Skip to main content
Log in

A set of collinear electrically charged interfacial cracks in magnetoelectroelastic bimaterial

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A bimaterial space composed of two semi-infinite magnetoelectroelastic spaces with a finite set of cracks along the material’s interface is considered. The cracks can have arbitrary lengths and location and their faces are covered with the electrodes having different electric net charge and zero magnetic net induction. The bimaterial is loaded by remote mixed mode mechanical loading, electric and magnetic fields, which do not change along the coordinate codirected with the crack fronts. The problems of linear relationship are formulated and solved analytically by using the presentations of electro-magneto-mechanical quantities via sectionally analytic functions. Using this solution all required mechanical, electric and magnetic components along the interface are presented in the closed form. Because the obtained solution has an oscillating singularity at the crack tips, the energy release rate is the most appropriate fracture parameter in this case. It was found analytically for all crack tips using the asymptotic presentations of all fields at the crack tips and the crack closure integral. Numerical results are presented in graph and table forms for different loading, crack locations, their number and lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao, C.F., Kessler, H., Balke, H.: Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int. J. Eng. Sci. 41(9), 969–981 (2003)

    Article  MATH  Google Scholar 

  2. Zhou, Z.G., Zhang, P.W., Wu, L.Z.: Solutions to a limited-permeable crack or two limited-permeable collinear cracks in piezoelectric/piezomagnetic materials. Arch. Appl. Mech. 77, 861–882 (2007)

    Article  MATH  Google Scholar 

  3. Wang, B.-L., Mai, Y.-W.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44, 387–398 (2007)

    Article  MATH  Google Scholar 

  4. Gao, C.F., Kessler, H., Balke, H.: Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks. Int. J. Eng. Sci. 41(9), 983–994 (2003)

    Article  MATH  Google Scholar 

  5. Viun, O., Labesse-Jied, F., Moutou-Pitti, R., Loboda, V., Lapusta, Y.: Periodic limited permeable cracks in magneto-electro-elastic media. Acta Mech. 226, 2225–2233 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Viun, O., Loboda, V., Lapusta, Y.: Electrically and magnetically induced Maxwell stresses in a magneto-electro-elastic medium with periodic limited permeable cracks. Arch. Appl. Mech. 86, 2009–2020 (2016)

    Article  Google Scholar 

  7. Gao, C.F., Tong, P., Zhang, T.Y.: Interfacial crack problems in magneto-electroelastic solids. Int. J. Eng. Sci. 41, 2105–2121 (2003)

    Article  Google Scholar 

  8. Gao, C.F., Noda, N.: Thermal-induced interfacial cracking of magnetoelectroelastic materials. Int. J. Eng. Sci. 42, 1347–1360 (2004)

    Article  Google Scholar 

  9. Li, R., Kardomateas, G.A.: The mixed mode I and II interface crack in piezoelectromagneto-elastic anisotropic bimaterials. Trans. ASME J. Appl. Mech. 74, 614–627 (2007)

    Article  Google Scholar 

  10. Fan, C., Zhou, Y., Wang, H., Zhao, M.: Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials. Acta Mech. Solida Sin. 22, 232–239 (2009)

    Article  Google Scholar 

  11. Herrmann, K.P., Loboda, V.V., Khodanen, T.V.: An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arch. Appl. Mech. 80(6), 651–670 (2010)

    Article  MATH  Google Scholar 

  12. Ma, P., Feng, W., Su, R.K.L.: Fracture assessment of an interface crack between two dissimilar magnetoelectroelastic materials under heat flow and magnetoelectromechanical loadings. Acta Mech. Solida Sin. 24, 429–438 (2011)

    Article  Google Scholar 

  13. Ma, P., Feng, W.J., Su, R.K.L.: An electrically impermeable and magnetically permeable interface crack with a contact zone in a magnetoelectroelastic bimaterial under uniform magnetoelectromechanical loads. Eur. J. Mech. A/Solids 32, 41–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, W.J., Ma, P., Pan, E.N., Liu, J.X.: A magnetically impermeable and electrically permeable interface crack with a contact zone in a magnetoelectroelastic bimaterial under concentrated magnetoelectromechanical loads on the crack faces. Sci. China Ser. G. 54, 1666–1679 (2011)

    Article  Google Scholar 

  15. Feng, W.J., Ma, P., Su, R.K.L.: An electrically impermeable and magnetically permeable interface crack with a contact zone in magnetoelectroelastic bimaterials under a thermal flux and magnetoelectromechanical loads. Int. J. Solids Struct. 49, 3472–3483 (2012)

    Article  MATH  Google Scholar 

  16. Ma, P., Feng, W.J., Su, R.K.L.: Pre-fracture zone model on electrically impermeable and magnetically permeable interface crack between two dissimilar magnetoelectroelastic materials. Eng. Fract. Mech. 102, 310–323 (2013)

    Article  Google Scholar 

  17. Ma, P., Su, R.K.L., Feng, W.J.: Fracture analysis of an electrically conductive interface crack with a contact zone in a magnetoelectroelastic bimaterial system. Int. J. Solids Struct. 53, 48–57 (2015)

    Article  Google Scholar 

  18. Viun, O., Lapusta, Y., Loboda, V.: Pre-fracture zones modelling for a limited permeable crack in an interlayer between magneto-electro-elastic materials. Appl. Math. Model. 39, 6669–6684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grynevych, A.A., Loboda, V.V.: An electroded electrically and magnetically charged interface crack in a piezoelectric/piezomagnetic bimaterial. Acta Mech. 227, 2861–2879 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Su, R.K.L., Feng, W.J.: Fracture behavior of a bonded magneto-electro-elastic rectangular plate with an interface crack. Arch. Appl. Mech. 78, 343–362 (2008)

    Article  MATH  Google Scholar 

  21. Wang, B.L., Mai, Y.W.: An Exact analysis for mode III cracks between two dissimilar magneto-electro-elastic layers. Mech. Compos. Mater. 44, 533–548 (2008)

    Article  Google Scholar 

  22. Onopriienko, O., Loboda, V., Sheveleva, A., Lapusta, Y.: An interface crack with mixed electro-magnetic conditions at it faces in a piezoelectric/piezomagnetic bimaterial under anti-plane mechanical and in-plane electric loadings. Acta Mech. Autom. 12(4), 301–310 (2018)

    Google Scholar 

  23. Zhou, Z.G., Wang, B., Sun, Y.G.: Two collinear interface cracks in magneto-electro-elastic composites. Int. J. Eng. Sci. 42, 1155–1167 (2004)

    Article  MATH  Google Scholar 

  24. Zhou, Z.G., Wang, J.Z., Wu, L.Z.: The behavior of two parallel non-symmetric interface cracks in a magneto-electro-elastic material strip under an anti-plane shear stress loading. Int. J. Appl. Electromagn. Mech. 29, 163–184 (2009)

    Article  Google Scholar 

  25. Verma, P.R.: Magnetic-yielding zone model for assessment of two mode-III semi-permeable collinear cracks in piezo-electro-magnetic strip. Mech. Adv. Mater. Struct. 29, 1529–1542 (2022)

    Article  Google Scholar 

  26. Wan, Y., Yue, Y., Zhong, Z.: Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field. Eng. Fract. Mech. 84, 132–145 (2012)

    Article  Google Scholar 

  27. Zhu, B., Shi, Y., Qin, T., Sukop, M., Yu, S., Li, Y.: Mixed-mode stress intensity factors of 3D interface crack in fully coupled electromagnetothermoelastic multiphase composites. Int. J. Solids Struct. 46, 2669–2679 (2009)

    Article  MATH  Google Scholar 

  28. Zhao, M.H., Li, N., Fan, C.Y., Xu, G.T.: Analysis method of planar interface cracks of arbitrary shape in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. Int. J. Solids Struct. 45, 1804–1824 (2008)

    Article  MATH  Google Scholar 

  29. Zhao, Y.F., Zhao, M.H., Pan, E.: Displacement discontinuity analysis of a nonlinear interfacial crack in three dimensional magneto-electro-elastic bi-materials. Eng. Analy. Bound. Elem. 61, 254–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, Y.F., Zhao, M.H., Pan, E., Fan, C.Y.: Green’s functions and extended displacement discontinuity method for interfacial cracks in three-dimensional transversely isotropic magneto-electro-elastic bi-materials. Int. J. Solids Struct. 52, 56–71 (2015)

    Article  Google Scholar 

  31. Zhao, M.H., Zhang, Q.Y., Pan, E., Fan, C.Y.: Fundamental solutions and numerical modeling of an elliptical crack with polarization saturation in a transversely isotropic piezoelectric medium. Eng. Fract. Mech. 131, 627–642 (2014)

    Article  Google Scholar 

  32. Feng, W.J., Su, R.K.L., Liu, J.X., Li, Y.S.: Fracture analysis of bounded magnetoelectroelastic layers with interfacial cracks under magnetoelectromechanical loads: plane problem. J. Intell. Mater. Syst. Struct. 21, 581–594 (2010)

    Article  Google Scholar 

  33. Feng, F.X., Lee, K.Y., Li, Y.D.: Multiple cracks on the arc-shaped interface in a semi-cylindrical magneto-electro-elastic composite with an orthotropic substrate. Eng. Fract. Mech. 78, 2029–2041 (2011)

    Article  Google Scholar 

  34. Muskhelishvili, N.I.: Some Basic Problems in the Mathematical Theory of Elasticity. Noordhoff, Groningen (1963)

    MATH  Google Scholar 

  35. Knysh, P., Loboda, V., Labesse-Jied, F., Lapusta, Y.: An electrically charged crack in a piezoelectric material under remote electromechanical loading. Lett. Fract. Micromech. 175(1), 87–94 (2012)

    Google Scholar 

  36. Rybicki, E.F., Kanninen, M.F.: A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 9, 931–938 (1977)

    Article  Google Scholar 

  37. Loboda, V., Sheveleva, A., Chapelle, F., Lapusta, Y.: A set of electrically conducting collinear cracks between two dissimilar piezoelectric materials. Int. J. Eng. Sci. 178, 103725 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sih, G.C., Song, Z.F.: Magnetic and electric poling effects associated with crack growth in BaTiO3–CoFe2O4 composite. Theor. Appl. Fract. Mech. 39, 209–227 (2003)

    Article  Google Scholar 

  39. Pan, E., Chen, W.: Static Green’s Functions in Anisotropic Media. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

A support from the French National Research Agency as part of the “Investissements d’Avenir” through the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016) and the IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001), program WOW and International Research Center “Innovation Transportation and Production Systems” (CIR ITPS) in the FACTOLAB common laboratory (CNRS, UCA, Michelin), and from the Humboldt Foundation, Germany is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Loboda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Solution of the system (26):

$$\begin{aligned} D_{r} = & \det \left( {\begin{array}{*{20}c} {r_{11} } &\quad {r_{14} } &\quad {r_{15} } \\ {r_{41} } &\quad {r_{44} } &\quad {r_{45} } \\ {r_{51} } &\quad {r_{54} } &\quad {r_{55} } \\ \end{array} } \right), \\ \sigma_{13}^{\left( 1 \right)} \left( {x_{1} ,0} \right) = & \det \left( {\begin{array}{*{20}c} { - {\text{Im}} \left[ {\Gamma_{1} \left( {x_{1} } \right)} \right]} &\quad {r_{14} } &\quad {r_{15} } \\ { - {\text{Im}} \left[ {\Gamma_{4} \left( {x_{1} } \right)} \right]} &\quad {r_{44} } &\quad {r_{45} } \\ { - {\text{Im}} \left[ {\Gamma_{5} \left( {x_{1} } \right)} \right]} &\quad {r_{54} } &\quad {r_{55} } \\ \end{array} } \right)/D_{r} , \\ E_{1}^{\left( 1 \right)} \left( {x_{1} ,0} \right) = & \det \left( {\begin{array}{*{20}c} {r_{11} } &\quad { - {\text{Im}} \left[ {\Gamma_{1} \left( {x_{1} } \right)} \right]} &\quad {r_{15} } \\ {r_{41} } &\quad { - {\text{Im}} \left[ {\Gamma_{4} \left( {x_{1} } \right)} \right]} &\quad {r_{45} } \\ {r_{51} } &\quad { - {\text{Im}} \left[ {\Gamma_{5} \left( {x_{1} } \right)} \right]} &\quad {r_{55} } \\ \end{array} } \right)/D_{r} , \\ H_{1}^{\left( 1 \right)} \left( {x_{1} ,0} \right) = & \det \left( {\begin{array}{*{20}c} {r_{11} } &\quad {r_{14} } &\quad { - {\text{Im}} \left[ {\Gamma_{1} \left( {x_{1} } \right)} \right]} \\ {r_{41} } &\quad {r_{44} } &\quad { - {\text{Im}} \left[ {\Gamma_{4} \left( {x_{1} } \right)} \right]} \\ {r_{51} } &\quad {r_{54} } &\quad { - {\text{Im}} \left[ {\Gamma_{5} \left( {x_{1} } \right)} \right]} \\ \end{array} } \right)/D_{r} . \\ \end{aligned}$$
(50)

The formulas (50) can be presented in the form:

$$\begin{gathered} \sigma_{13}^{\left( 1 \right)} \left( {x_{1} ,0} \right) = \rho_{\sigma 1} {\text{Im}} \left[ {\Gamma_{1} \left( {x_{1} } \right)} \right] + \rho_{\sigma 4} {\text{Im}} \left[ {\Gamma_{4} \left( {x_{1} } \right)} \right] + \rho_{\sigma 5} {\text{Im}} \left[ {\Gamma_{5} \left( {x_{1} } \right)} \right], \hfill \\ E_{1}^{\left( 1 \right)} \left( {x_{1} ,0} \right) = \rho_{E1} {\text{Im}} \left[ {\Gamma_{1} \left( {x_{1} } \right)} \right] + \rho_{E4} {\text{Im}} \left[ {\Gamma_{4} \left( {x_{1} } \right)} \right] + \rho_{E5} {\text{Im}} \left[ {\Gamma_{5} \left( {x_{1} } \right)} \right], \hfill \\ H_{1}^{\left( 1 \right)} \left( {x_{1} ,0} \right) = \rho_{H1} {\text{Im}} \left[ {\Gamma_{1} \left( {x_{1} } \right)} \right] + \rho_{H4} {\text{Im}} \left[ {\Gamma_{4} \left( {x_{1} } \right)} \right] + \rho_{H5} {\text{Im}} \left[ {\Gamma_{5} \left( {x_{1} } \right)} \right], \hfill \\ \end{gathered}$$
(51)

where

$$\begin{aligned} \rho_{\sigma 1} = & \left( {r_{54} r_{45} - r_{44} r_{55} } \right)/D_{r} ,\;\rho_{\sigma 4} = \left( {r_{14} r_{55} - r_{54} r_{15} } \right)/D_{r} ,\;\rho_{\sigma 5} = \left( {r_{44} r_{15} - r_{14} r_{45} } \right)/D_{r} , \\ \rho_{E1} = & \left( {r_{41} r_{55} - r_{51} r_{45} } \right)/D_{r} ,\;\rho_{E4} = \left( {r_{51} r_{15} - r_{11} r_{55} } \right)/D_{r} ,\;\rho_{E5} = \left( {r_{11} r_{45} - r_{41} r_{15} } \right)/D_{r} , \\ \rho_{H1} = & \left( {r_{51} r_{44} - r_{41} r_{54} } \right)/D_{r} ,\;\rho_{H4} = \left( {r_{11} r_{54} - r_{51} r_{14} } \right)/D_{r} ,\;\rho_{H5} = \left( {r_{41} r_{14} - r_{11} r_{44} } \right)/D_{r} , \\ \end{aligned}$$

The expressions for \(\varphi^{(1)} \left( {x_{1} ,0} \right)\) and \(\psi^{(1)} \left( {x_{1} ,0} \right)\) can be found on the same formulas (51) as \(E_{1}^{\left( 1 \right)} \left( {x_{1} ,0} \right)\) and \(H_{1}^{\left( 1 \right)} \left( {x_{1} ,0} \right)\), respectively, provided \(\left[ { - \hat{\Gamma }_{j} \left( {x_{1} } \right)} \right]\) instead \(\Gamma_{j} \left( {x_{1} } \right)\) (\(j = 1,\,4,\,5\)) in these formulas are taken.

Solution of the system (29) is the following:

$$\begin{aligned} \left\langle {u^{\prime}_{1} \left( {x_{1} } \right)} \right\rangle = & \det \left( {\begin{array}{*{20}c} {{\text{Re}} \left[ {\theta_{1} \left( {x_{1} } \right)} \right]} & \quad {t_{14} } & \quad {t_{15} } \\ {{\text{Re}} \left[ {\theta_{4} \left( {x_{1} } \right)} \right]} & \quad {t_{44} } & \quad {t_{45} } \\ {{\text{Re}} \left[ {\theta_{5} \left( {x_{1} } \right)} \right]} & \quad {t_{54} } & \quad {t_{55} } \\ \end{array} } \right)/D_{t} , \\ \left\langle {D_{3} \left( {x_{1} } \right)} \right\rangle = & \det \left( {\begin{array}{*{20}c} {t_{11} } &\quad {{\text{Re}} \left[ {\theta_{1} \left( {x_{1} } \right)} \right]} &\quad {t_{15} } \\ {t_{41} } &\quad {{\text{Re}} \left[ {\theta_{4} \left( {x_{1} } \right)} \right]} &\quad {t_{45} } \\ {t_{51} } &\quad {{\text{Re}} \left[ {\theta_{5} \left( {x_{1} } \right)} \right]} &\quad {t_{55} } \\ \end{array} } \right)/D_{t} , \\ \left\langle {B_{3} \left( {x_{1} } \right)} \right\rangle = &\quad \det \left( {\begin{array}{*{20}c} {t_{11} } &\quad {t_{14} } &\quad {{\text{Re}} \left[ {\theta_{1} \left( {x_{1} } \right)} \right]} \\ {t_{41} } &\quad {t_{44} } &\quad {{\text{Re}} \left[ {\theta_{4} \left( {x_{1} } \right)} \right]} \\ {t_{51} } &\quad {t_{54} } &\quad {{\text{Re}} \left[ {\theta_{5} \left( {x_{1} } \right)} \right]} \\ \end{array} } \right)/D_{t} , \\ \end{aligned}$$
(52)

where

$$D_{t} = \det \left( {\begin{array}{*{20}c} {t_{11} } & {t_{14} } & {t_{15} } \\ {t_{41} } & {t_{44} } & {t_{45} } \\ {t_{51} } & {t_{54} } & {t_{55} } \\ \end{array} } \right).$$

The expressions for \(\left\langle {u_{1} \left( {x_{1} } \right)} \right\rangle\), \(\left\langle {\hat{D}_{3} \left( {x_{1} } \right)} \right\rangle\) and \(\left\langle {\hat{B}_{3} \left( {x_{1} } \right)} \right\rangle\) can be found on the same formulas (52) as \(\left\langle {u^{\prime}_{1} \left( {x_{1} } \right)} \right\rangle ,\,\left\langle {D_{3} \left( {x_{1} } \right)} \right\rangle ,\,\left\langle {B_{3} \left( {x_{1} } \right)} \right\rangle\), respectively, provided \(\hat{\theta }_{j} \left( {x_{1} } \right)\) instead \(\theta_{j} \left( {x_{1} } \right)\) (\(j = 1,\,4,\,5\)) in these formulas are taken. For this case, the mentioned formulas can be presented in the form

$$\begin{aligned} \left\langle {u_{1} \left( {x_{1} } \right)} \right\rangle =\, & \eta_{u1} {\text{Re}} \left[ {\hat{\theta }_{1} \left( {x_{1} } \right)} \right] + \eta_{u4} {\text{Re}} \left[ {\hat{\theta }_{4} \left( {x_{1} } \right)} \right] + \eta_{u5} {\text{Re}} \left[ {\hat{\theta }_{5} \left( {x_{1} } \right)} \right], \\ \left\langle {\hat{D}_{3} \left( {x_{1} } \right)} \right\rangle =\, & \eta_{D1} {\text{Re}} \left[ {\hat{\theta }_{1} \left( {x_{1} } \right)} \right] + \eta_{D4} {\text{Re}} \left[ {\hat{\theta }_{4} \left( {x_{1} } \right)} \right] + \eta_{D5} {\text{Re}} \left[ {\hat{\theta }_{5} \left( {x_{1} } \right)} \right], \\ \left\langle {\hat{B}_{3} \left( {x_{1} } \right)} \right\rangle =\, & \eta_{B1} {\text{Re}} \left[ {\hat{\theta }_{1} \left( {x_{1} } \right)} \right] + \eta_{B4} {\text{Re}} \left[ {\hat{\theta }_{4} \left( {x_{1} } \right)} \right] + \eta_{B5} {\text{Re}} \left[ {\hat{\theta }_{5} \left( {x_{1} } \right)} \right], \\ \end{aligned}$$
(53)

where

$$\begin{gathered} \eta_{u1} = (t_{44} t_{55} - t_{54} t_{45} )/D_{t} ,\;\eta_{u4} = (t_{54} t_{15} - t_{14} t_{55} )/D_{t} ,\;\eta_{u5} = (t_{14} t_{45} - t_{44} t_{15} )/D_{t} , \hfill \\ \eta_{D1} = (t_{51} t_{45} - t_{41} t_{55} )/D_{t} ,\;\eta_{D4} = (t_{11} t_{55} - t_{51} t_{15} )/D_{t} ,\;\eta_{D5} = (t_{41} t_{15} - t_{11} t_{45} )/D_{t} , \hfill \\ \eta_{B1} = (t_{41} t_{54} - t_{51} t_{44} )/D_{t} ,\;\eta_{B4} = (t_{51} t_{14} - t_{11} t_{54} )/D_{t} ,\;\eta_{B5} = (t_{11} t_{44} - t_{41} t_{14} )/D_{t} . \hfill \\ \end{gathered}$$

Appendix 2

The expressions for \(h_{1k}^{a}\), \(h_{2k}^{a}\) and \(h_{4k}^{a}\) from the formula (49) are the following:

$$h_{1k}^{a} = q_{1k}^{a} p_{2k}^{a} + q_{2k}^{a} p_{1k}^{a} ,\;h_{2k}^{a} = q_{2k}^{a} p_{2k}^{a} - q_{1k}^{a} p_{1k}^{a} ,\;h_{4k}^{a} = \rho_{\sigma 45}^{a} \eta_{u45}^{a} - \rho_{E45}^{a} \eta_{D45}^{a} - \rho_{H45}^{a} \eta_{B45}^{a} ,$$

where

$$\begin{gathered} q_{1k}^{a} = {\text{Re}} \left( {\overline{R}_{1k}^{a} } \right),\;q_{2k} = - {\text{Im}} \left( {\overline{R}_{1k}^{a} } \right),\;q_{2k} = - {\text{Im}} \left( {\overline{R}_{1k}^{a} } \right),\;p_{2k}^{a} = - {\text{Im}} \left[ {L_{1k}^{a} /\left( {i\varepsilon_{1} + 0.5} \right)} \right], \hfill \\ \overline{R}_{1k}^{a} = \left( { - 1} \right)^{n} \left( {1 + \gamma_{1} } \right)\overline{P}_{n1} \left( {a_{k} } \right)\left( {b_{k} - a_{k} } \right)^{{ - 0.5 + i\varepsilon_{1} }} \prod\limits_{j = 1,j \ne k}^{n} {\left( {a_{j} - a_{k} } \right)^{{ - 0.5 - i\varepsilon_{1} }} \left( {b_{j} - a_{k} } \right)^{{ - 0.5 + i\varepsilon_{1} }} } \hfill \\ L_{1k}^{a} = - \frac{{\left( {1 + \gamma_{1} } \right)}}{{\gamma_{1} }}P_{n1} \left( {a_{k} } \right)\left( {a_{k} - b_{k} } \right)^{{ - 0.5 - i\varepsilon_{1} }} \prod\limits_{j = 1,j \ne k}^{n} {\left( {a_{k} - a_{j} } \right)^{{ - 0.5 + i\varepsilon_{1} }} \left( {a_{k} - b_{j} } \right)^{{ - 0.5 - i\varepsilon_{1} }} } \hfill \\ \rho_{\sigma 45}^{a} = \rho_{\sigma 4} {\text{Im}} \left( {\overline{R}_{4k}^{a} } \right) + \rho_{\sigma 5} {\text{Im}} \left( {\overline{R}_{5k}^{a} } \right),\;\rho_{E45}^{a} = \rho_{E4} {\text{Im}} \left( {\overline{R}_{4k}^{a} } \right) + \rho_{E5} {\text{Im}} \left( {\overline{R}_{5k}^{a} } \right) \hfill \\ \rho_{H45}^{a} = \rho_{H4} {\text{Im}} \left( {\overline{R}_{4k}^{a} } \right) + \rho_{H5} {\text{Im}} \left( {\overline{R}_{5k}^{a} } \right),\;\eta_{u45}^{a} = - 2\left[ {\eta_{u4} {\text{Re}} \left( {L_{4k}^{a} } \right) + \eta_{u5} {\text{Re}} \left( {L_{5k}^{a} } \right)} \right], \hfill \\ \eta_{D45}^{a} = - 2\left[ {\eta_{D4} {\text{Re}} \left( {L_{4k}^{a} } \right) + \eta_{D5} {\text{Re}} \left( {L_{5k}^{a} } \right)} \right],\;\eta_{B45}^{a} = - 2\left[ {\eta_{B4} {\text{Re}} \left( {L_{4k}^{a} } \right) + \eta_{B5} {\text{Re}} \left( {L_{5k}^{a} } \right)} \right] \hfill \\ L_{sk}^{a} = - 2P_{n\,s} \left( {a_{k} } \right)\frac{1}{{\sqrt {a_{k} - b_{k} } }}\prod\limits_{j = 1,j \ne k}^{n} {\frac{1}{{\sqrt {\left( {a_{k} - a_{j} } \right)\left( {a_{k} - b_{j} } \right)} }}} ,\;(s = 4,5). \hfill \\ \hfill \\ \end{gathered}$$

Appendix 3

Effective properties of BaTiO3—CoFe2O4 composite for different volume fractions of BaTiO3 [38, 39]

Properties

Vf = 0.1

Vf = 0.5

\(c_{11}\)(GPa)

274

226

\(c_{33}\)(GPa)

161

124

\(c_{13}\)(GPa)

259

216

\(c_{44}\)(GPa)

45

44

\(e_{31}\)(C/m2)

− 4.4

− 2.2

\(e_{15}\)(C/m2)

1.86

9.3

\(e_{33}\)(C/m2)

1.16

5.8

\(\alpha_{11}\) \(\left( { \times 10^{ - 10} {\text{C}}^{2} /{\text{Nm}}^{2} } \right)\)

11.9

56.4

\(\alpha_{33}\) \(\left( { \times 10^{ - 10} {\text{C}}^{2} /{\text{Nm}}^{2} } \right)\)

13.4

63.5

\(h_{31}\) \(\left( {{\text{N}}/{\text{Am}}} \right)\)

522.3

290.2

\(h_{33}\) \(\left( {{\text{N}}/{\text{Am}}} \right)\)

629.7

350.0

\(h_{15}\) \(\left( {{\text{N}}/{\text{Am}}} \right)\)

495.0

275.0

\(\mu_{11}\) \(\left( { \times 10^{ - 6} {\text{Ns}}^{2} /{\text{C}}^{2} } \right)\)

531.5

297.0

\(\mu_{33}\) \(\left( { \times 10^{ - 6} {\text{Ns}}^{2} /{\text{C}}^{2} } \right)\)

142.3

83.5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevelova, N., Khodanen, T., Chapelle, F. et al. A set of collinear electrically charged interfacial cracks in magnetoelectroelastic bimaterial. Acta Mech 234, 4899–4915 (2023). https://doi.org/10.1007/s00707-023-03642-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03642-y

Navigation