Skip to main content
Log in

Propagation characteristics of Love waves in a layered piezomagnetic structure

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Propagation characteristics of Love waves in a layered structure composed of a piezomagnetic layer attached to an elastic substrate exposed to a magnetic field and compressive stress are investigated theoretically in this article. The effective elastic, piezomagnetic and magnetic permeability constants of a piezomagnetic material can affect by a magnetic field and compressive stress. The effects of magnetic field and compressive stress on the phase velocity, group velocity, mode shape, and magnetic potential of the Love wave are discussed in detail. It is found that the number of modes increases as the intensity of magnetic field increases while this tendency is reverse when applying compressive stress. As the intensity of magnetic field increases, the group velocity decreases but the magnitude of surface displacement of a piezomagnetic layer increases. The findings presented in this article are useful for improving the performance of surface acoustic wave (SAW) devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hashimoto, K.: Surface Acoustic Wave Devices in Telecommunications. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Love, A.E.H.: Some Problems of Geodynamics. Dover Publications Inc., New York (1967)

    Google Scholar 

  3. Bleustein, J.L.: A new surface wave in piezoelectric material. Appl. Phys. Lett. 13(12), 412–413 (1968)

    Google Scholar 

  4. Yang, J.S.: Piezoelectric transformer structural modeling-a review. IEEE Trans. Ultrason. Ferroelec. 54(6), 1154–1170 (2007)

    Google Scholar 

  5. Li, S.F.: The electromagneto-acoustic surface wave in a piezoelectric medium: the Bleustein−Gulyaev mode. J. Appl. Phys. 80(9), 5264–5269 (1996)

    Google Scholar 

  6. Jin, F., Wang, Z.K., Wang, T.J.: The Bleustein–Gulyaev (B–G) wave in a piezoelectric layered half-space. Int. J. Eng. Sci. 39(11), 1271–1285 (2001)

    Google Scholar 

  7. Li, P., Jin, F.: Bleustein–Gulyaev waves in a transversely isotropic piezoelectric layered structure with an imperfectly bonded interface. Smart. Mater. Struct. 21(4), 045009 (2012)

    Google Scholar 

  8. Li, P., Jin, F., Qian, Z.H.: Propagation of the Bleustein–Gulyaev waves in a functionally graded transversely isotropic electro-magneto-elastic half-space. Eur. J. Mech. A Solid. 37, 17–23 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Kayestha, P., Rodrigues Ferreira, E., Wijeyewickrema, A.C.: Finite-amplitude shear horizontal waves propagating in a pre-stressed layer between two half-spaces. Int. J. Solids Struct. 50(22–23), 3586–3596 (2013)

    Google Scholar 

  10. Cao, X.S., Jin, F., Kishimoto, K.: Transverse shear surface wave in a functionally graded material infinite half space. Philos. Mag. Lett. 92(5), 245–253 (2012)

    Google Scholar 

  11. Eskandari, M., Shodja, H.M.: Love waves propagation in functionally graded piezoelectric materials with quadratic variation. J. Sound Vib. 313(1–2), 195–204 (2008)

    Google Scholar 

  12. Kielczynski, P., Szalewski, M., Balcerzak, A., Wieja, K.: Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials. Ultrasonics 65, 220–227 (2016)

    Google Scholar 

  13. Gulyaev, Y.V.: Review of shear surface acoustic waves in solids. IEEE Trans. Ultrason. Ferroelectr. 45(4), 935–938 (1998)

    Google Scholar 

  14. Kielczynski, P., Pajewski, W.: Influence of a layered polarization of piezoelectric ceramics on shear-horizontal surface-wave propagation. Appl. Phys. B Lasers O 48(5), 383–388 (1989)

    Google Scholar 

  15. Kielczynski, P., Pajewski, W., Szalewski, M.: Shear-horizontal surface waves on piezoelectric ceramics with depolarized surface layer. IEEE Trans. Ultrason. Ferroelectr. 36(2), 287–293 (1989)

    Google Scholar 

  16. Kielczynski, P., Pajewski, W., Szalewski, M.: Shear horizontal surface waves on piezoelectric ceramic with layered structure. Appl. Phys. A Mater. 50(3), 301–304 (1990)

    Google Scholar 

  17. Danoyan, Z.N., Piliposian, G.T.: Surface electro-elastic shear horizontal waves in a layered structure with a piezoelectric substrate and a hard dielectric layer. Int. J. Solids Struct. 45(2), 431–441 (2008)

    MATH  Google Scholar 

  18. Du, J.K., Jin, X.Y., Wang, J., Xian, K.: Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics 46(1), 13–22 (2007)

    Google Scholar 

  19. Vashishth, A.K., Bareja, U.: Gradation and porosity’s effect on Love waves in a composite structure of piezoelectric layers and functionally graded porous piezoelectric material. Eur. J. Mech. A Solid 99, 104908 (2023)

    MathSciNet  MATH  Google Scholar 

  20. Fan, H., Yang, J.S., Xu, L.M.: Antiplane piezoelectric surface waves over a ceramic half-space with an imperfectly bonded layer. IEEE Trans. Ultrason. Ferroelectr. 53(9), 1695–1698 (2006)

    Google Scholar 

  21. Liu, J.X., Wang, Y.H., Wang, B.L.: Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface. IEEE T. Ultrason. Ferroelectr. 57(8), 1875–1879 (2010)

    Google Scholar 

  22. Li, P., Jin, F.: Excitation and propagation of shear horizontal waves in a piezoelectric layer imperfectly bonded to a metal or elastic substrate. Acta Mech. 226(2), 267–284 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Su, J., Kuang, Z.B., Liu, H.: Love wave in ZnO/SiO2/Si structure with initial stresses. J. Sound Vib. 286(4–5), 981–999 (2005)

    Google Scholar 

  24. Qian, Z.H., Jin, F., Wang, Z.K., Kishimoto, K.: Love waves propagation in a piezoelectric layered structure with initial stresses. Acta Mech. 171(1), 41–57 (2004)

    MATH  Google Scholar 

  25. Jin, F., Qian, Z.H., Wang, Z.K., Kishimoto, K.: Propagation behavior of Love waves in a piezoelectric layered structure with inhomogeneous initial stress. Smart Mater. Struct. 14(4), 515–523 (2005)

    Google Scholar 

  26. Qian, Z.H., Jin, F., Kishimoto, K., Lu, T.J.: Propagation behavior of Love waves in a functionally graded half-space with initial stress. Int. J. Solids Struct. 46(6), 1354–1361 (2009)

    MATH  Google Scholar 

  27. Du, J.K., Jin, J., Wang, J.: Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta Mech. 192(1), 169–189 (2007)

    MATH  Google Scholar 

  28. Zhang, J., Shen, Y.P., Du, J.K.: The effect of inhomogeneous initial stress on Love wave propagation in layered magneto-electro-elastic structures. Smart Mater. Struct. 17(2), 025026 (2008)

    Google Scholar 

  29. Liu, H., Kuang, Z.B., Cai, Z.M.: Propagation of Bleustein–Gulyaev waves in a prestressed layered piezoelectric structure. Ultrasonics 41(5), 397–405 (2003)

    Google Scholar 

  30. Maerfeld, C., Gires, F., Tournois, P.: Bleustein–Gulyaev surface wave amplfication in cds. Appl. Phys. Lett. 18(7), 269–272 (1971)

    Google Scholar 

  31. Soluch, W.: Amplification of Bleustein–Gulyaev waves in tetragonal and hexagonal crystals. J. Appl. Phys. 45(9), 3714–3715 (1974)

    Google Scholar 

  32. Soluch, W.: Theory of amplification of Bleustein–Gulyaev waves in tetragonal and hexagonal crystals. IEEE Trans. Ultrason. Ferr. 24(1), 43–47 (1977)

    Google Scholar 

  33. Palanichamy, P., Singh, S.P.: Amplification of Bleustein–Gulyaev waves in cadmium sulfide. J. Appl. Phys. 54(12), 6828–6833 (1983)

    Google Scholar 

  34. Gu, C.L., Jin, F.: Shear-horizontal surface waves in a half-space of piezoelectric semiconductors. Phil. Mag. Lett. 95(2), 92–100 (2015)

    MathSciNet  Google Scholar 

  35. Liu, X.E., Zheng, X.J.: A nonlinear constitutive model for magnetostrictive materials. Acta Mech. Sin. 21(3), 278–285 (2005)

    MATH  Google Scholar 

  36. Gu, C.L., Jin, F.: Research on the tunability of point defect modes in a two-dimensional magneto-elastic phononic crystal. J. Phys. D Appl. Phys. 49(17), 175103 (2016)

    Google Scholar 

  37. Liu, J.X., Fang, D.N., Wei, W.Y., Zhao, X.F.: Love waves in layered piezoelectric/piezomagnetic structures. J. Sound Vib. 315(1–2), 146–156 (2009)

    Google Scholar 

  38. Curtis, R.G., Redwood, M.: Transverse surface waves on a piezoelectric material carrying a metal layer of finite thickness. J. Appl. Phys. 44(5), 2002–2007 (1973)

    Google Scholar 

  39. Qian, Z.H., Jin, F., Hirose, S.: A novel type of transverse surface wave propagating in a layered structure consisting of a piezoelectric layer attached to an elastic half-space. Acta Mech. Sin. 26(3), 417–423 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Gao, Y.W., Zhang, J.J.: Nonlinear magnetoelectric transient responses of a circular-shaped magnetoelectric layered structure. Smart Mater. Struct. 22(1), 015015 (2013)

    Google Scholar 

  41. Auld, B.A.: Acoustic Fields and Waves in Solids. Wiley, New York (1973)

    Google Scholar 

  42. Zhu, F., Wang, B., Qian, Z.H.: A numerical algorithm to solve multivariate transcendental equation sets in complex domain and its application in wave dispersion curve characterization. Acta Mech. 230(4), 1303–1321 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Nos. 11962015, 11872194 and 11862012) and the Natural Science Foundation of Shandong Province (No. ZR2020KA006) are gratefully acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangming Lei or Yuanwen Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The matrix forms of Eq. (1)

The matrix forms of Eq. (1) are described as follows (using the engineering shear strain, i.e., γxy = 2εxy; \(G = \frac{E}{{2\left( {1 + \nu } \right)}}\)):

$$ \begin{gathered} \left\{ \begin{gathered} \varepsilon _{x} \hfill \\ \varepsilon _{y} \hfill \\ \varepsilon _{z} \hfill \\ \gamma _{{yz}} \hfill \\ \gamma _{{zx}} \hfill \\ \gamma _{{xy}} \hfill \\ \end{gathered} \right\} = \left[ {\begin{array}{*{20}c} {{1 \mathord{\left/ {\vphantom {1 E}} \right. \kern-\nulldelimiterspace} E}} &\quad {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} &\quad {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} &\quad 0 &\quad 0 &\quad 0 \\ {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} &\quad {{1 \mathord{\left/ {\vphantom {1 E}} \right. \kern-\nulldelimiterspace} E}} &\quad {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} &\quad 0 &\quad 0 &\quad 0 \\ {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} &\quad {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} &\quad {{1 \mathord{\left/ {\vphantom {1 E}} \right. \kern-\nulldelimiterspace} E}} &\quad 0 &\quad 0 &\quad 0 \\ 0 &\quad 0 &\quad 0 &\quad {{1 \mathord{\left/ {\vphantom {1 G}} \right. \kern-\nulldelimiterspace} G}} &\quad 0 &\quad 0 \\ 0 &\quad 0 &\quad 0 &\quad 0 &\quad {{1 \mathord{\left/ {\vphantom {1 G}} \right. \kern-\nulldelimiterspace} G}} &\quad 0 \\ 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad {{1 \mathord{\left/ {\vphantom {1 G}} \right. \kern-\nulldelimiterspace} G}} \\ \end{array} } \right]\left\{ \begin{gathered} \sigma _{{\text{x}}} \hfill \\ \sigma _{{\text{y}}} \hfill \\ \sigma _{{\text{z}}} \hfill \\ \tau _{{{\text{yz}}}} \hfill \\ \tau _{{{\text{zx}}}} \hfill \\ \tau _{{{\text{xy}}}} \hfill \\ \end{gathered} \right\} \hfill \\ \quad \quad \; + \frac{{\lambda _{s} }}{{M_{s}^{2} }}\left[ {\begin{array}{*{20}c} {1 - {{\tilde{\sigma }_{{\text{x}}} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{{\text{x}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{{\text{x}}} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{{\text{x}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{{\text{x}}} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{{\text{x}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad 0 &\quad 0 &\quad 0 \\ { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{{\text{y}}} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{{\text{y}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad {1 - {{\tilde{\sigma }_{{\text{y}}} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{{\text{y}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{{\text{y}}} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{{\text{y}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad 0 &\quad 0 &\quad 0 \\ { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{{\text{z}}} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{{\text{z}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{{\text{z}}} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{{\text{z}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad {1 - {{\tilde{\sigma }_{{\text{z}}} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{{\text{z}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad 0 &\quad 0 &\quad 0 \\ { - {{2\tilde{\tau }_{{{\text{yz}}}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{{\text{yz}}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad { - {{2\tilde{\tau }_{{{\text{yz}}}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{{\text{yz}}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad { - {{2\tilde{\tau }_{{{\text{yz}}}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{{\text{yz}}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad 3 &\quad 0 &\quad 0 \\ { - {{2\tilde{\tau }_{{{\text{zx}}}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{{\text{zx}}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad { - {{2\tilde{\tau }_{{{\text{zx}}}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{{\text{zx}}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad { - {{2\tilde{\tau }_{{{\text{zx}}}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{{\text{zx}}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad 0 &\quad 3 &\quad 0 \\ { - {{2\tilde{\tau }_{{{\text{xy}}}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{{\text{xy}}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad { - {{2\tilde{\tau }_{{{\text{xy}}}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{{\text{xy}}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} & { - {{2\tilde{\tau }_{{{\text{xy}}}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{{\text{xy}}}} } {\sigma _{{\text{s}}} }}} \right. \kern-\nulldelimiterspace} {\sigma _{{\text{s}}} }}} &\quad 0 &\quad 0 &\quad 3 \\ \end{array} } \right]\left\{ \begin{gathered} M_{{\text{x}}}^{2} \hfill \\ M_{{\text{y}}}^{2} \hfill \\ M_{{\text{z}}}^{2} \hfill \\ M_{{\text{y}}} M_{{\text{z}}} \hfill \\ M_{{\text{z}}} M_{{\text{x}}} \hfill \\ M_{{\text{x}}} M_{{\text{y}}} \hfill \\ \end{gathered} \right\}, \hfill \\ \end{gathered}$$
(A1)
$$ \begin{gathered} \left\{ \begin{gathered} H_{{\text{x}}} \hfill \\ H_{{\text{y}}} \hfill \\ H_{{\text{z}}} \hfill \\ \end{gathered} \right\} = \frac{1}{{{\text{k}}M}}f^{ - 1} \left( {\frac{M}{{M_{{\text{s}}} }}} \right)\left[ {\begin{array}{*{20}c} 1 &\quad 0 &\quad 0 \\ 0 &\quad 1 &\quad 0 \\ 0 &\quad 0 &\quad 1 \\ \end{array} } \right]\left\{ \begin{gathered} M_{{\text{x}}} \hfill \\ M_{{\text{y}}} \hfill \\ M_{{\text{z}}} \hfill \\ \end{gathered} \right\} \hfill \\ \quad\quad\quad \quad \;\, - \frac{{\lambda_{{\text{s}}} }}{{\mu_{0} M_{{\text{s}}}^{2} }}\left[ {\begin{array}{*{20}c} {2\tilde{\sigma }_{{\text{x}}} - \frac{{I_{\sigma }^{2} - 3II_{\sigma } }}{{\sigma_{{\text{s}}} }}} &\quad {2\tilde{\tau }_{{{\text{xy}}}} } &\quad {2\tilde{\tau }_{{{\text{zx}}}} } \\ {2\tilde{\tau }_{{{\text{xy}}}} } &\quad {2\tilde{\sigma }_{{\text{y}}} - \frac{{I_{\sigma }^{2} - 3II_{\sigma } }}{{\sigma_{{\text{s}}} }}} &\quad {2\tilde{\tau }_{{{\text{yz}}}} } \\ {2\tilde{\tau }_{{{\text{zx}}}} } &\quad {2\tilde{\tau }_{{{\text{yz}}}} } &\quad {2\tilde{\sigma }_{{\text{z}}} - \frac{{I_{\sigma }^{2} - 3II_{\sigma } }}{{\sigma_{{\text{s}}} }}} \\ \end{array} } \right]\left\{ \begin{gathered} M_{{\text{x}}} \hfill \\ M_{{\text{y}}} \hfill \\ M_{{\text{z}}} \hfill \\ \end{gathered} \right\}. \hfill \\ \end{gathered} $$
(A2)

Appendix 2

The effective material constants

The effective material constants of the piezomagnetic material can be expressed as follows:

$$ \begin{gathered} c_{{{\text{ijkl}}}} \left( {{\varvec{H}},{\varvec{\sigma}}} \right) = {\text{S}}_{{_{{{\text{ijkl}}}} }}^{ - 1} \left( {{\varvec{H}},{\varvec{\sigma}}} \right), \hfill \\ q_{{{\text{mij}}}} \left( {{\varvec{H}},{\varvec{\sigma}}} \right) = c_{{{\text{ijkl}}}} \left( {{\varvec{H}},{\varvec{\sigma}}} \right)\overline{q}_{{{\text{mkl}}}} \left( {{\varvec{H}},{\varvec{\sigma}}} \right), \hfill \\ \mu_{{{\text{nm}}}} \left( {{\varvec{H}},{\varvec{\sigma}}} \right) = \overline{\mu }_{{{\text{nm}}}} \left( {{\varvec{H}},{\varvec{\sigma}}} \right) - q_{{{\text{nkl}}}} \left( {{\varvec{H}},{\varvec{\sigma}}} \right){\text{S}}_{{{\text{ijkl}}}} \left( {{\varvec{H}},{\varvec{\sigma}}} \right)q_{{{\text{mij}}}} \left( {{\varvec{H}},{\varvec{\sigma}}} \right), \hfill \\ \end{gathered} $$
(B1)

where

$$ {\text{S}}_{11} = \frac{1}{E} - \frac{{\lambda_{{\text{s}}} M_{{\text{z}}}^{2} }}{{\sigma_{{\text{s}}} M_{{\text{s}}}^{2} }} + \frac{{{\text{k}}\lambda_{{\text{s}}}^{2} \frac{{M_{{\text{s}}}^{2} }}{{M_{{\text{s}}}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{{\text{x}}} }}{{\sigma_{{\text{s}}} }}} \right)^{2} }}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B2)
$$ {\text{S}}_{12} = - \frac{v}{E} + \frac{{\lambda_{{\text{s}}} M_{z}^{2} }}{{2\sigma_{{\text{s}}} M_{{\text{s}}}^{2} }} + \frac{{{\text{k}}\lambda_{{\text{s}}}^{2} \frac{{M_{z}^{2} }}{{M_{{\text{s}}}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{{\text{x}}} }}{{\sigma_{{\text{s}}} }}} \right)\left( {1 + \frac{{2\tilde{\sigma }_{{\text{y}}} }}{{\sigma_{{\text{s}}} }}} \right)}}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B3)
$$ {\text{S}}_{13} = - \frac{v}{E} + \frac{{\lambda_{{\text{s}}} M_{{\text{z}}}^{2} }}{{2\sigma_{{\text{s}}} M_{{\text{s}}}^{2} }} - \frac{{2k\lambda_{{\text{s}}}^{2} \frac{{M_{{\text{z}}}^{2} }}{{M_{{\text{s}}}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{{\text{x}}} }}{{\sigma_{{\text{s}}} }}} \right)\left( {1 - \frac{{\tilde{\sigma }_{{\text{z}}} }}{{\sigma_{{\text{s}}} }}} \right)}}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B4)
$$ {\text{S}}_{22} = \frac{1}{E} - \frac{{\lambda_{{\text{s}}} M_{{\text{z}}}^{2} }}{{\sigma_{{\text{s}}} M_{{\text{s}}}^{2} }} + \frac{{{\text{k}}\lambda_{{\text{s}}}^{2} \frac{{M_{{\text{z}}}^{2} }}{{M_{{\text{s}}}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{{\text{y}}} }}{{\sigma_{{\text{s}}} }}} \right)^{2} }}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B5)
$$ {\text{S}}_{23} = - \frac{v}{E} + \frac{{\lambda_{{\text{s}}} M_{{\text{z}}}^{2} }}{{2\sigma_{{\text{s}}} M_{{\text{s}}}^{2} }} - \frac{{2{\text{k}}\lambda_{{\text{s}}}^{2} \frac{{M_{{\text{z}}}^{2} }}{{M_{{\text{s}}}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{{\text{y}}} }}{{\sigma_{{\text{s}}} }}} \right)\left( {1 - \frac{{\tilde{\sigma }_{{\text{z}}} }}{{\sigma_{{\text{s}}} }}} \right)}}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{s} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B6)
$$ {\text{S}}_{33} = \frac{1}{E} - \frac{{\lambda_{{\text{s}}} M_{{\text{z}}}^{2} }}{{\sigma_{{\text{s}}} M_{{\text{s}}}^{2} }} + \frac{{4{\text{k}}\lambda_{{\text{s}}}^{2} \frac{{M_{{\text{z}}}^{2} }}{{M_{{\text{s}}}^{2} }}\left( {1 - \frac{{\tilde{\sigma }_{{\text{z}}} }}{{\sigma_{{\text{s}}} }}} \right)^{2} }}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B7)
$$ {\text{S}}_{44} = \frac{1}{G} - \frac{{3\lambda_{{\text{s}}} M_{{\text{z}}}^{2} }}{{\sigma_{{\text{s}}} M_{{\text{s}}}^{2} }} + \frac{{9k\lambda_{{\text{s}}}^{2} \frac{{M_{{\text{z}}}^{2} }}{{M_{{\text{s}}}^{2} }}}}{{3\mu_{0} M_{{\text{s}}} - k\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{y}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B8)
$$ {\text{S}}_{55} = \frac{1}{G} - \frac{{3\lambda_{{\text{s}}} M_{{\text{z}}}^{2} }}{{\sigma_{{\text{s}}} M_{{\text{s}}}^{2} }} + \frac{{9{\text{k}}\lambda_{{\text{s}}}^{2} \frac{{M_{{\text{z}}}^{2} }}{{M_{{\text{s}}}^{2} }}}}{{3\mu_{0} M_{{\text{s}}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{x}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B9)
$$ {\text{S}}_{66} = \frac{1}{G} - \frac{{3\lambda_{{\text{s}}} M_{{\text{z}}}^{2} }}{{\sigma_{{\text{s}}} M_{{\text{s}}}^{2} }}, $$
(B10)
$$ \overline{q}_{31} = - \frac{{{\text{k}}\mu_{0} \lambda_{{\text{s}}} M_{{\text{z}}} \left( {1 + \frac{{2\tilde{\sigma }_{{\text{x}}} }}{{\sigma_{{\text{s}}} }}} \right)}}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B11)
$$ \overline{q}_{32} = - \frac{{{\text{k}}\mu_{0} \lambda_{{\text{s}}} M_{{\text{z}}} \left( {1 + \frac{{2\tilde{\sigma }_{{\text{y}}} }}{{\sigma_{{\text{s}}} }}} \right)}}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B12)
$$ \overline{q}_{33} = \frac{{2{\text{k}}\mu_{0} \lambda_{{\text{s}}} M_{{\text{z}}} \left( {1 - \frac{{\tilde{\sigma }_{{\text{z}}} }}{{\sigma_{{\text{s}}} }}} \right)}}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B13)
$$ \overline{q}_{24} = \frac{{3{\text{k}}\mu_{0} \lambda_{{\text{s}}} M_{{\text{z}}} }}{{3\mu_{0} M_{{\text{s}}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{y}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B14)
$$ \overline{q}_{15} = \frac{{3{\text{k}}\mu_{0} \lambda_{{\text{s}}} M_{{\text{z}}} }}{{3\mu_{0} M_{{\text{s}}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{x}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B15)
$$ \overline{\mu }_{11} = \mu_{0} + \frac{{{\text{k}}\mu_{0}^{2} M_{{\text{s}}}^{2} }}{{3\mu_{0} M_{{\text{s}}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{x}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B16)
$$ \overline{\mu }_{22} = \mu_{0} + \frac{{{\text{k}}\mu_{0}^{2} M_{{\text{s}}}^{2} }}{{3\mu_{0} M_{{\text{s}}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{y} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B17)
$$ \overline{\mu }_{33} = \mu_{0} + \frac{{{\text{k}}\mu_{0}^{2} M_{{\text{s}}}^{2} }}{{\frac{{\mu_{0} M_{{\text{s}}} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - {\text{k}}\lambda_{{\text{s}}} \left( {2\tilde{\sigma }_{{\text{z}}} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)}}, $$
(B18)

with \(M_{{\text{z}}} = M_{{\text{s}}} \left( {\cot \;hM_{3} - \frac{1}{{M_{3} }}} \right)\) and \(M_{3} = {\text{k}}H_{{\text{z}}} + \frac{{{\text{k}}\lambda_{{\text{s}}} M_{{\text{z}}} }}{{\mu_{0} M_{{\text{s}}}^{2} }}\left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{{\text{s}}} }}} \right)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, F., Chen, Z., Gu, C. et al. Propagation characteristics of Love waves in a layered piezomagnetic structure. Acta Mech 234, 5101–5113 (2023). https://doi.org/10.1007/s00707-023-03644-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03644-w

Navigation