}^{\left( i \right)} c_{3}^{\left( i \right)} } \right\} + e_{2}^{\left( i \right)} \chi_{2}^{\left( i \right)} } \right], \\ \end{aligned}$$
$$\begin{aligned} L_{3}^{\left( i \right)} \left( {m_{\xi }^{\left( i \right)} } \right) & = \left( {m^{\left( i \right)} } \right)^{6} \left\{ {\left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)\left( {1 + \eta^{\left( i \right)} \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)} \right)} \right\} + \left( {m^{\left( i \right)} } \right)^{5} \left\{ {2\tau_{xz}^{0} \eta^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)} \right. \\ & \quad + 2\tau_{xz}^{0} \left. {\left( {1 + \eta^{\left( i \right)} \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)} \right)} \right\} + \left( {m^{\left( i \right)} } \right)^{4} \\ &\quad\left\{ { - c_{3}^{\left( i \right)} \left( {\eta^{\left( i \right)} c_{3}^{\left( i \right)} + e_{1}^{\left( i \right)} } \right) + e_{1}^{\left( i \right)} \left( {e_{1}^{\left( i \right)} \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right) - c_{3}^{\left( i \right)} } \right) + \left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)} \right. \\ & \quad \times \left( {1 + \eta^{\left( i \right)} \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right)} \right) + \left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)\left( \eta^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) \right.\\ &\left. \left.\quad+ \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right) + 2e_{2}^{\left( i \right)} \right) + 4\left( {\tau_{xz}^{0} } \right)^{2} \eta^{\left( i \right)} \right\} \\ & \quad + \left( {m^{\left( i \right)} } \right)^{3} \left\{ {\chi_{2}^{\left( i \right)} \left( {\eta^{\left( i \right)} c_{3}^{\left( i \right)} + e_{1}^{\left( i \right)} } \right) - c_{3}^{\left( i \right)} \eta^{\left( i \right)} \chi_{2}^{\left( i \right)} + \left( {2\tau_{xz}^{0} e_{1}^{\left( i \right)} - \chi_{2}^{\left( i \right)} } \right)e_{1}^{\left( i \right)} + 2\tau_{xz}^{0} \eta^{\left( i \right)} \left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)} \right. \\ & \quad \left. { + 2\tau_{xz}^{0} \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right) + 2\tau_{xz}^{0} \left( {\eta^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) + \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right) + 2e_{2}^{\left( i \right)} } \right)} \right\} + \left( {m^{\left( i \right)} } \right)^{2} \\ \end{aligned}$$
$$\begin{aligned} & \quad \left\{ {\eta^{\left( i \right)} \left( {\chi_{2}^{\left( i \right)} } \right)^{2} - \left( {e_{1}^{\left( i \right)} e_{2}^{\left( i \right)} + \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} c_{3}^{\left( i \right)} } \right)c_{3}^{\left( i \right)} + e_{1}^{\left( i \right)} \left( {e_{1}^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) - e_{2}^{\left( i \right)} c_{3}^{\left( i \right)} } \right) + \left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)} \right. \\ & \quad \times \left( {\eta^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) + \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \left( {c_{1}^{\left( i \right)} + \tau_{zz}^{0} } \right) + 2e_{2}^{\left( i \right)} } \right) + \left( {c_{2}^{\left( i \right)} + \tau_{zz}^{0} } \right)\left( {\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) + \left( {e_{2}^{\left( i \right)} } \right)^{2} } \right) \\ & \quad \left. { + 4\left( {\tau_{xz}^{0} } \right)^{2} \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} } \right\} + m^{\left( i \right)} \left\{ {\left( {e_{1}^{\left( i \right)} e_{2}^{\left( i \right)} + \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} c_{3}^{\left( i \right)} } \right)\chi_{2}^{\left( i \right)} - \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} c_{3}^{\left( i \right)} \chi_{2}^{\left( i \right)} - e_{1}^{\left( i \right)} e_{2}^{\left( i \right)} \chi_{2}^{\left( i \right)} } \right. \\ & \quad \left. { + 2\tau_{xz}^{0} \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) + 2\tau_{xz}^{0} \left( {\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) + \left( {e_{2}^{\left( i \right)} } \right)^{2} } \right)} \right\} + \eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \left( {\chi_{2}^{\left( i \right)} } \right)^{2} \\ & \quad + \left( {1 + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right)\left( {\eta^{\left( i \right)} \overline{\varepsilon }^{\left( i \right)} \left( {c_{2}^{\left( i \right)} + \tau_{xx}^{0} - \chi_{1}^{\left( i \right)} } \right) + \left( {e_{2}^{\left( i \right)} } \right)^{2} } \right), \\ \end{aligned}$$
$$\begin{aligned} G_{11} & = - k_{n} W_{1}^{\left( 1 \right)} ,\,\,G_{12} = - k_{n} W_{3}^{\left( 1 \right)} ,\,\,G_{13} = - k_{n} W_{5}^{\left( 1 \right)} ,\,\,G_{14} = - k_{n} W_{7}^{\left( 1 \right)} , \\ G_{15} & = {\text{i}}k\left( {H_{12}^{\left( 2 \right)} + \tau_{zx}^{0} W_{2}^{\left( 2 \right)} + \tau_{zz}^{0} m_{2}^{\left( 2 \right)} W_{2}^{\left( 2 \right)} } \right) + k_{n} W_{2}^{\left( 2 \right)} , \\ G_{16} & = {\text{i}}k\left( {H_{14}^{\left( 2 \right)} + \tau_{zx}^{0} W_{4}^{\left( 2 \right)} + \tau_{zz}^{0} m_{4}^{\left( 2 \right)} W_{4}^{\left( 2 \right)} } \right) + k_{n} W_{4}^{\left( 2 \right)} , \\ G_{17} & = {\text{i}}k\left( {H_{16}^{\left( 2 \right)} + \tau_{zx}^{0} W_{6}^{\left( 2 \right)} + \tau_{zz}^{0} m_{6}^{\left( 2 \right)} W_{6}^{\left( 2 \right)} } \right) + k_{n} W_{6}^{\left( 2 \right)} , \\ G_{18} & = {\text{i}}k\left( {H_{18}^{\left( 2 \right)} + \tau_{zx}^{0} W_{8}^{\left( 2 \right)} + \tau_{zz}^{0} m_{8}^{\left( 2 \right)} W_{8}^{\left( 2 \right)} } \right) + k_{n} W_{8}^{\left( 2 \right)} , \\ G_{21} & = - k_{t} ,\,\,G_{22} = - k_{t} ,\,\,G_{23} = - k_{t} ,\,\,G_{24} = - k_{t} ,\,\,G_{25} = {\text{i}}k\left( {H_{22}^{\left( 2 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{2}^{\left( 2 \right)} } \right) + k_{t} , \\ \end{aligned}$$
$$\begin{aligned} G_{26} & = {\text{i}}k\left( {H_{24}^{\left( 2 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{4}^{\left( 2 \right)} } \right) + k_{t} ,\,\,G_{27} = {\text{i}}k\left( {H_{26}^{\left( 2 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{6}^{\left( 2 \right)} } \right) + k_{t} , \\ G_{28} & = {\text{i}}k\left( {H_{28}^{\left( 2 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{8}^{\left( 2 \right)} } \right) + k_{t} ,\,\,G_{31} = - \left( {H_{11}^{\left( 1 \right)} + \tau_{zx}^{0} W_{1}^{\left( 1 \right)} + \tau_{zz}^{0} m_{1}^{\left( 1 \right)} W_{1}^{\left( 1 \right)} } \right), \\ G_{32} & = - \left( {H_{13}^{\left( 1 \right)} + \tau_{zx}^{0} W_{3}^{\left( 1 \right)} + \tau_{zz}^{0} m_{3}^{\left( 1 \right)} W_{3}^{\left( 1 \right)} } \right),\,\,G_{33} = - \left( {H_{15}^{\left( 1 \right)} + \tau_{zx}^{0} W_{5}^{\left( 1 \right)} + \tau_{zz}^{0} m_{5}^{\left( 1 \right)} W_{5}^{\left( 1 \right)} } \right), \\ G_{34} & = - \left( {H_{17}^{\left( 1 \right)} + \tau_{zx}^{0} W_{7}^{\left( 1 \right)} + \tau_{zz}^{0} m_{7}^{\left( 1 \right)} W_{7}^{\left( 1 \right)} } \right),\,\,G_{35} = \left( {H_{12}^{\left( 2 \right)} + \tau_{zx}^{0} W_{2}^{\left( 2 \right)} + \tau_{zz}^{0} m_{2}^{\left( 2 \right)} W_{2}^{\left( 2 \right)} } \right), \\ G_{36} & = \left( {H_{14}^{\left( 2 \right)} + \tau_{zx}^{0} W_{4}^{\left( 2 \right)} + \tau_{zz}^{0} m_{4}^{\left( 2 \right)} W_{4}^{\left( 2 \right)} } \right),\,\,G_{37} = \left( {H_{16}^{\left( 2 \right)} + \tau_{zx}^{0} W_{6}^{\left( 2 \right)} + \tau_{zz}^{0} m_{6}^{\left( 2 \right)} W_{6}^{\left( 2 \right)} } \right), \\ G_{38} & = \left( {H_{18}^{\left( 2 \right)} + \tau_{zx}^{0} W_{8}^{\left( 2 \right)} + \tau_{zz}^{0} m_{8}^{\left( 2 \right)} W_{8}^{\left( 2 \right)} } \right),\,\,G_{30} = \left( {H_{1\zeta }^{\left( 1 \right)} + \tau_{zx}^{0} W_{\zeta }^{\left( 1 \right)} + \tau_{zz}^{0} m_{\zeta }^{\left( 1 \right)} W_{\zeta }^{\left( 1 \right)} } \right), \\ \end{aligned}$$
$$\begin{aligned} G_{41} & = - \left( {H_{21}^{\left( 1 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{1}^{\left( 1 \right)} } \right),\,\,G_{42} = - \left( {H_{23}^{\left( 1 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{3}^{\left( 1 \right)} } \right), \\ G_{43} & = - \left( {H_{25}^{\left( 1 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{5}^{\left( 1 \right)} } \right),\,\,G_{44} = - \left( {H_{27}^{\left( 1 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{7}^{\left( 1 \right)} } \right), \\ G_{45} & = \left( {H_{22}^{\left( 2 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{2}^{\left( 2 \right)} } \right),\,\,G_{46} = \left( {H_{24}^{\left( 2 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{4}^{\left( 2 \right)} } \right), \\ G_{47} & = \left( {H_{26}^{\left( 2 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{6}^{\left( 2 \right)} } \right),\,\,G_{48} = \left( {H_{28}^{\left( 2 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{8}^{\left( 2 \right)} } \right), \\ G_{40} & = \left( {H_{2\zeta }^{\left( 1 \right)} + \tau_{zx}^{0} + \tau_{zz}^{0} m_{\zeta }^{\left( 1 \right)} } \right),\,\,G_{51} = - k_{e} \Phi_{1}^{\left( 1 \right)} ,\,\,G_{52} = - k_{e} \Phi_{3}^{\left( 1 \right)} ,\,\,G_{53} = - k_{e} \Phi_{5}^{\left( 1 \right)} , \\ G_{54} & = - k_{e} \Phi_{7}^{\left( 1 \right)} ,\,\,G_{55} = {\text{i}}kH_{32}^{\left( 2 \right)} + k_{e} \Phi_{2}^{\left( 2 \right)} ,\,\,G_{56} = {\text{i}}kH_{34}^{\left( 2 \right)} + k_{e} \Phi_{4}^{\left( 2 \right)} ,\,\,G_{57} = {\text{i}}kH_{36}^{\left( 2 \right)} + k_{e} \Phi_{6}^{\left( 2 \right)} , \\ \end{aligned}$$
$$\begin{aligned} G_{58} & = {\text{i}}kH_{38}^{\left( 2 \right)} + k_{e} \Phi_{8}^{\left( 2 \right)} ,\,\,G_{61} = - H_{31}^{\left( 1 \right)} ,\,\,G_{62} = - H_{33}^{\left( 1 \right)} ,\,\,G_{63} = - H_{35}^{\left( 1 \right)} ,\,\,G_{64} = - H_{37}^{\left( 1 \right)} , \\ G_{65} & = H_{32}^{\left( 2 \right)} ,\,\,G_{66} = H_{34}^{\left( 2 \right)} ,\,\,G_{67} = H_{36}^{\left( 2 \right)} ,\,\,G_{68} = H_{38}^{\left( 2 \right)} ,\,\,G_{71} = - k_{c} E_{1}^{\left( 1 \right)} ,\,\,G_{72} = - k_{c} E_{3}^{\left( 1 \right)} , \\ G_{73} & = - k_{c} E_{5}^{\left( 1 \right)} ,\,\,G_{74} = - k_{c} E_{7}^{\left( 1 \right)} ,\,\,G_{75} = \left( {{\text{i}}k\psi_{2} m_{2}^{\left( 2 \right)} + k_{c} } \right)E_{2}^{\left( 2 \right)} ,\,\,G_{76} = \left( {{\text{i}}k\psi_{2} m_{4}^{\left( 2 \right)} + k_{c} } \right)E_{4}^{\left( 2 \right)} , \\ G_{77} & = \left( {{\text{i}}k\psi_{2} m_{6}^{\left( 2 \right)} + k_{c} } \right)E_{6}^{\left( 2 \right)} ,\,\,G_{78} = \left( {{\text{i}}k\psi_{2} m_{8}^{\left( 2 \right)} + k_{c} } \right)E_{8}^{\left( 2 \right)} ,\,\,G_{81} = - m_{1}^{\left( 1 \right)} E_{1}^{\left( 1 \right)} , \\ G_{82} & = - m_{3}^{\left( 1 \right)} E_{3}^{\left( 1 \right)} ,\,\,G_{83} = - m_{5}^{\left( 1 \right)} E_{5}^{\left( 1 \right)} ,\,\,G_{84} = - m_{7}^{\left( 1 \right)} E_{7}^{\left( 1 \right)} ,\,\,G_{85} = \frac{{\psi_{2} }}{{\psi_{1} }}m_{2}^{\left( 2 \right)} E_{2}^{\left( 2 \right)} , \\ G_{86} & = \frac{{\psi_{2} }}{{\psi_{1} }}m_{4}^{\left( 2 \right)} E_{4}^{\left( 2 \right)} ,\,\,G_{87} = \frac{{\psi_{2} }}{{\psi_{1} }}m_{6}^{\left( 2 \right)} E_{6}^{\left( 2 \right)} ,\,\,G_{88} = \frac{{\psi_{2} }}{{\psi_{1} }}m_{8}^{\left( 2 \right)} E_{8}^{\left( 2 \right)} . \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paswan, B., Singh, P., Sahu, S.A. et al. Dynamic response of imperfect interfaces on the reflection and transmission of the waves in context of generalised thermo-elasticity. Acta Mech 234, 6041–6068 (2023). https://doi.org/10.1007/s00707-023-03695-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03695-z

Navigation