Skip to main content
Log in

Nonlinear thermal postbuckling of functionally graded graphene-reinforced composite laminated plates with circular or elliptical delamination

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This research investigates the nonlinear thermal stability responses of functionally graded graphene-reinforced composite (FG-GRC) laminated plates with embedded circular and elliptical delamination as well as edge delamination, subjected to a uniform temperature rise and a variety of mechanical boundary conditions. The thermomechanical properties of the GRCs are estimated using the extended Halpin–Tsai micromechanical model that incorporates efficiency parameters to take into account nanoscale size and surface effects of the graphene reinforcement. The von Karman geometrical nonlinearity is adopted in a solution based on the third-order shear deformation theory. The nonlinear equilibrium equations derived by the minimum total potential energy principle are solved using the Ritz method in conjunction with the Newton–Raphson iterative procedure. Parametric studies reveal that the types of graphene distribution pattern and geometry of delamination zones have a substantial effect on the thermal equilibrium paths and buckling temperature of the GRC delaminated plates. FG-X graphene sheet pattern raises the critical buckling temperature and compressive strength of the baselaminate and reduces the nonlinear thermal postbuckling deflection; however, it causes a significant increase in normal stress distribution at the top and the bottom surfaces of the delaminated plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared since they are parts of our ongoing research studies.

References

  1. Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Google Scholar 

  2. Potts, J.R., et al.: Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)

    Google Scholar 

  3. Das, T.K., Prusty, S.: Graphene-based polymer composites and their applications. Polym.-Plast. Technol. Eng. 52(4), 319–331 (2013)

    Google Scholar 

  4. Blees, M.K., et al.: Graphene kirigami. Nature 524(7564), 204–207 (2015)

    Google Scholar 

  5. Cai, J., Akbarzadeh, A.: Hierarchical kirigami-inspired graphene and carbon nanotube metamaterials: tunability of thermo-mechanic properties. Mater. Des. 206, 109811 (2021)

    Google Scholar 

  6. Reddy, C.D., Rajendran, S., Liew, K.M.: Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17(3), 864–870 (2006)

    Google Scholar 

  7. Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Google Scholar 

  8. Lee, C., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Google Scholar 

  9. Scarpa, F., Adhikari, S., Srikantha Phani, A.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6), 065709 (2009)

    Google Scholar 

  10. Magnin, Y., et al.: Thermal expansion of free-standing graphene: benchmarking semi-empirical potentials. J. Phys.: Condens. Matter 26(18), 185401 (2014)

    Google Scholar 

  11. Cadelano, E., et al.: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102(23), 235502 (2009)

    Google Scholar 

  12. Ni, Z., et al.: Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B 405(5), 1301–1306 (2010)

    Google Scholar 

  13. Chen, S., Chrzan, D.C.: Monte Carlo simulation of temperature-dependent elastic properties of graphene. Phys. Rev. B 84(19), 195409 (2011)

    Google Scholar 

  14. Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)

    Google Scholar 

  15. Zhang, C., et al.: Nano-architected metamaterials: carbon nanotube-based nanotrusses. Carbon 131, 38–46 (2018)

    Google Scholar 

  16. Zhao, X., et al.: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43(5), 2357–2363 (2010)

    Google Scholar 

  17. Milani, M.A., et al.: Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos. Sci. Technol. 84, 1–7 (2013)

    Google Scholar 

  18. Putz, K.W., et al.: High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv. Funct. Mater. 20(19), 3322–3329 (2010)

    Google Scholar 

  19. Kulkarni, D.D., et al.: Graphene oxide−polyelectrolyte nanomembranes. ACS Nano 4(8), 4667–4676 (2010)

    Google Scholar 

  20. Zhao, S., et al.: Functionally graded graphene reinforced composite structures: a review. Eng. Struct. 210, 110339 (2020)

    Google Scholar 

  21. Rafiee, M.A., et al.: Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95(22), 223103 (2009)

    Google Scholar 

  22. Parashar, A., Mertiny, P.: Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite. Nanoscale Res. Lett. 7(1), 515 (2012)

    Google Scholar 

  23. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. B Eng. 110, 132–140 (2017)

    Google Scholar 

  24. Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Google Scholar 

  25. Wu, H., Yang, J., Kitipornchai, S.: Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017)

    Google Scholar 

  26. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Google Scholar 

  27. Shen, H.-S., et al.: Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Compos. B Eng. 119, 67–78 (2017)

    Google Scholar 

  28. Shen, H.-S., Xiang, Y., Lin, F.: Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos. Struct. 170, 80–90 (2017)

    Google Scholar 

  29. Shen, H.-S., Xiang, Y., Lin, F.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput. Methods Appl. Mech. Eng. 319, 175–193 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Shen, H.-S., et al.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Compos. B Eng. 136, 177–186 (2018)

    Google Scholar 

  31. Shen, H.-S., Xiang, Y., Lin, F.: Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations. Thin-Wall. Struct. 118, 229–237 (2017)

    Google Scholar 

  32. Shen, H.-S., Xiang, Y., Fan, Y.: Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments. Int. J. Mech. Sci. 135, 398–409 (2018)

    Google Scholar 

  33. Shen, H.-S., Xiang, Y., Fan, Y.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments. Compos. Struct. 182, 447–456 (2017)

    Google Scholar 

  34. Shen, H.-S., Xiang, Y.: Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments. Comput. Methods Appl. Mech. Eng. 330, 64–82 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Shen, H.-S., Xiang, Y.: Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments. Thin-Wall. Struct. 124, 151–160 (2018)

    Google Scholar 

  36. Shen, H.-S., Lin, F., Xiang, Y.: Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations. Eng. Struct. 140, 89–97 (2017)

    Google Scholar 

  37. Ma, R., Jin, Q.: Stability of functionally graded graphene-reinforced composite laminated thick plates in thermal environment. Acta Mech. 233(10), 3977–3996 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Phuong, N.T., et al.: Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure. Acta Mech. 231(12), 5125–5144 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Chen, X., Shen, H.-S., Huang, X.-H.: Thermo-mechanical postbuckling analysis of sandwich plates with functionally graded auxetic GRMMC core on elastic foundations. Compos. Struct. 279, 114796 (2022)

    Google Scholar 

  40. Chen, X., Shen, H.-S., Xiang, Y.: Thermo-mechanical postbuckling analysis of sandwich cylindrical shells with functionally graded auxetic GRMMC core surrounded by an elastic medium. Thin-Wall. Struct. 171, 108755 (2022)

    Google Scholar 

  41. İpek, G., Arman, Y., Çelik, A.: The effect of delamination size and location to buckling behavior of composite materials. Compos. B Eng. 155, 69–76 (2018)

    Google Scholar 

  42. Pekbey, Y., Sayman, O.: A Numerical and Experimental Investigation of Critical Buckling Load of Rectangular Laminated Composite Plates with Strip Delamination. J. Reinf. Plast. Compos. 25(7), 685–697 (2006)

    Google Scholar 

  43. Dabiryan, H., et al.: Numerical and experimental study of buckling behavior of delaminated plate in glass woven fabric composite laminates. J. Eng. Fibers Fabr. 17, 15589250221091268 (2022)

    Google Scholar 

  44. Gu, H., Chattopadhyay, A.: An experimental investigation of delamination buckling and postbuckling of composite laminates. Compos. Sci. Technol. 59(6), 903–910 (1999)

    Google Scholar 

  45. Żak, A., Krawczuk, M., Ostachowicz, W.: Numerical and experimental investigation of free vibration of multilayer delaminated composite beams and plates. Comput. Mech. 26(3), 309–315 (2000)

    MATH  Google Scholar 

  46. Shabanijafroudi, N., Ganesan, R.: A new methodology for buckling, postbuckling and delamination growth behavior of composite laminates with delamination. Compos. Struct. 268, 113951 (2021)

    Google Scholar 

  47. Sharma, N., et al.: Static and free vibration analyses and dynamic control of smart variable stiffness laminated composite plate with delamination. Compos. Struct. 280, 114793 (2022)

    Google Scholar 

  48. Ameri, B., et al.: Investigation of nonlinear post-buckling delamination in curved laminated composite panels via cohesive zone model. Thin-Wall. Struct. 154, 106797 (2020)

    Google Scholar 

  49. Fathi, F., de Borst, R.: Geometrically nonlinear extended isogeometric analysis for cohesive fracture with applications to delamination in composites. Finite Elem. Anal. Des. 191, 103527 (2021)

    MathSciNet  Google Scholar 

  50. Nguyen, V.P., Kerfriden, P., Bordas, S.P.A.: Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis. Compos. B Eng. 60, 193–212 (2014)

    Google Scholar 

  51. Nasirmanesh, A., Mohammadi, S.: Eigenvalue buckling analysis of cracked functionally graded cylindrical shells in the framework of the extended finite element method. Compos. Struct. 159, 548–566 (2017)

    Google Scholar 

  52. Afshar, A., Hatefi Ardakani, S., Mohammadi, S.: Transient analysis of stationary interface cracks in orthotropic bi-materials using oscillatory crack tip enrichments. Compos. Struct. 142, 200–214 (2016)

    Google Scholar 

  53. Afshar, A., Hatefi Ardakani, S., Mohammadi, S.: Stable discontinuous space–time analysis of dynamic interface crack growth in orthotropic bi-materials using oscillatory crack tip enrichment functions. Int. J. Mech. Sci. 140, 557–580 (2018)

    Google Scholar 

  54. Nikrad, S.F., Asadi, H.: Thermal postbuckling analysis of temperature dependent delaminated composite plates. Thin-Wall. Struct. 97, 296–307 (2015)

    Google Scholar 

  55. Nikrad, S.F., et al.: On thermal instability of delaminated composite plates. Compos. Struct. 132, 1149–1159 (2015)

    Google Scholar 

  56. Nikrad, S.F., et al.: Computational study on compressive instability of composite plates with off-center delaminations. Comput. Methods Appl. Mech. Eng. 310, 429–459 (2016)

    MathSciNet  MATH  Google Scholar 

  57. Kharazi, M., Ovesy, H.R., Asghari Mooneghi, M.: Buckling analysis of delaminated composite plates using a novel layerwise theory. Thin-Wall. Struct. 74, 246–254 (2014)

    Google Scholar 

  58. Ovesy, H.R., Asghari Mooneghi, M., Kharazi, M.: Post-buckling analysis of delaminated composite laminates with multiple through-the-width delaminations using a novel layerwise theory. Thin-Wall. Struct. 94, 98–106 (2015)

    Google Scholar 

  59. Ovesy, H.R., Kharazi, M.: Compressional stability behavior of composite plates with through-the-width and embedded delaminations by using first order shear deformation theory. Comput. Struct. 89(19), 1829–1839 (2011)

    Google Scholar 

  60. Kharazi, M., Ovesy, H.R.: Postbuckling behavior of composite plates with through-the-width delaminations. Thin-Wall. Struct. 46(7), 939–946 (2008)

    Google Scholar 

  61. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2003)

    Google Scholar 

  62. Affdl, J.C.H., Kardos, J.L.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976)

    Google Scholar 

  63. Lin, F., Xiang, Y., Shen, H.-S.: Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites – A molecular dynamics simulation. Compos. B Eng. 111, 261–269 (2017)

    Google Scholar 

  64. Schapery, R.A.: Thermal Expansion Coefficients of Composite Materials Based on Energy Principles. J. Compos. Mater. 2(3), 380–404 (1968)

    Google Scholar 

  65. Mehar, K., et al.: Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM. J. Therm. Stress. 40(7), 899–916 (2017)

    Google Scholar 

  66. Bui, T.Q., et al.: On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Compos. B Eng. 92, 218–241 (2016)

    Google Scholar 

  67. Kiani, Y.: NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates. Thin-Wall. Struct. 125, 211–219 (2018)

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support to the present work provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant No. RGPIN-2022-03462) and Alberta Innovates (Grant No. 222301535 C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. T. Chen or A. H. Akbarzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

According to the TSDT, the normal and transverse shear strain tensors of the FG-GRC laminated plate can be written as [61]:

$$\begin{aligned}\left\{\begin{array}{c}{\varepsilon }_{xx}\\ {\varepsilon }_{yy}\\ {\gamma }_{xy}\end{array}\right\}&=\left\{\begin{array}{c}{\varepsilon }_{xx}^{\left(0\right)}\\ {\varepsilon }_{yy}^{\left(0\right)}\\ {\gamma }_{xy}^{\left(0\right)}\end{array}\right\}+z\left\{\begin{array}{c}{\varepsilon }_{xx}^{\left(1\right)}\\ {\varepsilon }_{yy}^{\left(1\right)}\\ {\gamma }_{xy}^{\left(1\right)}\end{array}\right\}+{z}^{3}\left\{\begin{array}{c}{\varepsilon }_{xx}^{\left(3\right)}\\ {\varepsilon }_{yy}^{\left(3\right)}\\ {\gamma }_{xy}^{\left(3\right)}\end{array}\right\}\\ \left\{\begin{array}{c}{\gamma }_{yz}\\ {\gamma }_{xz}\end{array}\right\}&=\left\{\begin{array}{c}{\gamma }_{yz}^{\left(0\right)}\\ {\gamma }_{xz}^{\left(0\right)}\end{array}\right\}+{z}^{2}\left\{\begin{array}{c}{\gamma }_{yz}^{\left(2\right)}\\ {\gamma }_{xz}^{\left(2\right)}\end{array}\right\}\end{aligned}$$
(A.1)

where

$$\begin{aligned}\left\{\begin{array}{c}{\varepsilon }_{xx}^{\left(0\right)}\\ {\varepsilon }_{yy}^{\left(0\right)}\\ {\gamma }_{xy}^{\left(0\right)}\end{array}\right\}&=\left\{\begin{array}{c}\frac{\partial {u}_{0}}{\partial x}+\left(\frac{1}{2}\right){\left(\frac{\partial {w}_{0}}{\partial x}\right)}^{2}\\ \frac{\partial {v}_{0}}{\partial y}+\left(\frac{1}{2}\right){\left(\frac{\partial {w}_{0}}{\partial y}\right)}^{2}\\ \frac{\partial {u}_{0}}{\partial y}+\frac{\partial {v}_{0}}{\partial x}+\frac{\partial {w}_{0}}{\partial x}\frac{\partial {w}_{0}}{\partial y}\end{array}\right\}\\ \left\{\begin{array}{c}{\varepsilon }_{xx}^{\left(1\right)}\\ {\varepsilon }_{yy}^{\left(1\right)}\\ {\gamma }_{xy}^{\left(1\right)}\end{array}\right\}&=\left\{\begin{array}{c}\frac{\partial {\varphi }_{x}}{\partial x}\\ \frac{\partial {\varphi }_{y}}{\partial y}\\ \frac{\partial {\varphi }_{x}}{\partial y}+\frac{\partial {\varphi }_{y}}{\partial x}\end{array}\right\}\\ \left\{\begin{array}{c}{\varepsilon }_{xx}^{\left(3\right)}\\ {\varepsilon }_{yy}^{\left(3\right)}\\ {\gamma }_{xy}^{\left(3\right)}\end{array}\right\}&=\left\{\begin{array}{c}\left(\frac{-4}{3{h}^{2}}\right)\left(\frac{\partial {\varphi }_{x}}{\partial x}+\frac{{\partial }^{2}{w}_{0}}{\partial {x}^{2}}\right)\\ \left(\frac{-4}{3{h}^{2}}\right)\left(\frac{\partial {\varphi }_{y}}{\partial y}+\frac{{\partial }^{2}{w}_{0}}{\partial {y}^{2}}\right)\\ \left(\frac{-4}{3{h}^{2}}\right)\left(\frac{\partial {\varphi }_{x}}{\partial y}+\frac{\partial {\varphi }_{y}}{\partial x}+2\frac{{\partial }^{2}{w}_{0}}{\partial x\partial y}\right)\end{array}\right\}\\ \left\{\begin{array}{c}{\gamma }_{yz}^{\left(0\right)}\\ {\gamma }_{xz}^{\left(0\right)}\end{array}\right\}&=\left\{\begin{array}{c}{\varphi }_{y}+\frac{\partial {w}_{0}}{\partial y}\\ {\varphi }_{x}+\frac{\partial {w}_{0}}{\partial x}\end{array}\right\} , \left\{\begin{array}{c}{\gamma }_{yz}^{\left(2\right)}\\ {\gamma }_{xz}^{\left(2\right)}\end{array}\right\}=\left(\frac{-4}{{h}^{2}}\right)\left\{\begin{array}{c}{\gamma }_{yz}^{\left(0\right)}\\ {\gamma }_{xz}^{\left(0\right)}\end{array}\right\}\end{aligned}$$
(A.2)

Appendix B

Displacement and rotational functions of FG-GRC plate with elliptical embedded delamination (SSSS).

2.1 Out-of-plane displacement

$$\begin{aligned}{W}^{\left(1\right)}&=\sum_{m=0}^{{M}_{1}}\sum_{n=0}^{{N}_{1}}\left(x-\frac{{L}_{1}}{2}\right)\left(x+\frac{{L}_{1}}{2}\right)\left(y-\frac{{b}_{1}}{2}\right)\left(y+\frac{{b}_{1}}{2}\right){W}_{mn}^{\left(1\right)}{x}^{m}{y}^{n}\\ {W}^{\left(2\right)}&={W}^{\left(1\right)}+\sum_{m=0}^{{M}_{2}}\sum_{n=0}^{{N}_{2}}{\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right)}^{2}{W}_{mn}^{\left(2\right)}{x}^{m}{y}^{n}\\ {W}^{\left(3\right)}&={W}^{\left(1\right)}+\sum_{m=0}^{{M}_{3}}\sum_{n=0}^{{N}_{3}}{\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right)}^{2}{W}_{mn}^{\left(3\right)}{x}^{m}{y}^{n}\end{aligned}$$
(B.1)

2.2 In-plane displacements

$$\begin{aligned}{U}^{\left(1\right)}&=\sum_{p=0}^{{P}_{1}}\sum_{q=0}^{{Q}_{1}}\left(x-\frac{{L}_{1}}{2}\right)\left(x+\frac{{L}_{1}}{2}\right){U}_{pq}^{\left(1\right)}{x}^{p}{y}^{q}\\ {U}^{\left(2\right)}&={U}^{\left(1\right)}-\frac{4{h}_{2}^{3}}{3{h}_{1}^{2}}\left({\varphi }_{x}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial x}\right)+{h}_{2}{\varphi }_{x}^{\left(1\right)}+\sum_{p=0}^{{P}_{2}}\sum_{q=0}^{{Q}_{2}}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){U}_{pq}^{\left(2\right)}{x}^{p}{y}^{q}\\ {U}^{\left(3\right)}&={U}^{\left(1\right)}-\frac{4{h}_{3}^{3}}{3{h}_{1}^{2}}\left({\varphi }_{x}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial x}\right)+{h}_{3}{\varphi }_{x}^{\left(1\right)}+\sum_{p=0}^{{P}_{3}}\sum_{q=0}^{{Q}_{3}}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){U}_{pq}^{\left(3\right)}{x}^{p}{y}^{q}\\ {V}^{\left(1\right)}&=\sum_{s=0}^{{S}_{1}}\sum_{r=0}^{{R}_{1}}\left(y-\frac{{b}_{1}}{2}\right){V}_{sr}^{\left(1\right)}{x}^{s}{y}^{r}\\ {V}^{\left(2\right)}&={V}^{\left(1\right)}-\frac{4{h}_{2}^{3}}{3{h}_{1}^{2}}\left({\varphi }_{y}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial y}\right)+{h}_{2}{\varphi }_{y}^{\left(1\right)}+\sum_{s=0}^{{S}_{2}}\sum_{r=0}^{{R}_{2}}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){V}_{sr}^{\left(2\right)}{x}^{s}{y}^{r}\\ {V}^{\left(3\right)}&={V}^{\left(1\right)}-\frac{4{h}_{3}^{3}}{3{h}_{1}^{2}}\left({\varphi }_{y}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial y}\right)+{h}_{3}{\varphi }_{y}^{\left(1\right)}+\sum_{s=0}^{{S}_{3}}\sum_{r=0}^{{R}_{3}}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){V}_{sr}^{\left(3\right)}{x}^{s}{y}^{r}\end{aligned}$$
(B.2)

2.3 Rotational functions

$$\begin{aligned}{\varphi }_{x}^{\left(1\right)}&=\sum_{j=0}^{{J}_{1}}\sum_{k=0}^{{K}_{1}}{\varphi }_{{x}_{jk}}^{\left(1\right)}{x}^{j}{y}^{k}\\ {\varphi }_{x}^{\left(2\right)}&={\varphi }_{x}^{\left(1\right)}-\frac{4{h}_{2}^{2}}{{h}_{1}^{2}}\left({\varphi }_{x}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial x}\right)+\sum_{j=0}^{{J}_{2}}\sum_{k=0}^{{K}_{2}}{\varphi }_{{x}_{jk}}^{\left(2\right)}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){x}^{j}{y}^{k}\\ {\varphi }_{x}^{\left(3\right)}&={\varphi }_{x}^{\left(1\right)}-\frac{4{h}_{3}^{2}}{{h}_{1}^{2}}\left({\varphi }_{x}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial x}\right)+\sum_{j=0}^{{J}_{3}}\sum_{k=0}^{{K}_{3}}{\varphi }_{{x}_{jk}}^{\left(3\right)}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){x}^{j}{y}^{k}\\ {\varphi }_{y}^{\left(1\right)}&=\sum_{i=0}^{{I}_{1}}\sum_{t=0}^{{T}_{1}}{\varphi }_{{y}_{it}}^{\left(1\right)}{x}^{i}{y}^{t}\\ {\varphi }_{y}^{\left(2\right)}&={\varphi }_{y}^{\left(1\right)}-\frac{4{h}_{2}^{2}}{{h}_{1}^{2}}\left({\varphi }_{y}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial y}\right)+\sum_{i=0}^{{I}_{2}}\sum_{t=0}^{{T}_{2}}{\varphi }_{{y}_{it}}^{\left(2\right)}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){x}^{i}{y}^{t}\\ {\varphi }_{y}^{\left(3\right)}&={\varphi }_{y}^{\left(1\right)}-\frac{4{h}_{3}^{2}}{{h}_{1}^{2}}\left({\varphi }_{y}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial y}\right)+\sum_{i=0}^{{I}_{3}}\sum_{t=0}^{{T}_{3}}{\varphi }_{{y}_{it}}^{\left(3\right)}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){x}^{i}{y}^{t}\end{aligned}$$
(B.3)

Displacement and rotational functions of FG-GRC plate with elliptical embedded delamination (CCCC).

2.4 Out-of-plane displacement

$$\begin{aligned}{W}^{\left(1\right)}&=\sum_{m=0}^{{M}_{1}}\sum_{n=0}^{{N}_{1}}{\left(x-\frac{{L}_{1}}{2}\right)}^{2}{\left(x+\frac{{L}_{1}}{2}\right)}^{2}{\left(y-\frac{{b}_{1}}{2}\right)}^{2}{\left(y+\frac{{b}_{1}}{2}\right)}^{2}{W}_{mn}^{\left(1\right)}{x}^{m}{y}^{n}\\ {W}^{\left(2\right)}&={W}^{\left(1\right)}+\sum_{m=0}^{{M}_{2}}\sum_{n=0}^{{N}_{2}}{\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right)}^{2}{W}_{mn}^{\left(2\right)}{x}^{m}{y}^{n}\\ {W}^{\left(3\right)}&={W}^{\left(1\right)}+\sum_{m=0}^{{M}_{3}}\sum_{n=0}^{{N}_{3}}{\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right)}^{2}{W}_{mn}^{\left(3\right)}{x}^{m}{y}^{n}\end{aligned}$$
(B.4)

2.5 In-plane displacements

$$\begin{aligned}{U}^{\left(1\right)}&=\sum_{p=0}^{{P}_{1}}\sum_{q=0}^{{Q}_{1}}\left(x-\frac{{L}_{1}}{2}\right)\left(x+\frac{{L}_{1}}{2}\right){U}_{pq}^{\left(1\right)}{x}^{p}{y}^{q}\\ {U}^{\left(2\right)}&={U}^{\left(1\right)}-\frac{4{h}_{2}^{3}}{3{h}_{1}^{2}}\left({\varphi }_{x}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial x}\right)+{h}_{2}{\varphi }_{x}^{\left(1\right)}+\sum_{p=0}^{{P}_{2}}\sum_{q=0}^{{Q}_{2}}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){U}_{pq}^{\left(2\right)}{x}^{p}{y}^{q}\\ {U}^{\left(3\right)}&={U}^{\left(1\right)}-\frac{4{h}_{3}^{3}}{3{h}_{1}^{2}}\left({\varphi }_{x}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial x}\right)+{h}_{3}{\varphi }_{x}^{\left(1\right)}+\sum_{p=0}^{{P}_{3}}\sum_{q=0}^{{Q}_{3}}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){U}_{pq}^{\left(3\right)}{x}^{p}{y}^{q}\\ {V}^{\left(1\right)}&=\sum_{s=0}^{{S}_{1}}\sum_{r=0}^{{R}_{1}}\left(y-\frac{{b}_{1}}{2}\right){V}_{sr}^{\left(1\right)}{x}^{s}{y}^{r}\\ {V}^{\left(2\right)}&={V}^{\left(1\right)}-\frac{4{h}_{2}^{3}}{3{h}_{1}^{2}}\left({\varphi }_{y}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial y}\right)+{h}_{2}{\varphi }_{y}^{\left(1\right)}+\sum_{s=0}^{{S}_{2}}\sum_{r=0}^{{R}_{2}}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){V}_{sr}^{\left(2\right)}{x}^{s}{y}^{r}\\ {V}^{\left(3\right)}&={V}^{\left(1\right)}-\frac{4{h}_{3}^{3}}{3{h}_{1}^{2}}\left({\varphi }_{y}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial y}\right)+{h}_{3}{\varphi }_{y}^{\left(1\right)}+\sum_{s=0}^{{S}_{3}}\sum_{r=0}^{{R}_{3}}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){V}_{sr}^{\left(3\right)}{x}^{s}{y}^{r}\end{aligned}$$
(B.5)

2.6 Rotational functions

$$\begin{aligned}{\varphi }_{x}^{\left(1\right)}&=\sum_{j=0}^{{J}_{1}}\sum_{k=0}^{{K}_{1}}\left(x+\frac{{L}_{1}}{2}\right)\left(x-\frac{{L}_{1}}{2}\right){\varphi }_{{x}_{jk}}^{\left(1\right)}{x}^{j}{y}^{k}\\ {\varphi }_{x}^{\left(2\right)}&={\varphi }_{x}^{\left(1\right)}-\frac{4{h}_{2}^{2}}{{h}_{1}^{2}}\left({\varphi }_{x}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial x}\right)+\sum_{j=0}^{{J}_{2}}\sum_{k=0}^{{K}_{2}}{\varphi }_{{x}_{jk}}^{\left(2\right)}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){x}^{j}{y}^{k}\\ {\varphi }_{x}^{\left(3\right)}&={\varphi }_{x}^{\left(1\right)}-\frac{4{h}_{3}^{2}}{{h}_{1}^{2}}\left({\varphi }_{x}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial x}\right)+\sum_{j=0}^{{J}_{3}}\sum_{k=0}^{{K}_{3}}{\varphi }_{{x}_{jk}}^{\left(3\right)}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){x}^{j}{y}^{k}\\ {\varphi }_{y}^{\left(1\right)}&=\sum_{i=0}^{{I}_{1}}\sum_{t=0}^{{T}_{1}}\left(y+\frac{{b}_{1}}{2}\right)\left(y-\frac{{b}_{1}}{2}\right){\varphi }_{{y}_{it}}^{\left(1\right)}{x}^{i}{y}^{t}\\ {\varphi }_{y}^{\left(2\right)}&={\varphi }_{y}^{\left(1\right)}-\frac{4{h}_{2}^{2}}{{h}_{1}^{2}}\left({\varphi }_{y}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial y}\right)+\sum_{i=0}^{{I}_{2}}\sum_{t=0}^{{T}_{2}}{\varphi }_{{y}_{it}}^{\left(2\right)}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){x}^{i}{y}^{t}\\ {\varphi }_{y}^{\left(3\right)}&={\varphi }_{y}^{\left(1\right)}-\frac{4{h}_{3}^{2}}{{h}_{1}^{2}}\left({\varphi }_{y}^{\left(1\right)}+\frac{{\partial W}^{\left(1\right)}}{\partial y}\right)+\sum_{i=0}^{{I}_{3}}\sum_{t=0}^{{T}_{3}}{\varphi }_{{y}_{it}}^{\left(3\right)}\left(\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}-1\right){x}^{i}{y}^{t}\end{aligned}$$
(B.6)

Appendix C

$$\begin{aligned}{W}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(1\right)}&={W}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(2\right)}={W}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(3\right)},\quad{\frac{{\partial W}^{\left(1\right)}}{\partial x}}_{\left|x=\frac{{-L}_{2}}{2}\right.}= {\frac{{\partial W}^{\left(2\right)}}{\partial x}}_{\left|x=\frac{{-L}_{2}}{2}\right.}={\frac{{\partial W}^{\left(3\right)}}{\partial x}}_{\left|x=\frac{{-L}_{2}}{2}\right.}\\ {W}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(1\right)}&={W}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(2\right)}={W}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(3\right)},\quad{\frac{{\partial W}^{\left(1\right)}}{\partial x}}_{\left|x=\frac{{L}_{2}}{2}\right.}= {\frac{{\partial W}^{\left(2\right)}}{\partial x}}_{\left|x=\frac{{L}_{2}}{2}\right.}={\frac{{\partial W}^{\left(3\right)}}{\partial x}}_{\left|x=\frac{{L}_{2}}{2}\right.}\\ {W}_{\left|y={b}_{2}\right.}^{\left(1\right)}&={W}_{\left|y={b}_{2}\right.}^{\left(2\right)}={W}_{\left|y={b}_{2}\right.}^{\left(3\right)},\quad{\frac{{\partial W}^{\left(1\right)}}{\partial y}}_{\left|y={b}_{2}\right.}= {\frac{{\partial W}^{\left(2\right)}}{\partial y}}_{\left|y={b}_{2}\right.}={\frac{{\partial W}^{\left(3\right)}}{\partial y}}_{\left|y={b}_{2}\right.}\\ {U}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(2\right)}&={U}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(1\right)}+{h}_{2}{\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}-{h}_{2}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {U}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(2\right)}&={U}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(1\right)}+{h}_{2}{\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}-{h}_{2}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {U}_{\left|y={b}_{2}\right.}^{\left(2\right)}&={U}_{\left|y={b}_{2}\right.}^{\left(1\right)}+{h}_{2}{\varphi }_{{x}_{\left|y={b}_{2}\right.}}^{\left(1\right)}-{h}_{2}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|y={b}_{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|y={b}_{2}\right.}}^{\left(1\right)}\right)\\ {U}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(3\right)}&={U}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(1\right)}+{h}_{3}{\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}-{h}_{3}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {U}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(3\right)}&={U}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(1\right)}+{h}_{3}{\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}-{h}_{3}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {U}_{\left|y={b}_{2}\right.}^{\left(3\right)}&={U}_{\left|y={b}_{2}\right.}^{\left(1\right)}+{h}_{3}{\varphi }_{{x}_{\left|y={b}_{2}\right.}}^{\left(1\right)}-{h}_{3}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|y={b}_{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|y={b}_{2}\right.}}^{\left(1\right)}\right)\\ {V}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(2\right)}&={V}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(1\right)}+{h}_{2}{\varphi }_{{y}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}-{h}_{2}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{y}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,y}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {V}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(2\right)}&={V}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(1\right)}+{h}_{2}{\varphi }_{{y}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}-{h}_{2}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{y}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,y}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {V}_{\left|y={b}_{2}\right.}^{\left(2\right)}&={V}_{\left|y={b}_{2}\right.}^{\left(1\right)}+{h}_{2}{\varphi }_{{y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}-{h}_{2}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}+{W}_{{,y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}\right)\\ {V}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(3\right)}&={V}_{\left|x=\frac{{-L}_{2}}{2}\right.}^{\left(1\right)}+{h}_{3}{\varphi }_{{y}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}-{h}_{3}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{y}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,y}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {V}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(3\right)}&={V}_{\left|x=\frac{{L}_{2}}{2}\right.}^{\left(1\right)}+{h}_{3}{\varphi }_{{y}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}-{h}_{3}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{y}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,y}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {V}_{\left|y={b}_{2}\right.}^{\left(3\right)}&={V}_{\left|y={b}_{2}\right.}^{\left(1\right)}+{h}_{3}{\varphi }_{{y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}-{h}_{3}^{3}{C}_{1}^{\left(1\right)}\left({\varphi }_{{y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}+{W}_{{,y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}\right)\\ {\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(2\right)}&={\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}-3{h}_{2}^{2}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(2\right)}&={\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}-3{h}_{2}^{2}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {\varphi }_{{y}_{\left|y={b}_{2}\right.}}^{\left(2\right)}&={\varphi }_{{y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}-3{h}_{2}^{2}{C}_{1}^{\left(1\right)}\left({\varphi }_{{y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}+{W}_{{,y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}\right)\\ {\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(3\right)}&={\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}-3{h}_{3}^{2}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|x=\frac{{-L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(3\right)}&={\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}-3{h}_{3}^{2}{C}_{1}^{\left(1\right)}\left({\varphi }_{{x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}+{W}_{{,x}_{\left|x=\frac{{L}_{2}}{2}\right.}}^{\left(1\right)}\right)\\ {\varphi }_{{y}_{\left|y={b}_{2}\right.}}^{\left(3\right)}&={\varphi }_{{y}_{\left|y={b}_{2}\right.}}^{\left(1\right)}-3{h}_{3}^{2}{C}_{1}^{\left(1\right)}\end{aligned}$$
(C.1)

Appendix D

See Figs. 26, 27 and 28.

Fig. 26
figure 26

Influence of clamped and simply-supported boundary conditions on the thermal equilibrium paths of FG-A laminated plates with embedded elliptical delamination, AD/A = 0.25, \(\frac{{h}_{s}}{h}=0.2\)

Fig. 27
figure 27

Comparison of deflection through the sublaminate and baselaminate of FG-X plate with embedded elliptical delamination at three different temperatures AD/A = 0.25, SSSS. a Sublaminate. b Baselaminate

Fig. 28
figure 28

Comparison of normal Stress (\({\sigma }_{11}\)) through the sublaminate and baselaminate of FG-X plate with embedded elliptical delamination at three different temperatures AD/A = 0.25, SSSS. a Sublaminate. b Baselaminate

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikrad, S.F., Chen, Z.T. & Akbarzadeh, A.H. Nonlinear thermal postbuckling of functionally graded graphene-reinforced composite laminated plates with circular or elliptical delamination. Acta Mech 234, 5999–6039 (2023). https://doi.org/10.1007/s00707-023-03694-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03694-0

Navigation