Skip to main content
Log in

Lamb waves in functionally graded magnetoelectric microplates with different boundary conditions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the modified couple stress theory, Legendre orthogonal polynomial method is used to solve the propagation characteristics of the Lamb wave in functionally graded magnetoelectric microplates. The correctness of the method is verified by comparisons with the previous literature and the global matrix method. Compared to the global matrix method, the Legendre orthogonal polynomial method provides an efficient numerical method for solving functionally graded magnetoelectric structures without layering and iterative root finding. In this paper, the influences of the couple stress, magnetoelectric coupling and inhomogeneity with different boundary conditions are discussed in detail. It is found that the couple stress effect and magnetoelectric effect are mutually inhibited. This mutual inhibition under the magnetoelectric short circuit boundary condition is stronger than that under the magnetoelectric open circuit boundary condition. The change of the magnetoelectric boundary has significant influence on the piezoelectric material side, but has little influence on the piezomagnetic material side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Fu, T., Wu, X., Xiao, Z.M., Chen, Z.B.: Thermoacoustic response of porous FGM cylindrical shell surround by elastic foundation subjected to nonlinear thermal loading. Thin Wall Struct. 156, 106996 (2020)

    Google Scholar 

  2. Fu, T., Wu, X., Xiao, Z.M., Chen, Z.B.: Study on dynamic instability characteristics of functionally graded material sandwich conical shells with arbitrary boundary conditions. Mech. Syst. Signal Pr. 151, 107438 (2021)

    Google Scholar 

  3. Chu, Z.Q., PourhosseiniAsl, M., Dong, S.X.: Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 51(24), 243001 (2018)

    Google Scholar 

  4. Leung, C.M., Li, J.F., Viehland, D., Zhuang, X.: A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D Appl. Phys. 51(26), 263002 (2018)

    Google Scholar 

  5. Prashanthi, K., Shaibani, P.M., Sohrabi, A., Natarajan, T.S., Thundat, T.: Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Status Solidi-R. 6(6), 244–246 (2012)

    Google Scholar 

  6. Wang, Y., Hu, J.M., Lin, Y.H., Nan, C.W.: Multiferroic magnetoelectric composite nanostructures. Npg Asia Mater. 2(2), 61–68 (2010)

    Google Scholar 

  7. Hu, J.M., Nan, T.X., Sun, N.X., Chen, L.Q.: Multiferroic magnetoelectric nanostructures for novel device applications. Mrs Bull. 40(9), 728–735 (2015)

    Google Scholar 

  8. Liu, G.X., Ci, P.H., Dong, S.X.: Energy harvesting from ambient low-frequency magnetic field using magneto-mechano-electric composite cantilever. Appl. Phys. Lett. 104(3), 032908 (2014)

    Google Scholar 

  9. Yan, D.-J., Chen, A.-L., Wang, Y.-S.: C Zhang (2020) Size-effect on the band structures of the transverse elastic wave propagating in nanoscale periodic laminates. Int J Mech Sci. 180(1), 105669 (2020)

    Google Scholar 

  10. Hussain, M., Khadimallah, M.A., Naeem, M.N.: Non-local effect on the frequency analysis of chiral single-walled carbon nanotubes using wave propagation approach. Micro & Nano Letters. 16(9), 469–477 (2021)

    Google Scholar 

  11. Selvamani, R., Rexy, J.: Humid thermal wave dispersion in a protein lipid nanotubules using nonlocal strain gradient theory. In: Proceedings of the Proceedings of advanced material, engineering & technology, F, 2020

  12. Liang, C., Wang, Y., Cao, D.: Wave dispersion characteristics in lipid tubules considering shell model based on nonlocal strain gradient theory. Results Phys. 23, 103952 (2020)

    Google Scholar 

  13. Ww, A., Hz, B., Fei, J.A., Xin, Y.A., Hl, A., Wy, A., Xqf, C., Bga, D.: Surface effects on frequency dispersion characteristics of Lamb waves in a nanoplate. Thin Solid Films 697, 137831 (2020)

    Google Scholar 

  14. Biao, H.U., Liu, J., Wang, Y., Zhang, B., Wang, J., Shen, H.: Study on wave dispersion characteristics of piezoelectric sandwich nanoplates considering surface effects. Appl Math Mech-Engl. 43(9), 1339–1354 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Kumar, R., Singh, K., Pathania, D.S.: Shear waves propagation in an initially stressed piezoelectric layer imperfectly bonded over a micropolar elastic half space. Struct Eng Mech. 69(2), 121–129 (2019)

    Google Scholar 

  16. Varygina, M.P.: Numerical modeling of wave propagation in multilayered micropolar cylinder shells. proceedings of the application of mathematics in technical and natural sciences. In: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20, F, (2020)

  17. Goyal, R., Kumar, S.: Quantifying viscoelastic, piezoelectric and couple stress effects on Love-type wave propagation. Smart Mater Struct. 28(10), 105021 (2019)

    Google Scholar 

  18. Sepehri, S., Mashhadi, M.M., Fakhrabadi, M.: Out-of-plane wave propagation in two-dimensional micro-lattices. Phys Scripta. 96(8), 085704 (2021)

    Google Scholar 

  19. Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    MATH  Google Scholar 

  20. Yantchev, V., Arapan, L., Katardjiev, I.: Micromachined Thin Film Plate Acoustic Wave Resonators (FPAR): Part II. IEEE T rans. Ultrason. Ferr. 56(12), 2701–2710 (2009)

    Google Scholar 

  21. Ghodrati, B., Yaghootian, A., Zadeh, A., Ghanbar, M.-S.: Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories. Wave Random Complex. 28(1), 15–34 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Guo, J.H., Chen, J.Y., Pan, E.N.: Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory. Compos Part B-Eng. 107, 84–96 (2016)

    Google Scholar 

  23. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Nouri, A.: Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int J Mech Sci. 130, 534–545 (2017)

    Google Scholar 

  24. Philip, J., Hess, P., Feygelson, T., Butler, J.E., Chattopadhyay, S., Chen, K.H., Chen, L.C.: Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J Appl Phys. 93(4), 2164–2171 (2003)

    Google Scholar 

  25. Ryu, J., Carazo, A.V., Uchino, K., Kim, H.-E.: Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J Electroceram. 7(1), 17–24 (2001)

    Google Scholar 

  26. Bichurin, M.I., Petrov, V.M., Averkin, S.V., Liverts, E.: Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: low frequency and electromechanical resonance ranges. J. Appl. Phys. 107(5), 053904 (2010)

    Google Scholar 

  27. Ma, L.H., Ke, L.L., Reddy, J.N., Yang, J., Kitipornchai, S., Wang, Y.S.: Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory. Compos. Struct. 199, 10–23 (2018)

    Google Scholar 

  28. Ebrahimi, F., Barati, M.R.: Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams. Struct. Eng. Mech. 66(2), 237–248 (2018)

    Google Scholar 

  29. Ebrahimi, F., Barati, M.R., Dabbagh, A.: Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams. Appl. Phys. A-Mater. 122(11), 949 (2016)

    Google Scholar 

  30. Ebrahimi, F., Dabbagh, A.: On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Compos. Struct. 162, 281–293 (2017)

    Google Scholar 

  31. Chen, J.Y., Guo, J.H., Pan, E.N.: Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect. J. Sound Vib. 400, 550–563 (2017)

    Google Scholar 

  32. Dehghan, M., Ebrahimi, F.: On wave dispersion characteristics of magneto-electro-elastic nanotubes considering the shell model based on the nonlocal strain gradient elasticity theory. Eur. Phys. J. Plus. 133(11), 466 (2018)

    Google Scholar 

  33. Liu, H., Lv, Z.: Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams. Compos. Struct. 202, 615–624 (2018)

    Google Scholar 

  34. Wang, Y.Q., Liang, C.: Wave propagation characteristics in nanoporous metal foam nanobeams. Results Phys. 12, 287–297 (2019)

    Google Scholar 

  35. Yang, C., Yu, J., Liu, C., Zhang, B.: Elastic wave reflection/transmission in non-homogeneous magneto-electro-elastic nanoplates based on the modified couple stress theory. Mech. Solids. 57(2), 1–16 (2022)

    Google Scholar 

  36. Singh, P., Chattopadhyay, A., Singh, A.K.: Propagation of Love-type wave in functionally graded pre-stressed magneto-visco-elastic fiber-reinforced composite structure. Wave Random Complex. 31(5), 1–30 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Shahsavari, H., Talebitooti, R., Kornokar, M.: Analysis of wave propagation through functionally graded porous cylindrical structures considering the transfer matrix method. Thin Wall Struct. 159, 107212 (2020)

    Google Scholar 

  38. Akbarov, S.D.: Dynamics of Pre-Strained Bi-Material Elastic Systems. Dynamics of pre-strained Bi-material elastic systems: Linearized three-dimensional approach. (2015)

  39. Akbarov, S.D., Bagirov, E.T.: The dispersion of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder with the initial inhomogeneous thermal stresses. Wave Random Complex. 3, 1–39 (2021)

    Google Scholar 

  40. Akbarov, S.D., Bagirov, E.T.: Vibration. Axisymmetric longitudinal wave dispersion in a bi-layered circular cylinder with inhomogeneous initial stresses. J. Sound Vib. 450, 1–27 (2019)

    Google Scholar 

  41. Yu, J., Wang, X., Zhang, X., Li, Z., Li, F.: An analytical integration Legendre polynomial series approach for Lamb waves in fractional order thermoelastic multilayered plates. Math. Method Appl. Sci. 45(12), 7631–7651 (2022)

    MathSciNet  Google Scholar 

  42. Yu, J., Wang, X., Zhang, X.: An analytical integration Legendre polynomial series approach for Lamb waves in fractional order thermoelastic multilayered plates. Math. Method Appl. Sci. 45(12), 7631–7651 (2022)

    MathSciNet  Google Scholar 

  43. Cl, A., Jy, A., Wx, B., Xz, A., Xw, A.: Dispersion characteristics of guided waves in functionally graded anisotropic micro/nano-plates based on the modified couple stress theory. Thin Wall Struct. 161, 107527 (2021)

    Google Scholar 

  44. Liu, C., Yu, J., Xu, W., Zhang, X., Zhang, B.: Theoretical study of elastic wave propagation through a functionally graded micro-structured plate base on the modified couple-stress theory. Meccanica 55(5), 1153–1167 (2020)

    MathSciNet  Google Scholar 

  45. Liu, C., Yu, J., Zhang, B., Zhang, X., Elmaimouni, L.: Analysis of Lamb wave propagation in a functionally graded piezoelectric small-scale plate based on the modified couple stress theory. Compos. Struct. 265(2), 113733 (2021)

    Google Scholar 

  46. Liu, C., Yu, J., Zhang, B., Zhang, X., Wang, X., Elmaimouni, L.: Size-dependent and piezoelectric effects on SH wave propagation in functionally graded plates. Mech. Res. Commun. 124, 103965 (2022)

    Google Scholar 

  47. Shen, H.S., Wang, Z.X.: Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates. Compos. Struct. 94(7), 2197–2208 (2012)

    Google Scholar 

  48. Lefebvre, J.E., Yu, J.G., Ratolojanahary, F.E., Elmaimouni, L., Xu, W.J., Gryba, T.: Mapped orthogonal functions method applied to acoustic waves-based devices. Aip Adv. 6(6), 065307 (2016)

    Google Scholar 

  49. Yu, J.G., Lefebvre, J.E., Guo, Y.Q.: Free-ultrasonic waves in multilayered piezoelectric plates: an improvement of the Legendre polynomial approach for multilayered structures with very dissimilar materials. Compos. Part B-Eng. 51, 260–269 (2013)

    Google Scholar 

  50. Zhang, B., Yu, J.G., Zhang, X.M., Ming, P.M.: Complex guided waves in functionally graded piezoelectric cylindrical structures with sectorial cross-section. Appl. Math. Model. 63, 288–302 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Ezzin, H., Wang, B., Qian, Z.H., Arefi, M.: Multiple crossing points of Lamb wave propagating in a magneto-electro-elastic composite plate. Arch. Appl. Mech. 91(6), 2781–2793 (2021)

    Google Scholar 

  52. Li, Y.S., Pan, E.: Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. Int. J. Eng. Sci. 97, 40–59 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Ottosen, N.S., Ristinmaa, M., Ljung, C.: Rayleigh waves obtained by the indeterminate couple-stress theory. Eur. J. Mech. A-Solid. 19(6), 929–947 (2000)

    MATH  Google Scholar 

  54. Wang, C.D., Chen, X.J., Wei, P.J., Li, Y.Q.: Reflection and transmission of elastic waves through a couple-stress elastic slab sandwiched between two half-spaces. Acta Mech. Sinica-Prc. 33(6), 1022–1039 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the National Natural Science Foundation of China (No. 51975189), the innovative research team of Henan Polytechnic University (No. T2022-4), the Key Scientific and Technological Project of Henan Province (222102230004), the Henan University Science and Technology Innovation Team Support Plan 23IRTSTHN016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cancan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The expression of the displacement components, electric and magnetic potential can be expressed as follows:

$$\{ {\kern 1pt} u_{x}^{(i)} ,u_{z}^{(i)} ,\phi^{(i)} ,\psi^{\left( i \right)} \} = \{ A^{(i)} ,B^{(i)} ,C^{(i)} ,D^{(i)} \} \exp [ik(x + Q^{(i)} z) - i\omega t]{\kern 1pt} \quad \quad i = 1,2...N.$$
(36)

where the superscript (i) represents the i-th layer; A(i), B(i), C(i) and D(i) are the amplitude vectors of the mechanical displacements, electric and magnetic potential; and k and kQ(i) are the wave vectors in x- and z-directions, respectively. The following matrix equation can be obtained by Substituting Eq. (1) into governing equations:

$$\left[ {\begin{array}{*{20}c} \begin{gathered} - C_{11}^{(i)} \, k^{2} - C_{55}^{(i)} \left( z \right)k^{2} (Q^{(i)} )^{2} \hfill \\ - 1/12 \, \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right) \hfill \\ \, k^{4} l^{2} (Q^{(i)} )^{2} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ - 1/12 \, \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right) \, \hfill \\ k^{4} l^{2} (Q^{(i)} )^{4} \hfill \\ + \omega^{2} \rho^{(i)} \hfill \\ \end{gathered} & \begin{gathered} - C_{13}^{(i)} \, k^{2} Q^{(i)} - C_{55}^{(i)} \, k^{2} Q^{(i)} \hfill \\ + 1/12 \, \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right) \hfill \\ \, k^{4} l^{2} (Q^{(i)} )^{2} \hfill \\ + 1/12 \, \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right) \hfill \\ k^{4} l^{2} (Q^{(i)} )^{3} \hfill \\ \end{gathered} & {( - e_{15}^{(i)} - e_{31}^{(i)} ) \, k^{2} Q^{(i)} } & {( - q_{15}^{(i)} - q_{31}^{(i)} ) \, k^{2} Q^{(i)} } \\ {} & {} & {} & {} \\ \begin{gathered} - C_{13}^{(i)} \, k^{2} Q^{(i)} - C_{55}^{(i)} \, k^{2} Q^{(i)} \hfill \\ + 1/12 \, \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right) \, \hfill \\ k^{4} l^{2} Q^{(i)} \hfill \\ + 1/12 \, \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right) \, \hfill \\ k^{4} l^{2} (Q^{(i)} )^{3} \hfill \\ \end{gathered} & \begin{gathered} - C_{55}^{(i)} k^{2} - 1/12 \, \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right) \, \hfill \\ k^{4} l^{2} \hfill \\ - C_{33}^{(i)} k^{2} (Q^{(i)} )^{2} - 1/12 \, \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right) \, \hfill \\ k^{4} l^{2} (Q^{(i)} )^{2} \hfill \\ + \omega^{2} \rho^{(i)} \hfill \\ \end{gathered} & { - e_{15}^{(i)} \, k^{2} - e_{33}^{(i)} \, k^{2} (Q^{(i)} )^{2} } & { - q_{15}^{(i)} \, k^{2} - q_{33}^{(i)} \, k^{2} (Q^{(i)} )^{2} } \\ \begin{gathered} \hfill \\ ( - e_{15}^{(i)} - e_{31}^{(i)} ) \, k^{2} Q^{(i)} \hfill \\ \hfill \\ ( - q_{15}^{(i)} - q_{31}^{(i)} ) \, k^{2} Q^{(i)} \hfill \\ \end{gathered} & \begin{gathered} \hfill \\ - e_{15}^{(i)} \, k^{2} - e_{33}^{(i)} \, k^{2} (Q^{(i)} )^{2} \hfill \\ \hfill \\ - q_{15}^{(i)} \, k^{2} - q_{33}^{(i)} \, k^{2} (Q^{(i)} )^{2} \hfill \\ \end{gathered} & \begin{gathered} \hfill \\ \varepsilon_{11}^{(i)} k^{2} + \varepsilon_{33}^{(i)} k^{2} (Q^{(i)} )^{2} \hfill \\ \hfill \\ g_{11}^{(i)} k^{2} + g_{33}^{(i)} k^{2} (Q^{(i)} )^{2} \hfill \\ \end{gathered} & \begin{gathered} \hfill \\ g_{11}^{(i)} k^{2} + g_{33}^{(i)} k^{2} (Q^{(i)} )^{2} \hfill \\ \hfill \\ \lambda_{11}^{(i)} k^{2} + \lambda_{33}^{(i)} k^{2} (Q^{(i)} )^{2} \hfill \\ \end{gathered} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {A^{(i)} } \\ {B^{(i)} } \\ {C^{(i)} } \\ {D^{(i)} } \\ \end{array} } \right] = 0$$
(37)

To solve matrix equation Eq. (37), the determinant of the coefficient matrix must be equal to zero. The ten roots of Q (i) can be obtained by solving equation Eq. (37), so the mechanical displacements can be re-expressed as follows:

$$\{ u_{x}^{(i)} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} u_{z}^{(i)} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} \phi^{(i)} ,\psi^{\left( i \right)} \} = \sum\limits_{j = 1}^{10} {\{ 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} f_{j}^{(i)} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} t_{j}^{(i)} ,w_{j}^{\left( i \right)} \} A_{j}^{(i)} \exp (ik(x + Q_{j}^{(i)} z) - i\omega t)} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}$$
(38)

Substituting Eq. (38) into constitutive relations, the stress, couple stress, rotation, electrical displacement, magnetic induction, electric and magnetic potential can be re-expressed as linear combinations:

$$\sigma_{zz}^{(i)} = \sum\limits_{j = 1}^{10} {A_{j}^{(i)} \left( {ikC_{13}^{(i)} - ikf_{j}^{(i)} C_{33}^{(i)} Q_{j}^{(i)} - ikt_{j}^{(i)} e_{33}^{(i)} Q_{j}^{(i)} - ikq_{33}^{(i)} w_{j}^{(i)} Q_{j}^{(i)} } \right)\exp (ik(x + Q_{j}^{(i)} z) - i\omega t} .$$
(39)
$$\begin{gathered} \sigma_{zx}^{(i)} = \sum\limits_{j = 1}^{10} {A_{j}^{(i)} (C_{55}^{(i)} (ik - 0.25ik^{3} ly^{2} - 0.25ik^{3} ly^{2} (Q_{j}^{(i)} )^{2} )f_{j}^{(i)} } + A_{j}^{(i)} C_{55}^{(i)} ((ik + 0.25 \, ik^{3} ly^{2} )Q_{j}^{(i)} \hfill \\\qquad\qquad +\; 0.25 \, ik^{3} ly^{2} (Q_{j}^{(i)} )^{3} ) + A_{j}^{(i)} ike_{15}^{(i)} g_{j}^{(i)} )\exp (ik(x + Q_{j}^{(i)} z) - i\omega t). \hfill \\ \end{gathered}$$
(40)
$$\begin{gathered} \sigma_{zz}^{(i)} = \sum\limits_{j = 1}^{10} {A_{j}^{(i)} } (\left( { - ikC_{55}^{(i)} + 1/12ik^{3} l^{2} \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right)\left( {1 + (Q_{j}^{(i)} )^{2} } \right)} \right)f_{j}^{(i)}\\ - ik\left( {e_{15}^{(i)} t_{j}^{(i)} + q_{15}^{(i)} w_{j}^{(i)} - C_{15}^{(i)} Q_{j}^{(i)} } \right) \hfill \\ \qquad\qquad+ 1/12ik^{3} l^{2} \left( {C_{44}^{(i)} + C_{55}^{(i)} + C_{66}^{(i)} } \right)\left( {Q_{j}^{(i)} + (Q_{j}^{(i)} )^{3} } \right))\exp (ik(x + Q_{j}^{(i)} z) - i\omega t) \hfill \\ \end{gathered}$$
(41)
$$\mu_{zy}^{(i)} = \frac{1}{6}\sum\limits_{j = 1}^{10} {A_{j}^{(i)} \left( {C_{44}^{(i)} { + }C_{55}^{(i)} { + }C_{66}^{(i)} } \right)l^{2} ( - k^{2} f_{j}^{(i)} Q_{j}^{(i)} - k^{2} (Q_{j}^{(i)} )^{2} )} \exp (ik(x + Q_{j}^{(i)} z) - i\omega t).$$
(42)
$$\omega_{y}^{(i)} = \frac{1}{2}ik\sum\limits_{j = 1}^{10} {A_{j}^{(i)} (f_{j}^{(i)} + Q_{j}^{(i)} )} \exp (ik(x + Q_{j}^{(i)} z) - i\omega t).$$
(43)
$$D_{z}^{(i)} = ik\sum\limits_{j = 1}^{10} {A_{j}^{(i)} (e_{31}^{(i)} - e_{33}^{(i)} Q_{j}^{(i)} f_{j}^{(i)} { + }\varepsilon_{33}^{(i)} Q_{j}^{(i)} t_{j}^{(i)} { + }g_{33}^{(i)} Q_{j}^{(i)} w_{j}^{(i)} )} \exp (ik(x + Q_{j}^{(i)} z) - i\omega t)$$
(44)
$$B_{z}^{(i)} = ik\sum\limits_{j = 1}^{10} {A_{j}^{(i)} (q_{31}^{(i)} - q_{33}^{(i)} Q_{j}^{(i)} f_{j}^{(i)} { + }g_{33}^{(i)} Q_{j}^{(i)} t_{j}^{(i)} { + }\lambda_{33}^{(i)} Q_{j}^{(i)} w_{j}^{(i)} )} \exp (ik(x + Q_{j}^{(i)} z) - i\omega t)$$
(45)
$$\phi_{z}^{(i)} = - \sum\limits_{j = 1}^{10} {A_{j}^{(i)} t_{j}^{(i)} } \exp (ik(x + Q_{j}^{(i)} z) - i\omega t)$$
(46)
$$\psi_{z}^{(i)} = - \sum\limits_{j = 1}^{10} {A_{j}^{(i)} w_{j}^{(i)} } \exp (ik(x + Q_{j}^{(i)} z) - i\omega t)$$
(47)

For TOBO, the boundary conditions can be written as:

$$\sigma_{zz}^{I} = 0,\sigma_{zx}^{I} = 0,\mu_{zy}^{I} = 0,D_{z}^{I} = 0,B_{z}^{I} = 0, z = \, 0$$
(48)
$$\sigma_{zz}^{II} = 0,\sigma_{zx}^{II} = 0,\mu_{zy}^{II} = 0,D_{z}^{II} = 0,B_{z}^{II} = 0. z = h$$
(49)
$$\begin{array}{*{20}c} \begin{gathered} u_{x}^{{{\text{i + }}1}} = u_{x}^{i} ,u_{z}^{{{\text{i + }}1}} = u_{z}^{{\text{i}}} ,\sigma_{zz}^{i + 1} = \sigma_{zz}^{i} ,\sigma_{zx}^{i + 1} = \sigma_{zx}^{i} ,\mu_{zy}^{{i{ + }1}} = \mu_{zy}^{i} ,\omega_{y}^{i + 1} = \omega_{y}^{i} , \hfill \\ D_{z}^{i + 1} = D_{z}^{i} ,\phi^{i + 1} = \phi^{i} ,B_{z}^{i + 1} = B_{z}^{i} ,\psi^{i + 1} = \psi^{i} . \hfill \\ \end{gathered} & {z = h_{i} ,i = {123} \ldots N - {1}} \\ \end{array}$$
(50)

The following equation can be obtained by substitution of Eqs. (39)–(47) into Eqs. (48)–(50):

$$\left[ {MM} \right]\{ A_{j}^{(i)} \}^{T} = \, 0 \, \left( {i = \, 1, \, 2 \ldots \, N,j = \, 1, \, 2 \ldots \, 8} \right).$$
(51)

where [MM] is a 10 N × 10 N matrix whose elements contain h, ω, k and material parameters. The dispersion relation can be obtained by solving |MM| = 0 numerically.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Yu, J., Liu, C. et al. Lamb waves in functionally graded magnetoelectric microplates with different boundary conditions. Acta Mech 234, 4939–4961 (2023). https://doi.org/10.1007/s00707-023-03636-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03636-w

Navigation