Skip to main content
Log in

Thermo-electrodynamics of conductive media based on the nonlinear viscoelastic Cosserat continuum of a special type

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We develop a general nonlinear theory of thermo-electrodynamics. We show that two theories constructed in our previous works, namely the linear theory of thermo-electrodynamics and the nonlinear theory of electromagnetism, can be obtained from the general nonlinear theory proposed in the present paper. We also make some assumptions about how our model can be used to describe the fields corresponding to strong and weak interactions. Our approach is based on using of the Cosserat continuum of a special type as a mechanical model and some analogues between mechanical and physical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittaker, E.: A History of the Theories of Aether and Electricity. The Classical Theories. Thomas Nelson and Sons Ltd, London (1910)

    MATH  Google Scholar 

  2. Jaswon, M.A.: Mechanical interpretation of Maxwell’s equations. Nature 224, 1303–1304 (1969)

    Google Scholar 

  3. Kelly, E.M.: Vacuum electromagnetics derived exclusively from the properties of an ideal fluid. Nuovo Cim. B 32(1), 117–137 (1976)

    Google Scholar 

  4. Theocharis, T.: On Maxwell’s ether. Lett. Nuovo Cim. 36, 325–332 (1983)

    MathSciNet  Google Scholar 

  5. Winterberg, F.: Maxwell’s equations and Einstein-gravity in the Planck aether model of a unified field theory. Z. Naturforsch. 45a, 1102–1116 (1990)

    MathSciNet  Google Scholar 

  6. Winterberg, F.: The Planck aether model for a unified theory of elementary particles. Int. J. Theor. Phys. 33(6), 1275–1314 (1994)

    Google Scholar 

  7. Winterberg, F.: Derivation of quantum mechanics from the Boltzmann equation for the Planck aether. Int. J. Theor. Phys. 34(10), 2145–2164 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Winterberg, F.: Planck mass plasma vacuum conjecture. Z. Naturforsch. 58a, 231–267 (2003)

    Google Scholar 

  9. Zhilin, P.A.: Reality and mechanics. In: Proceedings of XXIII Summer School “Nonlinear Oscillations in Mechanical Systems”, St. Petersburg, Russia, pp. 6–49 (1996) (in Russian)

  10. Zhilin, P.A.: Classical and modified electrodynamics. In: Proceedings of International Conference “New Ideas in Natural Sciences”, St. Petersburg. Russia. Part I—Physics, pp. 73–82 (1996)

  11. Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)

    Google Scholar 

  12. Larson, D.J.: A derivation of Maxwell’s equations from a simple two-component solid-mechanical aether. Phys. Essays 11(4), 524–530 (1998)

    MathSciNet  Google Scholar 

  13. Zareski, D.: The elastic interpretation of electrodynamics. Found. Phys. Lett. 14, 447–469 (2001)

    MathSciNet  Google Scholar 

  14. Dmitriyev, V.P.: Electrodynamics and elasticity. Am. J. Phys. 71(9), 952–953 (2003)

    Google Scholar 

  15. Dmitriyev, V.P.: Mechanical model of the Lorentz force and Coulomb interaction. Cent. Eur. J. Phys. 6(3), 711–716 (2008)

    Google Scholar 

  16. Christov, C.I.: Maxwell-Lorentz electrodynamics as a manifestation of the dynamics of a viscoelastic metacontinuum. Math. Comput. Simul. 74(2–3), 93–104 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Christov, C.I.: On the nonlinear continuum mechanics of space and the notion of luminiferous medium. Nonlinear Anal. 71, e2028–e2044 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Christov, C.I.: The concept of a quasi-particle and the non-probabilistic interpretation of wave mechanics. Math. Comput. Simul. 80(1), 91–101 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Christov, C.I.: Frame indifferent formulation of Maxwell’s elastic-fluid model and the rational continuum mechanics of the electromagnetic field. Mech. Res. Commun. 38(4), 334–339 (2011)

    MATH  Google Scholar 

  20. Wang, X.S.: Derivation of Maxwell’s equations based on a continuum mechanical model of vacuum and a singularity model of electric charges. Prog. Phys. 2, 111–120 (2008)

    MATH  Google Scholar 

  21. Lin, T.-W., Lin, H.: Newton’s laws of motion based substantial aether theory for electro-magnetic wave. J. Mech. 30(4), 435–442 (2014)

    Google Scholar 

  22. Magnitskii, N.A.: Mathematical theory of physical vacuum. Commun. Nonlinear Sci. Numer. Simul. 16, 2438–2444 (2011)

    Google Scholar 

  23. Magnitskii, N.A.: Fundamentals of the theory of compressible oscillating ether. J. Phys. Conf. Ser. 1141, 012052 (2018)

    Google Scholar 

  24. Magnitskii, N.A.: Theory of compressible oscillating ether. Results Phys. 12, 1436–1445 (2019)

    Google Scholar 

  25. Wang, L.J.: Ether dynamics and unification of gravitational and electromagnetic forces. Glob. J. Sci. Front. Res. A Phys. Space Sci. 20(A13), 1–16 (2020)

    Google Scholar 

  26. Simeonov, L.S.: Mechanical model of Maxwell’s equations and of Lorentz transformations. Found. Phys. 52(52) (2022)

  27. Krivtsov, A.M.: Dynamics of matter and energy. Z. Angew. Math. Mech. 103(4), e202100496 (2023)

    MathSciNet  Google Scholar 

  28. Dixon, R.C., Eringen, A.C.: A dynamical theory of polar elastic dielectrics—I. Int. J. Eng. Sci. 2, 359–377 (1964)

    MathSciNet  Google Scholar 

  29. Dixon, R.C., Eringen, A.C.: A dynamical theory of polar elastic dielectrics—II. Int. J. Eng. Sci. 3, 379–398 (1965)

    MathSciNet  Google Scholar 

  30. Treugolov, I.G.: Moment theory of electromagnetic effects in anisotropic solids. Appl. Math. Mech. 53(6), 992–997 (1989)

    Google Scholar 

  31. Grekova, E., Zhilin, P.: Basic equations of Kelvin’s medium and analogy with ferromagnets. J. Elast. 64, 29–70 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Grekova, E.F.: Ferromagnets and Kelvin’s medium: basic equations and wave processes. J. Comput. Acoust. 9(2), 427–446 (2001)

    MATH  Google Scholar 

  33. Ivanova, E.A., Krivtsov, A.M., Zhilin, P.A.: Description of rotational molecular spectra by means of an approach based on rational mechanics. Z. Angew. Math. Mech. 87(2), 139–149 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Ivanova, E.A., Kolpakov, Ya.E.: Piezo-effect in polar materials using moment theory. J. Appl. Mech. Tech. Phys. 54(6), 989–1002 (2013)

  35. Ivanova, E.A., Kolpakov, Ya.E.: A description of piezoelectric effect in non-polar materials taking into account the quadrupole moments. Z. Angew. Math. Mech. 96(9), 1033–1048 (2016)

  36. Tiersten, H.F.: Coupled magnetomechanical equations for magnetically saturated insulators. J. Math. Phys. 5(9), 1298–1318 (1964)

    MathSciNet  MATH  Google Scholar 

  37. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, Oxford (1988)

    MATH  Google Scholar 

  38. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua. Springer, New York (1990)

    Google Scholar 

  39. Fomethe, A., Maugin, G.A.: Material forces in thermoelastic ferromagnets. Contin. Mech. Thermodyn. Issue 8, 275–292 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Silvio, A., Dell’Isola, F., Porfiri, M.: A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators. Int. J. Solids Struct. 39(20), 5295–5324 (2002)

    MATH  Google Scholar 

  41. Ugo, A., Dell’Isola, F., Porfiri, M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5), 625–659 (2004)

    MATH  Google Scholar 

  42. Darleux, R., Lossouarn, B., Giorgio, I., dell’Isola, F., Deü, J.F.: Electrical analogs of curved beams and application to piezoelectric network damping. Math. Mech. Solids (2021)

  43. Zhilin, P.A.: In: Ivanova, E.A., Altenbach, H., Vilchevskaya, E.N., Gavrilov, S.N., Grekova, E.F., Krivtsov, A.M. (eds.) Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012) (in Russian)

  44. Zhilin, P.A.: Modeling of the electromagnetic field based on rational mechanics approach. Z. Angew. Math. Mech. 103(4), e202302004 (2023)

    MathSciNet  Google Scholar 

  45. Müller, W.H., Rickert, W., Vilchevskaya, E.N.: Thence the moment of momentum. Z. Angew. Math. Mech. 100(5), e202000117 (2020)

    MathSciNet  Google Scholar 

  46. Altenbach, H., Indeitsev, D., Ivanova, E., Krvitsov, A.: In memory of Pavel Andreevich Zhilin (1942–2005). Z. Angew. Math. Mech. 87(2), 79–80 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Altenbach, H., Eremeyev, V., Indeitsev, D., Ivanova, E., Krvitsov, A.: On the contributions of Pavel Andreevich Zhilin to Mechanics. Tech. Mech. 29(2), 115–134 (2009)

    Google Scholar 

  48. Altenbach, H., Ivanova, E.A.: Zhilin, Pavel Andreevich. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2020)

    Google Scholar 

  49. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)

    MATH  Google Scholar 

  50. Ivanova, E.A.: On one model of generalized continuum and its thermodynamical interpretation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 151–174. Springer, Berlin (2011)

    Google Scholar 

  51. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech. Mech. 32, 273–286 (2012)

    Google Scholar 

  52. Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech. 225, 757–795 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Ivanova, E.A.: Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech. 228, 2299–2346 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Vitokhin, E.Y., Ivanova, E.A.: Dispersion relations for the hyperbolic thermal conductivity, thermoelasticity and thermoviscoelasticity. Contin. Mech. Thermodyn. 29, 1219–1240 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Ivanova, E.A.: Thermal effects by means of two-component Cosserat continuum. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2020)

    Google Scholar 

  56. Ivanova, E.A.: A new model of a micropolar continuum and some electromagnetic analogies. Acta Mech. 226, 697–721 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Ivanova, E.A.: On a micropolar continuum approach to some problems of thermo- and electrodynamics. Acta Mech. 230, 1685–1715 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Ivanova, E.A.: Towards micropolar continuum theory describing some problems of thermo and electrodynamics. In: Altenbach, H., Irschik, H., Matveenko, V.P. (eds.) Contributions to Advanced Dynamics and Continuum Mechanics, pp. 111–129. Springer, Berlin (2019)

    Google Scholar 

  59. Ivanova, E.A., Matias, D.V.: Coupled problems in thermodynamics. In: Altenbach, H., Öchsner, A. (eds.) State of the Art and Future Trends in Material Modeling, pp. 151–172. Springer, Berlin (2019)

    Google Scholar 

  60. Ivanova, E.A.: Modeling of electrodynamic processes by means of mechanical analogies. Z. Angew. Math. Mech. 101(4), e202000076 (2021)

    MathSciNet  Google Scholar 

  61. Ivanova, E.A.: On a new theory of the Cosserat continuum with applications in electrodynamics. In: Altenbach, H., Bauer, S., Eremeyev, V.A., Mikhasev, G.I., Morozov, N.F. (eds.) Recent Approaches in the Theory of Plates and Plate-Like Structures. Advanced Structured Materials, vol. 151, pp. 75–87. Springer, Cham (2022)

    Google Scholar 

  62. Ivanova, E.A.: Modeling of thermal and electrical conductivities by means of a viscoelastic Cosserat continuum. Contin. Mech. Thermodyn. 34, 555–586 (2022)

    MathSciNet  Google Scholar 

  63. Ivanova, E.A.: Modeling of physical fields by means of the Cosserat continuum. Z. Angew. Math. Mech. 103(4), e202100333 (2023)

    MathSciNet  Google Scholar 

  64. Ivanova, E.A.: A new approach to modeling of thermal and electrical conductivities by means of the Cosserat continuum. Contin. Mech. Thermodyn. 34, 1313–1342 (2022)

    MathSciNet  Google Scholar 

  65. Garrigues-Baixauli, J.: Relation between the gravitational and magnetic fields. J. Phys. Math. 7(2), 1000169 (2016)

    Google Scholar 

  66. Garrigues-Baixauli, J.: Wave-particle duality as a classic phenomenon. Int. Sci. Res. Org. J. ISROJ 2(1), 20–24 (2017)

    Google Scholar 

  67. Garrigues-Baixauli, J.: Discrete model of electron. Appl. Phys. Res. 11(6), 36–55 (2019)

    Google Scholar 

  68. Garrigues-Baixauli, J.: Is space absolute? Hadronic J. 43, 217–240 (2020)

    Google Scholar 

  69. Unzicker, A.: Nonlinear continuum mechanics with defects resembles electrodynamics–A comeback of the aether? Z. Angew. Math. Mech. 103(4), e202100280 (2023)

    MathSciNet  Google Scholar 

  70. Müller, W.H., Vilchevskaya, E.N., Eremeyev, V.A.: Electrodynamics from the viewpoint of modern continuum theory—a review. Z. Angew. Math. Mech. 103(4), e202200179 (2023)

    MathSciNet  Google Scholar 

  71. Malvern, E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  72. Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic Press, The John Hopkins University, Maryland (1977)

    MATH  Google Scholar 

  73. Eringen, C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Huntington (1980)

    MATH  Google Scholar 

  74. Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  75. Loitsyansky, L.G.: Fluid Mechanics. Nauka, Moscow (1987). ((In Russian))

    Google Scholar 

  76. Daily, J., Harleman, D.: Fluid Dynamics. Addison-Wesley, Massachusetts (1966)

    MATH  Google Scholar 

  77. Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description—what are the differences and why do they concern us? In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, pp. 3–28. Springer, Berlin (2016)

    Google Scholar 

  78. Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: A study of objective time derivatives in material and spatial description. In: Altenbach, H., Goldstein, R., Murashkin, E. (eds.) Mechanics for Materials and Technologies. Advanced Structured Materials, vol. 46, pp. 195–229. Springer, Cham (2017)

    Google Scholar 

  79. Ivanova, E.A., Vilchevskaya, E.N.: Micropolar continuum in spatial description. Contin. Mech. Thermodyn. 28(6), 1759–1780 (2016)

    MathSciNet  MATH  Google Scholar 

  80. Müller, W.H., Vilchevskaya, E.N., Weiss, W.: Micropolar theory with production of rotational inertia: a farewell to material description. Phys. Mesomech. 20(3), 250–262 (2017)

    Google Scholar 

  81. Müller, W.H., Vilchevskaya, E.N.: Micropolar theory from the viewpoint of mesoscopic and mixture theories. Phys. Mesomech. 20(3), 263–279 (2017)

    Google Scholar 

  82. Vilchevskaya, E.N.: On Micropolar Theory with Inertia Production. In: Altenbach, H., Öchsner, A. (eds.) State of the Art and Future Trends in Material Modeling, pp. 421–442. Springer, Berlin (2019)

    Google Scholar 

  83. Vilchevskaya, E.N., Müller, W.H.: Modeling of orientational polarization within the framework of extended micropolar theory. Contin. Mech. Thermodyn. 33, 1263–1279 (2021)

    MathSciNet  Google Scholar 

  84. Fomicheva, M., Vilchevskaya, E.N., Bessonov, N., et al.: Micropolar medium in a funnel-shaped crusher. Contin. Mech. Thermodyn. 33, 1347–1362 (2021)

    MathSciNet  Google Scholar 

  85. Ivanova, E.A., Vilchevskaya, E.N.: A note on dependence of the inertia tensor on the strain measures. Contin. Mech. Thermodyn. 35(4), 141–158 (2023)

    MathSciNet  MATH  Google Scholar 

  86. Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin. Mech. Thermodyn. 15(6), 539–570 (2003)

    MathSciNet  MATH  Google Scholar 

  87. Zhilin, P.A.: Applied Mechanics. Foundations of Shells Theory. Tutorial Book. Politechnic University Publishing House, St. Petersburg (2006). ((In Russian))

    Google Scholar 

  88. Ivanova, E.A., Jatar Montaño, L.E.: A new approach to solving the solid mechanics problems with matter supply. Contin. Mech. Thermodyn. 33, 1829–1855 (2021)

    MathSciNet  Google Scholar 

  89. Ivanova, E.A.: Two approaches to modeling viscoelastic Cosserat continua. In: Altenbach, H., Berezovski, A., dell’Isola, F., Porubov, A. (eds.) Sixty Shades of Generalized Continua. Advanced Structured Materials, vol. 170, pp. 345–360. Springer, Cham (2023)

    Google Scholar 

  90. Ostoja-Starzewski, M.: Second law violations, continuum mechanics, and permeability. Contin. Mech. Thermodyn. 28, 489–501 (2016)

    MathSciNet  MATH  Google Scholar 

  91. Ostoja-Starzewski, M.: Admitting spontaneous violations of the second law in continuum thermomechanics. Entropy 19(2), 78 (2017)

    MathSciNet  Google Scholar 

  92. Raghavan, B.V., Karimi, P., Ostoja-Starzewski, M.: Stochastic characteristics and second law violations of atomic fluids in Couette flow. Physica A 496, 90–107 (2018)

    MathSciNet  MATH  Google Scholar 

  93. Laudani, R., Ostoja-Starzewski, M.: Spontaneous negative entropy increments in granular flows. ASME J. Appl. Mech. 88(3), 031010 (2021)

    Google Scholar 

  94. Baik, C., Lavine, A.S.: On hyperbolic heat conduction equation and the second law of thermodynamics. Trans. ASME. J. Heat Transf. 117, 256–263 (1995)

    Google Scholar 

  95. Hively, L.M., Giakos, G.C.: Toward a more complete electrodynamic theory. Int. J. Signal Imaging Syst. Eng. 5(1), 3–10 (2012)

    Google Scholar 

  96. Keil, R., et al.: Optical simulation of charge conservation violation and Majorana dynamics. Optica 2(5), 454–459 (2015)

    Google Scholar 

  97. Bednik, G., Zyuzin, A.A., Burkov, A.A.: New J. Phys. 18, 085002 (2016)

    Google Scholar 

  98. Gratus, J., Kinsler, P., McCall, M.W.: Evaporating black-holes, wormholes, and vacuum polarisation: must they always conserve charge? Found. Phys. 49, 330–350 (2019)

    MathSciNet  MATH  Google Scholar 

  99. Gratus, J., Kinsler, P., McCall, M.W.: Temporary singularities and axions: an analytic solution that challenges charge conservation. Ann. Phys. 533, 2000565 (2021)

    MathSciNet  MATH  Google Scholar 

  100. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Mainly Electromagnetism and Matter, vol. 2. Addison-Wesley, London (1964)

    MATH  Google Scholar 

  101. Lüders, K., Pohl, R.O. (eds.): Pohl’s Introduction to Physics. Electrodynamics and Optics, vol. 2. Springer, Cham (2018)

    Google Scholar 

  102. Zangwill, A.: Modern Electrodynamics. Cambridge University Press, New York (2012)

    MATH  Google Scholar 

  103. Ordal, M.A., et al.: Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22(7), 1099–1120 (1983)

    Google Scholar 

  104. Assis, A.K.T.: Deriving Ampere’s law from Weber’s law. Hadronic J. 13, 441–451 (1990)

    Google Scholar 

  105. Assis, A.K.T., Silva, H.T.: Comparison between Weber’s electrodynamics and classical electrodynamics. Pramana 55, 393–404 (2000)

    Google Scholar 

  106. Torres-Silva, H., López-Bonilla, J., López-Vázquez, R., Rivera-Rebolledo, J.: Weber’s electrodynamics for the hydrogen atom. Indones. J. Appl. Phys. 5, 39–46 (2015)

    Google Scholar 

  107. Kühn, S.: Experimental investigation of an unusual induction effect and its interpretation as a necessary consequence of Weber electrodynamics. J. Electr. Eng. 72(6), 366–373 (2021)

    Google Scholar 

  108. Baumgärtel, C., Maher, S.: Foundations of electromagnetism: a review of Wilhelm Weber’s electrodynamic force law. Foundations 2(4), 949–980 (2022)

    Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to V. A. Kuzkin and E. N. Vilchevskaya for useful discussions on the paper. The study was supported by the Russian Science Foundation grant No. 23-11-00363, https://rscf.ru/project/23-11-00363/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivanova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Transformation of the energy balance equation

Let us rewrite Eq. (17) as

$$\begin{aligned} \nabla {\textbf{v}} = \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}}, \quad \nabla \varvec{\omega } = \frac{\delta \varvec{\varTheta }}{\delta t} + \varvec{\varTheta } \times \varvec{\omega } + \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} \cdot \varvec{\varTheta }. \end{aligned}$$
(178)

In view of Eq. (178), the energy balance equation (11) takes the form

$$\begin{aligned} \rho \frac{\delta U}{\delta t} = \varvec{\tau }^T \cdot \cdot \left( \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} + {\textbf{E}} \times \varvec{\omega } \right) + {\textbf{T}}^T \cdot \cdot \left( \frac{\delta \varvec{\varTheta }}{\delta t} + \varvec{\varTheta } \times \varvec{\omega } + \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} \cdot \varvec{\varTheta }\right) . \end{aligned}$$
(179)

Next, we transform Eq. (179) as follows

$$\begin{aligned} \rho \frac{\delta U}{\delta t} = \varvec{\tau }^T \cdot \cdot \left( \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} + {\textbf{E}} \times \varvec{\omega } \right) + {\textbf{T}}^T \cdot \cdot \left( \frac{\delta \varvec{\varTheta }}{\delta t} + \varvec{\varTheta } \times \varvec{\omega } - \varvec{\omega } \times \varvec{\varTheta } + \left[ \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} + \varvec{\omega } \times {\textbf{E}} \right] \cdot \varvec{\varTheta }\right) .\nonumber \\ \end{aligned}$$
(180)

In view of identity \({\textbf{E}} \times \varvec{\omega } = \varvec{\omega } \times {\textbf{E}}\) and the properties of the double dot product, Eq. (180) can be reduced to the form

$$\begin{aligned} \rho \frac{\delta U}{\delta t} = \left( {\textbf{g}}^T \cdot \left[ \varvec{\tau } + {\textbf{T}} \cdot \varvec{\varTheta }^T\right] \right) ^T \cdot \cdot \left( \frac{\delta {\textbf{g}}^{-1}}{\delta t} + {\textbf{g}}^{-1} \times \varvec{\omega } \right) + {\textbf{T}}^T \cdot \cdot \left( \frac{\delta \varvec{\varTheta }}{\delta t} + \varvec{\varTheta } \times \varvec{\omega } - \varvec{\omega } \times \varvec{\varTheta }\right) . \end{aligned}$$
(181)

Performing some transformation of Eq. (181), we arrive at

$$\begin{aligned} \rho \frac{\delta U}{\delta t} = \left( {\textbf{g}}^T \cdot \left[ \varvec{\tau } + {\textbf{T}} \cdot \varvec{\varTheta }^T\right] \cdot {\textbf{P}} \right) ^T \cdot \cdot \, \frac{\delta \left( {\textbf{g}}^{-1} \cdot {\textbf{P}}\right) }{\delta t} + \left( {\textbf{P}}^T \cdot {\textbf{T}} \cdot {\textbf{P}}\right) ^T \cdot \cdot \, \frac{\delta \left( {\textbf{P}}^T \cdot \varvec{\varTheta }\cdot {\textbf{P}}\right) }{\delta t}. \end{aligned}$$
(182)

B Transformation of the strain balance equations

We start with the equations for the stretch tensor \({\textbf{g}}\). It is easy to see that the first equation in (17) can be rewritten as

$$\begin{aligned} \displaystyle \frac{d {\textbf{g}}}{d t} = - {\textbf{v}} \cdot \nabla {\textbf{g}} - (\nabla {\textbf{v}}) \cdot {\textbf{g}}\Rightarrow & {} \frac{d {\textbf{g}}}{d t} = - \nabla \left( {\textbf{v}} \cdot {\textbf{g}}\right) + \left( \nabla {\textbf{g}}^T\right) \cdot {\textbf{v}} - {\textbf{v}} \cdot \nabla {\textbf{g}} \quad \nonumber \\\Rightarrow & {} \displaystyle \frac{d {\textbf{g}}}{d t} = - \nabla \left( {\textbf{v}} \cdot {\textbf{g}}\right) + {\textbf{v}} \times (\nabla \times {\textbf{g}}). \end{aligned}$$
(183)

Taking into account the first equation in (12) we can show that \(\nabla \times {\textbf{g}} = 0\). In this case, the last equation in (183) turns to the first equation in (29).

Analogously, the first equation in (35) can be transformed as

$$\begin{aligned} \displaystyle \frac{d {\textbf{g}}}{d t} = - (\nabla {\textbf{v}}) \cdot {\textbf{g}} - \left( \nabla {\textbf{g}}^T\right) \cdot {\textbf{v}} + \varvec{\varUpsilon }_g\Rightarrow & {} \frac{d {\textbf{g}}}{d t} = - (\nabla {\textbf{v}}) \cdot {\textbf{g}} - {\textbf{v}} \times (\nabla \times {\textbf{g}}) - {\textbf{v}} \cdot \nabla {\textbf{g}} + \varvec{\varUpsilon }_g \nonumber \\ {}\Rightarrow & {} \displaystyle \frac{\delta {\textbf{g}}}{\delta t} = - (\nabla {\textbf{v}}) \cdot {\textbf{g}} - {\textbf{v}} \times (\nabla \times {\textbf{g}}) + \varvec{\varUpsilon }_g. \end{aligned}$$
(184)

The last equation in (184) is, in fact, the first equation in (36).

Now, we turn to the equations for the wryness tensor \(\varvec{\varTheta }\). The second equation in (17) can be rewritten as

$$\begin{aligned} \displaystyle \frac{d \varvec{\varTheta }}{d t} = \nabla \varvec{\omega } - \varvec{\varTheta } \times \varvec{\omega } - {\textbf{v}} \cdot \nabla \varvec{\varTheta } - (\nabla {\textbf{v}}) \cdot \varvec{\varTheta }\Rightarrow & {} \frac{d \varvec{\varTheta }}{d t} = - \nabla \left( {\textbf{v}} \cdot \varvec{\varTheta } - \varvec{\omega }\right) - \varvec{\varTheta } \times \varvec{\omega } + \left( \nabla \varvec{\varTheta }^T\right) \cdot {\textbf{v}} - {\textbf{v}} \cdot \nabla \varvec{\varTheta } \nonumber \\ \displaystyle\Rightarrow & {} \frac{d \varvec{\varTheta }}{d t} = - \nabla \left( {\textbf{v}} \cdot \varvec{\varTheta } - \varvec{\omega }\right) - \varvec{\varTheta } \times \varvec{\omega } + {\textbf{v}} \times (\nabla \times \varvec{\varTheta }). \end{aligned}$$
(185)

Taking into account the second equation in (12) we can show that \({\displaystyle \nabla \times \varvec{\varTheta } = \frac{1}{2}\,\varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta }}\). In this case, the last equation in (185) takes the form

$$\begin{aligned} \frac{d \varvec{\varTheta }}{d t} = - \nabla \left( {\textbf{v}} \cdot \varvec{\varTheta } - \varvec{\omega }\right) - \varvec{\varTheta } \times \varvec{\omega } + {\textbf{v}} \times \frac{1}{2}\left( \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta }\right) \Rightarrow \frac{d \varvec{\varTheta }}{d t} = - \nabla \left( {\textbf{v}} \cdot \varvec{\varTheta } - \varvec{\omega }\right) + \varvec{\varTheta } \times \left( {\textbf{v}} \cdot \varvec{\varTheta } - \varvec{\omega }\right) .\nonumber \\ \end{aligned}$$
(186)

It is easy to see that the last equation in (186) coincides with the second equation in (29).

Next, we transform the second equation in (35) as follows

$$\begin{aligned} \displaystyle \frac{d \varvec{\varTheta }}{d t}= & {} - \nabla (\varvec{{\textbf{v}} \cdot \varvec{\varTheta } - \omega }) + \varvec{\varTheta } \times ({\textbf{v}} \cdot \varvec{\varTheta } - \varvec{\omega }) + \varvec{\varUpsilon }_\varTheta \nonumber \\ {}\Rightarrow & {} \displaystyle \frac{d \varvec{\varTheta }}{d t} = - \nabla \left( {\textbf{v}} \cdot \varvec{\varTheta } - \varvec{\omega }\right) - \varvec{\varTheta } \times \varvec{\omega } + {\textbf{v}} \times \frac{1}{2}\left( \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta }\right) + \varvec{\varUpsilon }_\varTheta \nonumber \\ {}\Rightarrow & {} \displaystyle \frac{d \varvec{\varTheta }}{d t} = - \nabla \left( {\textbf{v}} \cdot \varvec{\varTheta } - \varvec{\omega }\right) - \varvec{\varTheta } \times \varvec{\omega } + {\textbf{v}} \times \left( \nabla \times \varvec{\varTheta }\right) - {\textbf{v}} \times \left( \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta }\right) + \varvec{\varUpsilon }_\varTheta \nonumber \\ {}\Rightarrow & {} \displaystyle \frac{d \varvec{\varTheta }}{d t} = \nabla \varvec{\omega } - \varvec{\varTheta } \times \varvec{\omega } - {\textbf{v}} \cdot \nabla \varvec{\varTheta } - (\nabla {\textbf{v}}) \cdot \varvec{\varTheta } - {\textbf{v}} \times \left( \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta }\right) + \varvec{\varUpsilon }_\varTheta \nonumber \\ {}\Rightarrow & {} \displaystyle \frac{\delta \varvec{\varTheta }}{\delta t} = \nabla \varvec{\omega } - \varvec{\varTheta } \times \varvec{\omega } - (\nabla {\textbf{v}}) \cdot \varvec{\varTheta } - {\textbf{v}} \times \left( \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta }\right) + \varvec{\varUpsilon }_\varTheta . \end{aligned}$$
(187)

The last equation in (187) is the second equation in (36).

C The energy balance equation in the case of the modified strain tensors

Let us rewrite Eq. (37) as

$$\begin{aligned} \nabla {\textbf{v}} = \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} + \varvec{\varUpsilon }_g^* \cdot {\textbf{g}}^{-1}, \quad \nabla \varvec{\omega } = \frac{\delta \varvec{\varTheta }}{\delta t} + \varvec{\varTheta } \times \varvec{\omega } + \left( \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} + \varvec{\varUpsilon }_g^* \cdot {\textbf{g}}^{-1}\right) \cdot \varvec{\varTheta } - \varvec{\varUpsilon }_\varTheta ^*. \end{aligned}$$
(188)

Inserting Eq. (188) in the energy balance equation (11), we obtain

$$\begin{aligned} \rho \frac{\delta U}{\delta t}= & {} \varvec{\tau }^T \cdot \cdot \left( \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}}+ \varvec{\varUpsilon }_g^* \cdot {\textbf{g}}^{-1} + {\textbf{E}} \times \varvec{\omega } \right) \nonumber \\{} & {} + {\textbf{T}}^T \cdot \cdot \left( \frac{\delta \varvec{\varTheta }}{\delta t} + \varvec{\varTheta } \times \varvec{\omega } + \left[ \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} + \varvec{\varUpsilon }_g^* \cdot {\textbf{g}}^{-1}\right] \cdot \varvec{\varTheta } - \varvec{\varUpsilon }_\varTheta ^*\right) . \end{aligned}$$
(189)

After simple transformations Eq. (189) can be rewritten as

$$\begin{aligned} \begin{array}{c} {\displaystyle \rho \frac{\delta U}{\delta t} = \varvec{\tau }^T \cdot \cdot \left( \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} + {\textbf{E}} \times \varvec{\omega } \right) + {\textbf{T}}^T \cdot \cdot \left( \frac{\delta \varvec{\varTheta }}{\delta t} + \varvec{\varTheta } \times \varvec{\omega } + \frac{\delta {\textbf{g}}^{-1}}{\delta t} \cdot {\textbf{g}} \cdot \varvec{\varTheta } \right) } \\ {\displaystyle +\, \left[ \,{\textbf{g}}^{-1} \cdot \left( \varvec{\tau }^T + \varvec{\varTheta } \cdot {\textbf{T}}^T\right) \right] \cdot \cdot \,\varvec{\varUpsilon }_g^* - {\textbf{T}}^T \cdot \cdot \,\varvec{\varUpsilon }_\varTheta ^*.} \end{array} \end{aligned}$$
(190)

Next, performing the same transformations as in [53], we obtain Eq. (39). Performing the same transformations as in “Appendix A,” we reduce Eq. (190) to the form

$$\begin{aligned} \begin{array}{c} {\displaystyle \rho \frac{\delta U}{\delta t} = \left( {\textbf{g}}^T \cdot \left[ \varvec{\tau } + {\textbf{T}} \cdot \varvec{\varTheta }^T\right] \cdot {\textbf{P}} \right) ^T \cdot \cdot \, \frac{\delta \left( {\textbf{g}}^{-1} \cdot {\textbf{P}}\right) }{\delta t} + \left( {\textbf{P}}^T \cdot {\textbf{T}} \cdot {\textbf{P}}\right) ^T \cdot \cdot \, \frac{\delta \left( {\textbf{P}}^T \cdot \varvec{\varTheta }\cdot {\textbf{P}}\right) }{\delta t} } \\ {\displaystyle +\, \left[ \,{\textbf{g}}^{-1} \cdot \left( \varvec{\tau }^T + \varvec{\varTheta } \cdot {\textbf{T}}^T\right) \right] \cdot \cdot \,\varvec{\varUpsilon }_g^* - {\textbf{T}}^T \cdot \cdot \,\varvec{\varUpsilon }_\varTheta ^*.} \end{array} \end{aligned}$$
(191)

This equation coincides with Eq. (40).

D Transformation of the angular momentum balance equation

If we use restriction (49), we should consider the model based on the energy moment stress tensor. In this case the angular momentum balance equation (43) takes the form

$$\begin{aligned} \nabla \cdot {\textbf{T}} + \rho {\textbf{L}} = \rho J\, \frac{d \varvec{\omega }}{d t}. \end{aligned}$$
(192)

In virtue the relations \({\textbf{T}} = {\textbf{T}}_e \cdot {\textbf{P}}^T\) and \(\varvec{\omega } = \varvec{\varOmega } \cdot {\textbf{P}}^T\), we can rewrite Eq. (192) as

$$\begin{aligned} \nabla \cdot ( - {\textbf{M}}_e \times {\textbf{P}}^T) + \rho {\textbf{L}} = \rho J\, \frac{d (\varvec{\varOmega } \cdot {\textbf{P}}^T)}{d t}. \end{aligned}$$
(193)

Let us take the dot product of Eq. (193) on tensor \({\textbf{P}}\) and perform some simple transformations in view of the kinematic relation (42). As a result, we have

$$\begin{aligned} - \nabla \times {\textbf{M}}_e + {\textbf{M}}_e \cdot \left( \nabla \times {\textbf{P}}^T\right) \cdot {\textbf{P}} + \rho {\textbf{L}}_e = \frac{d \varvec{{\mathcal {K}}}_e}{d t}, \end{aligned}$$
(194)

where we use the notation \(\varvec{{\mathcal {K}}}_e = \rho J \varvec{\varOmega }\) and \(\rho {\textbf{L}}_e = \rho {\textbf{L}} \cdot {\textbf{P}}\). We can specify the constitutive equation for the external moment \(\rho {\textbf{L}}\), e.g., as the linear function of \(\varvec{\omega }\). In this case, the constitutive equation for \(\rho {\textbf{L}}_e\) will be the linear function of \(\varvec{\varOmega }\). Thus, choosing \({\textbf{M}}_e\), \(\varvec{{\mathcal {K}}}_e\), \(\varvec{\varOmega }\) and \(\varvec{\varTheta }_e\) as the basic variables, we have transformed the angular momentum balance equation to the form, where only one term contains the rotation tensor. Now, we show that we can rewrite the expression \(\left( \nabla \times {\textbf{P}}^T\right) \cdot {\textbf{P}}\) in terms of tensor \(\varvec{\varTheta }_e\) only if we use the equation \(\nabla {\textbf{P}} = \varvec{\varTheta } \times {\textbf{P}}\). Let us rewrite this equation as

$$\begin{aligned} \frac{\partial {\textbf{P}}}{\partial q^i} = \varvec{\varTheta }_i \times {\textbf{P}}, \quad \varvec{\varTheta } = {\textbf{r}}^i \varvec{\varTheta }_i. \end{aligned}$$
(195)

Then, we can perform the following transformations:

$$\begin{aligned} \displaystyle \left( \nabla \times {\textbf{P}}^T\right) \cdot {\textbf{P}}= & {} {\textbf{r}}^i \times \left( \frac{\partial {\textbf{P}}}{\partial q^i}\right) ^T \cdot {\textbf{P}} = {\textbf{r}}^i \times \left( \varvec{\varTheta }_i \times {\textbf{P}}\right) ^T \cdot {\textbf{P}} = - {\textbf{r}}^i \times \left( {\textbf{P}}^T \times \varvec{\varTheta }_i\right) \cdot {\textbf{P}} \\ \displaystyle= & {} - {\textbf{r}}^i \times \left( ({\textbf{P}}^T \cdot {\textbf{P}}) \times (\varvec{\varTheta }_i \cdot {\textbf{P}})\right) = - {\textbf{r}}^i \times {\textbf{E}} \times (\varvec{\varTheta }_i \cdot {\textbf{P}}) = - (\varvec{\varTheta }_i \cdot {\textbf{P}}) {\textbf{r}}^i + (\varvec{\varTheta }_i \cdot {\textbf{P}}) \cdot {\textbf{r}}^i\, {\textbf{E}} \\ \displaystyle= & {} - \varvec{\varTheta } \cdot {\textbf{P}} + \textrm{tr}(\varvec{\varTheta } \cdot {\textbf{P}})\,{\textbf{E}} = - \left( \varvec{\varTheta }_e - \textrm{tr}\,\varvec{\varTheta }_e {\textbf{E}}\right) ^T. \end{aligned}$$

We emphasize that the last transformations are valid only in virtue of equation \(\nabla {\textbf{P}} = \varvec{\varTheta } \times {\textbf{P}}\):

$$\begin{aligned} \nabla {\textbf{P}} = \varvec{\varTheta } \times {\textbf{P}} \quad \Rightarrow \quad \left( \nabla \times {\textbf{P}}^T\right) \cdot {\textbf{P}} = - \left( \varvec{\varTheta }_e - \textrm{tr}\,\varvec{\varTheta }_e {\textbf{E}}\right) ^T. \end{aligned}$$
(196)

If we reject the first equation in (196) we cannot use the second equation in (196), and hence we cannot eliminate tensor \({\textbf{P}}\) from Eq. (194).

E Derivation of the constitutive equations

Let us start with the energy balance equation (27), where \(\varvec{\tau }_r\), \({\textbf{T}}_r\) are given by Eq. (25), and \({\textbf{g}}_r\), \(\varvec{\varTheta }_r\) are given by Eq. (26). We assume that the structure of tensor \({\textbf{T}}\) is determined by Eq. (51). In this case tensors \(\varvec{\tau }_r\), \({\textbf{T}}_r\) take the form

$$\begin{aligned} \varvec{\tau }_r = {\textbf{g}}^T \cdot \left( \varvec{\tau } + T \varvec{\varTheta }^T - {\textbf{M}} \times \varvec{\varTheta }^T \right) \cdot {\textbf{P}}, \quad {\textbf{T}}_r = T {\textbf{E}} - {\textbf{M}}_r \times {\textbf{E}}, \quad {\textbf{M}}_r = {\textbf{P}}^T \cdot {\textbf{M}}. \end{aligned}$$
(197)

In view of the second equation in (197), we can rewrite Eq. (27) as

$$\begin{aligned} \rho \,\frac{\delta U}{\delta t} = \varvec{\tau }_r^T \cdot \cdot \,\frac{\delta {\textbf{g}}_r}{\delta t} + (T {\textbf{E}} - {\textbf{M}}_r \times {\textbf{E}})^T \cdot \cdot \,\frac{\delta \varvec{\varTheta }_r}{\delta t}. \end{aligned}$$
(198)

After simple transformations Eq. (198) takes the form

$$\begin{aligned} \rho \,\frac{\delta U}{\delta t} = \varvec{\tau }_r^T \cdot \cdot \,\frac{\delta {\textbf{g}}_r}{\delta t} + T \frac{\delta \varTheta }{\delta t} + {\textbf{M}}_r \cdot \,\frac{\delta \varvec{\varPsi }_r}{\delta t}, \end{aligned}$$
(199)

where

$$\begin{aligned} \varTheta = \textrm{tr}\,\varvec{\varTheta }, \quad \varvec{\varPsi }_r = {\textbf{P}}^T \cdot \varvec{\varPsi }, \quad \varvec{\varPsi } = \varvec{\varTheta }_\times . \end{aligned}$$
(200)

We assume that the continuum is elastic. In this case, from Eq. (27) it follows that \(U = U\bigl ({\textbf{g}}_r,\,\varTheta ,\,\varvec{\varPsi }_r\bigr )\). In addition, we assume that the internal energy does no depend on \({\textbf{g}}_r\). Then, by standard reasoning, we arrive at the Cauchy–Green relations

$$\begin{aligned} \varvec{\tau }_r = 0, \quad T = \frac{\partial \rho U\bigl (\varTheta ,\,\varvec{\varPsi }_r\bigr )}{\partial \varTheta } \quad {\textbf{M}}_r = \frac{\partial \rho U\bigl (\varTheta ,\,\varvec{\varPsi }_r\bigr )}{\partial \varvec{\varPsi }_r}. \end{aligned}$$
(201)

Next, we assume that function \(\rho U\bigl (\varTheta ,\,\varvec{\varPsi }_r\bigr )\) is specified by Eq. (54). Then, from Eq. (201) it follows

$$\begin{aligned} \varvec{\tau }_r = 0, \quad T = T_* + C_\varTheta \,(\varTheta - \varTheta _*), \quad {\textbf{M}}_r = C_\varPsi \, \varvec{\varPsi }_r. \end{aligned}$$
(202)

Taking into account Eqs. (197), (200), we can transform Eq. (202) to the form of Eq. (55).

F Derivation of equations for the wryness tensor

Multiplying Eq. (62) by the unit tensor and calculating the difference of Eq. (59) and the obtained equation, we arrive at the equation

$$\begin{aligned} \frac{d (\varvec{\varTheta } - \textrm{tr}\,{\varvec{\varTheta }}\, {\textbf{E}})}{d t} = \nabla \cdot ({\textbf{E}}\,\varvec{\omega } - \varvec{\omega }\, {\textbf{E}}) - \left( \varvec{\varTheta } \times {\textbf{E}} - {\textbf{E}}\,\varvec{\varTheta }_\times \right) \cdot \varvec{\omega } - \frac{2}{3}\,\varUpsilon _\varTheta {\textbf{E}} - \frac{1}{2}\, \varvec{\varUpsilon }_\varPsi \times {\textbf{E}}. \end{aligned}$$
(203)

Next, we perform the following transformation:

$$\begin{aligned} \left( \varvec{\varTheta } \times {\textbf{E}} - {\textbf{E}}\,\varvec{\varTheta }_\times \right) \cdot \varvec{\omega }= & {} \varvec{\varTheta } \times \varvec{\omega } - \varvec{\varTheta }_\times \cdot \varvec{\omega }\, {\textbf{E}} = - \left( \varvec{\omega } \times \varvec{\varTheta }^T + \varvec{\varTheta }_\times \!\cdot \varvec{\omega }\, {\textbf{E}}\right) ^T \\= & {} - \bigl (\varvec{\omega } \times \varvec{\varTheta } + \varvec{\omega } \times {\textbf{E}} \times \varvec{\varTheta }_\times + \varvec{\varTheta }_\times \!\cdot \varvec{\omega }\, {\textbf{E}} \bigr )^T = - \bigl (\varvec{\omega } \times \varvec{\varTheta } + \varvec{\varTheta }_\times \varvec{\omega }\bigr )^T. \end{aligned}$$

In view of the last transformation, Eq. (203) takes the form of Eq. (63).

Let us take the double cross product of tensor \(\varvec{\varTheta }^T\) and Eq. (59), then take the double cross product of transposed Eq. (44) and tensor \(\varvec{\varTheta }\). Adding up the obtained equations, we obtain

$$\begin{aligned} \displaystyle \varvec{\varTheta }^T \!\times \times \, \frac{d \varvec{\varTheta }}{d t} + \frac{d \varvec{\varTheta }^T}{d t} \!\times \times \, \varvec{\varTheta }= & {} \varvec{\varTheta }^T \!\times \times \, (\nabla \varvec{\omega }) + (\nabla \varvec{\omega })^T \!\times \times \, \varvec{\varTheta } - \varvec{\varTheta }^T \!\times \times \, (\varvec{\varTheta } \times \varvec{\omega }) - (\varvec{\varTheta } \times \varvec{\omega })^T \nonumber \\{} & {} \displaystyle \!\times \times \, \varvec{\varTheta } + \varvec{\varTheta }^T \!\times \times \, \varvec{\varUpsilon }_\varTheta + \varvec{\varUpsilon }_\varTheta ^T \!\times \times \, \varvec{\varTheta }. \end{aligned}$$
(204)

Taking into account the identity \({\textbf{A}}^T \!\times \times \, {\textbf{B}} = {\textbf{B}}^T \!\times \times \, {\textbf{A}}\), which is valid for arbitrary tensors \({\textbf{A}}\) and \({\textbf{B}}\), we rewrite Eq. (204) as

$$\begin{aligned} \frac{d }{d t} \left( \frac{1}{2}\,\varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta } \right) = \varvec{\varTheta }^T \!\times \times \, (\nabla \varvec{\omega }) - \varvec{\varTheta }^T \!\times \times \, (\varvec{\varTheta } \times \varvec{\omega }) + \varvec{\varTheta }^T \!\times \times \, \varvec{\varUpsilon }_\varTheta . \end{aligned}$$
(205)

The first term on the right-hand side of Eq. (205) can be transformed as follows:

$$\begin{aligned} \varvec{\varTheta }^T \!\times \times \, (\nabla \varvec{\omega }) = - \nabla \times (\varvec{\varTheta } \times \varvec{\omega }) + (\nabla \times \varvec{\varTheta }) \times \varvec{\omega }. \end{aligned}$$

The second term on the right-hand side of Eq. (205) can be rewritten as

$$\begin{aligned} \varvec{\varTheta }^T \!\times \times \, (\varvec{\varTheta } \times \varvec{\omega }) = \frac{1}{2} \left( \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta }\right) \times \varvec{\omega }. \end{aligned}$$

In view of these identities Eq. (205) takes the form

$$\begin{aligned} \frac{d }{d t} \left( \frac{1}{2}\,\varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta } \right) = - \nabla \times (\varvec{\varTheta } \times \varvec{\omega }) + \left( \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta } \right) \times \varvec{\omega } + \varvec{\varTheta }^T \!\times \times \, \varvec{\varUpsilon }_\varTheta . \end{aligned}$$
(206)

If the source term \(\varvec{\varUpsilon }_\varTheta \) has the form of Eq. (52), then

$$\begin{aligned} \varvec{\varTheta }^T \!\times \times \, \varvec{\varUpsilon }_\varTheta = - \frac{1}{3}\, \varUpsilon _\varTheta \left( \varvec{\varTheta } - \textrm{tr}\, \varvec{\varTheta }\, {\textbf{E}}\right) ^T - \frac{1}{2}\,\varvec{\varUpsilon }_\varPsi \cdot \bigl (\varvec{\varTheta } \times {\textbf{E}} - {\textbf{E}} \varvec{\varTheta }_\times \bigr ). \end{aligned}$$
(207)

Let us perform the following transformation:

$$\begin{aligned} \begin{array}{c} \varvec{\varUpsilon }_\varPsi \cdot \bigl (\varvec{\varTheta } \times {\textbf{E}} - {\textbf{E}}\, \varvec{\varTheta }_\times \bigr ) = {\textbf{E}} \times \left( \varvec{\varTheta }^T \cdot \varvec{\varUpsilon }_\varPsi \right) - \varvec{\varUpsilon }_\varPsi \varvec{\varTheta }_\times = {\textbf{E}} \times (\varvec{\varTheta } \cdot \varvec{\varUpsilon }_\varPsi ) + {\textbf{E}} \times (\varvec{\varTheta }_\times \times \varvec{\varUpsilon }_\varPsi ) - \varvec{\varUpsilon }_\varPsi \varvec{\varTheta }_\times \\ = {\textbf{E}} \times \varvec{\varTheta } \cdot \varvec{\varUpsilon }_\varPsi + \varvec{\varUpsilon }_\varPsi \varvec{\varTheta }_\times - \varvec{\varTheta }_\times \varvec{\varUpsilon }_\varPsi - \varvec{\varUpsilon }_\varPsi \varvec{\varTheta }_\times = \left( {\textbf{E}} \times \varvec{\varTheta } - \varvec{\varTheta }_\times {\textbf{E}} \right) \cdot \varvec{\varUpsilon }_\varPsi . \end{array} \end{aligned}$$

Then Eq. (207) takes the form

$$\begin{aligned} \varvec{\varTheta }^T \!\times \times \, \varvec{\varUpsilon }_\varTheta = - \frac{1}{3}\, \varUpsilon _\varTheta \left( \varvec{\varTheta } - \textrm{tr}\, \varvec{\varTheta }\, {\textbf{E}}\right) ^T - \frac{1}{2}\left( {\textbf{E}} \times \varvec{\varTheta } - \varvec{\varTheta }_\times {\textbf{E}} \right) \cdot \varvec{\varUpsilon }_\varPsi . \end{aligned}$$
(208)

Inserting Eq. (208) in Eq. (206), we arrive at Eq. (65).

Now, we take the curl of Eq. (59). As a result, we have

$$\begin{aligned} \frac{d }{d t} (\nabla \times \varvec{\varTheta }) = - \nabla \times (\varvec{\varTheta } \times \varvec{\omega }) + \nabla \times \varvec{\varUpsilon }_\varTheta . \end{aligned}$$
(209)

Calculating the difference of Eq. (209) and Eq. (206) yields

$$\begin{aligned} \frac{d }{d t} \left[ \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta } \right] + \left[ \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta } \right] \times \varvec{\omega } = \nabla \times \varvec{\varUpsilon }_\varTheta - \varvec{\varTheta }^T \!\times \times \, \varvec{\varUpsilon }_\varTheta .\qquad \qquad \qquad \end{aligned}$$
(210)

If the source term \(\varvec{\varUpsilon }_\varTheta \) is given by Eq. (52), then

$$\begin{aligned} \nabla \times \varvec{\varUpsilon }_\varTheta = \frac{1}{3}\, (\nabla \varUpsilon _\varTheta ) \times {\textbf{E}} + \frac{1}{2}\, \bigl ((\nabla \cdot \varvec{\varUpsilon }_\varPsi ) {\textbf{E}} - \nabla \varvec{\varUpsilon }_\varPsi \bigr )^T. \end{aligned}$$
(211)

Inserting Eqs. (208), (211) in Eq. (210), we arrive at Eq. (68).

Now, we turn to equations that were used in our previous models, see [60, 63], and we show how these equations can be obtained from the above equations. If we suppose that \(\varUpsilon _\varTheta = 0\) and \(\varvec{\varUpsilon }_\varPsi = 0\), then Eq. (68) takes the form

$$\begin{aligned} \frac{d }{d t} \left[ \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta } \right] + \left[ \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta } \right] \times \varvec{\omega } = 0. \end{aligned}$$
(212)

Using the notation

$$\begin{aligned} {\textbf{X}} = \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta }, \end{aligned}$$
(213)

we can rewrite Eq. (212) as

$$\begin{aligned} \frac{d {\textbf{X}}}{d t} + {\textbf{X}} \times \varvec{\omega } = 0. \end{aligned}$$
(214)

Let us represent \({\textbf{X}}\) as \({\textbf{X}} = {\textbf{Y}} \cdot {\textbf{P}}^T\), where \({\textbf{P}}\) is the rotation tensor corresponding to the angular velocity vector \(\varvec{\omega }\), i.e., \({\displaystyle \frac{d {\textbf{P}}}{d t} = \varvec{\omega } \times {\textbf{P}}}\). Then Eq. (214) takes the form

$$\begin{aligned} \frac{d {\textbf{Y}}}{d t} \cdot {\textbf{P}}^T = 0. \end{aligned}$$
(215)

If \(\left. {\textbf{X}}\right| _{t=0} = 0\), and hence, \(\left. {\textbf{Y}}\right| _{t=0} = 0\), from Eq. (215) follows that \({\textbf{Y}} = 0\), and hence, \({\textbf{X}} = 0\). Thus, solving Eq. (212) with the initial condition \({\displaystyle \left. \left( \nabla \times \varvec{\varTheta } - \frac{1}{2}\, \varvec{\varTheta }^T \!\times \times \, \varvec{\varTheta }\right) \right| _{t=0} = 0}\), we obtain Eq. (14).

G Algebraic relations between physical quantities

Relations between the charge densities \({\mathscr {Q}}\), \(\varvec{{\mathscr {Q}}}_m\) and \(\varvec{{\mathscr {Q}}}_g\), between the inductions \(\varvec{{\mathscr {D}}}\), \(\varvec{\mathscr {D}}_m\), \(\varvec{{\mathscr {D}}}_g\) and the entropy per unit volume \(\varTheta _a\) have the form

$$\begin{aligned} {\mathscr {Q}} = \textrm{tr}\,\varvec{{\mathscr {Q}}}_g, \quad \varvec{{\mathscr {Q}}}_m = \left( \varvec{\mathscr {Q}}_g\right) _\times , \quad \varTheta _a = - \frac{a}{\chi }\,\frac{\textrm{tr}\,\varvec{{\mathscr {D}}}_m}{2}, \quad \varvec{{\mathscr {D}}} = \left( \varvec{{\mathscr {D}}}_m\right) _\times , \quad \varvec{{\mathscr {D}}} = \varvec{{\mathscr {D}}}_g \!\cdot \cdot \, {\textbf{E}}, \quad \varvec{{\mathscr {D}}}_m^T = \varvec{\mathscr {D}}_g \cdot \times \, {\textbf{E}}.\nonumber \\ \end{aligned}$$
(216)

Expressions for the electric charge density \({\mathscr {Q}}\) and the magnetic charge density vector \(\varvec{{\mathscr {Q}}}_m\) in terms of the entropy and electromagnetic induction tensor \(\varvec{{\mathscr {D}}}_m\), the electric induction vector \(\varvec{{\mathscr {D}}}\) and the entropy per unit volume \(\varTheta _a\) are

$$\begin{aligned} {\mathscr {Q}} = - \frac{1}{4 \chi }\,\varvec{{\mathscr {D}}}_m^T \!\cdot \cdot \, \varvec{{\mathscr {D}}}_m + \frac{\chi }{2 a^2}\,\varTheta _a^2, \quad \varvec{{\mathscr {Q}}}_m = \frac{1}{2 \chi }\,\varvec{\mathscr {D}}_m \cdot \varvec{{\mathscr {D}}} + \frac{1}{2 a}\, \varTheta _a \varvec{{\mathscr {D}}}. \end{aligned}$$
(217)

Two expressions for the generalized charge density tensor \(\varvec{{\mathscr {Q}}}_g\) in terms of the entropy and electromagnetic induction tensor \(\varvec{{\mathscr {D}}}_m\) and the entropy per unit volume \(\varTheta _a\) have the form

$$\begin{aligned} \begin{array}{c} {\displaystyle \varvec{{\mathscr {Q}}}_g = \frac{1}{2 \chi }\,\varvec{{\mathscr {D}}}_m^T \times \times \, \varvec{{\mathscr {D}}}_m - \frac{1}{a}\, \varTheta _a \varvec{{\mathscr {D}}}_m^T - \frac{\chi }{a^2}\,\varTheta _a^2\, {\textbf{E}},} \\ {\displaystyle \varvec{{\mathscr {Q}}}_g = \frac{1}{2 \chi }\,\left( \varvec{{\mathscr {D}}}_m^T \cdot \varvec{\mathscr {D}}_m^T - \frac{1}{2} (\varvec{{\mathscr {D}}}_m \!\cdot \cdot \, \varvec{{\mathscr {D}}}_m) {\textbf{E}}\right) + \frac{1}{2 a}\, \varTheta _a \varvec{{\mathscr {D}}}_m^T + \frac{\chi }{2 a^2}\,\varTheta _a^2\, {\textbf{E}}.} \end{array} \end{aligned}$$
(218)

Relations between the current densities have the form

$$\begin{aligned} \varvec{{\mathscr {J}}}_I = \left( \varvec{{\mathscr {J}}}_m\right) _\times , \quad \varvec{{\mathscr {J}}}_I = \varvec{{\mathscr {J}}}_g \!\cdot \cdot \, {\textbf{E}}, \quad \varvec{{\mathscr {J}}}_m^T = \varvec{{\mathscr {J}}}_g \cdot \times \, {\textbf{E}}. \end{aligned}$$
(219)

Two expressions for the electromagnetic current density tensor \(\varvec{{\mathscr {J}}}_m\) are

$$\begin{aligned} \varvec{{\mathscr {J}}}_m = - \frac{1}{\chi } \left[ \varvec{{\mathscr {H}}} \times \left( \varvec{{\mathscr {D}}}_m + \frac{\chi }{a}\,\varTheta _a {\textbf{E}}\right) + \varvec{\mathscr {D}} \varvec{{\mathscr {H}}}\, \right] ^T, \quad \varvec{{\mathscr {J}}}_m = \frac{1}{\chi } \left[ \left( \varvec{{\mathscr {D}}}_m + \frac{\chi }{a}\,\varTheta _a {\textbf{E}}\right) \times \varvec{{\mathscr {H}}} - (\varvec{{\mathscr {H}}} \cdot \varvec{{\mathscr {D}}}) {\textbf{E}}\, \right] .\nonumber \\ \end{aligned}$$
(220)

Two additional relations containing the electromagnetic current density tensor are written as

$$\begin{aligned} \varvec{{\mathscr {J}}}_m = - \frac{1}{\chi }\left( \varvec{{\mathscr {H}}} \cdot \varvec{{\mathscr {D}}}_g + \varvec{{\mathscr {D}}} \varvec{{\mathscr {H}}}\right) ^T, \quad \textrm{tr}\,\varvec{{\mathscr {J}}}_m = - \frac{2}{\chi }\, \varvec{{\mathscr {D}}} \cdot \varvec{{\mathscr {H}}}. \end{aligned}$$
(221)

Expressions for the internal current density vector \(\varvec{{\mathscr {J}}}_I\) and the internal voltage density vector \(\varvec{{\mathscr {V}}}_I\) have the form

$$\begin{aligned} \varvec{{\mathscr {J}}}_I = \frac{1}{\chi }\,\varvec{{\mathscr {H}}} \cdot \varvec{\mathscr {D}}_m, \quad \varvec{{\mathscr {V}}}_I = - \frac{1}{\chi }\left( \varvec{{\mathscr {E}}} \cdot \varvec{{\mathscr {D}}}_m + \frac{a}{\chi }\, T_a \varvec{{\mathscr {D}}}\right) . \end{aligned}$$
(222)

Three additional relations containing the magnetic field vector are

$$\begin{aligned} \varvec{{\mathscr {H}}}_m = \varvec{{\mathscr {H}}} {\textbf{E}} - {\textbf{E}} \varvec{{\mathscr {H}}}, \quad \varvec{{\mathscr {J}}}_g = \frac{1}{\chi }\,\varvec{\mathscr {D}}_g \times \varvec{{\mathscr {H}}}, \quad {\textbf{h}}_\varTheta = - \frac{a}{\chi }\,\varvec{{\mathscr {H}}}. \end{aligned}$$
(223)

We remind the reader that \(\varvec{{\mathscr {H}}}_m\) is the magnetic flux tensor, \(\varvec{{\mathscr {D}}}_g\) is the generalized induction tensor, \(\varvec{{\mathscr {J}}}_g\) is the generalized current density tensor, and \({\textbf{h}}_\varTheta \) is the entropy flux vector.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, E.A. Thermo-electrodynamics of conductive media based on the nonlinear viscoelastic Cosserat continuum of a special type. Acta Mech 234, 6205–6249 (2023). https://doi.org/10.1007/s00707-023-03688-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03688-y

Navigation