Skip to main content
Log in

On vibration and passive control of axially translating string with damping at both ends using reflected traveling wave superposition method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The axially translating string has received wide attention due to its adverse effect of transverse vibration on security and stability in engineering. Most of the current literature focuses on classical boundary cases (e.g., fixed boundary, free boundary), while non-classical boundaries, such as damped boundary, spring-damped boundary, and mass-spring-damped boundary, are more relevant because they are in line with engineering practice. Boundary damping has a significant effect on system vibration, and the damping-damping boundary has rarely been studied. Thus, this paper is dedicated to the modeling, calculation and vibration passive control of a translating string with damping at both ends. First, the equations of motion and boundary conditions are deduced according to extended Hamilton’s principle, with the boundary damping forces as the controlling forces. Second, the analytical solutions of vibration response and system energy expressions are derived using the reflected traveling wave superposition method (RTWSM). Next, to stabilize the system under the boundary damping forces, the boundary damping ranges that satisfy the exponential decay of the system energy are obtained. To further solve for optimal damping in the above ranges, RTWSM model and the boundary energy reflection are employed. Finally, the vibration responses of translating strings with different boundary damping values are simulated. The result shows that boundary damping in feasible intervals facilitates vibration attenuation effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pham, P.T., Hong, K.S.: Dynamic models of axially moving systems: a review. Nonlinear Dyn. 100(1), 315–349 (2020)

    Article  Google Scholar 

  2. Hong, K.S., Chen, L.Q., Pham, P.T., Yang, X.D.: Control of Axially Moving Systems. Springer, Singapore (2022)

    Book  Google Scholar 

  3. Marynowski, K., Kapitaniak, T.: Dynamics of axially moving continua. Int. J. Mech. Sci. 81, 26–41 (2014)

    Article  Google Scholar 

  4. Zhang, N.H., Wang, J.J., Cheng, C.J.: Complex-mode Galerkin approach in transverse vibration of an axially accelerating viscoelastic string. Appl. Math. Mech.-Engl. Ed. 28(1), 1–9 (2007)

    Article  MATH  Google Scholar 

  5. Chen, L.Q., Zhao, W., Ding, H.: On Galerkin discretization of axially moving nonlinear strings. Acta Mech. Solida Sin. 22(4), 369–376 (2009)

    Article  Google Scholar 

  6. Asnafi, A.: Melnikov-based criterion to obtain the critical velocity in axially moving viscoelastic strings under a set of non-Gaussian parametric bounded noise. Acta Mech. 232(9), 3495–3508 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. van Horssen, W.T., Ponomareva, S.V.: On the construction of the solution of an equation describing an axially moving string. J. Sound Vib. 287(1–2), 359–366 (2005)

    Article  MATH  Google Scholar 

  8. Ghayesh, M.H., Moradian, N.: Nonlinear dynamic response of axially moving, stretched viscoelastic strings. Arch. Appl. Mech. 81(6), 781–799 (2011)

    Article  MATH  Google Scholar 

  9. Yang, X.D., Wu, H., Qian, Y.J., Zhang, W., Lim, C.W.: Nonlinear vibration analysis of axially moving strings based on gyroscopic modes decoupling. J. Sound Vib. 393, 308–320 (2017)

    Article  Google Scholar 

  10. Gaiko, N.V., van Horssen, W.T.: On the transverse, low frequency vibrations of a traveling string with boundary damping. J. Vib. Acoust.-Trans. ASME. 137(4), 041004 (2015)

    Article  Google Scholar 

  11. Gaiko, N.V., van Horssen, W.T.: Resonances and vibrations in an elevator cable system due to boundary sway. J. Sound Vib. 424, 272–292 (2018)

    Article  Google Scholar 

  12. Chen, E.W., Ferguson, N.S.: Analysis of energy dissipation in an elastic moving string with a viscous damper at one end. J. Sound Vib. 333(9), 2556–2570 (2014)

    Article  Google Scholar 

  13. Chen, E.W., Li, M.B., Ferguson, N., Lu, Y.M.: An adaptive higher order finite element model and modal energy for the vibration of a traveling string. J. Vib. Control. 25(5), 996–1007 (2019)

    Article  MathSciNet  Google Scholar 

  14. Chen, E.W., Zhang, K., Ferguson, N.S., Wang, J., Lu, Y.M.: On the reflected wave superposition method for a travelling string with mixed boundary supports. J. Sound Vib. 440, 129–146 (2019)

    Article  Google Scholar 

  15. Chen, E.W., Luo, Q., Ferguson, N.S., Lu, Y.M.: A reflected wave superposition method for vibration and energy of a travelling string. J. Sound Vib. 400, 40–57 (2017)

    Article  Google Scholar 

  16. Ulsoy, A.G.: Vibration control in rotating or translating elastic systems. J. Dyn. Syst. Meas. Control-Trans. ASME. 106(1), 6–14 (1984)

    Article  MATH  Google Scholar 

  17. Fung, R.F., Liao, C.C.: Application of variable structure control in the nonlinear string system. Int. J. Mech. Sci. 37(9), 985–993 (1995)

    Article  MATH  Google Scholar 

  18. Wang, L., Chen, H.H., He, X.D.: Active H∞ control of the vibration of an axially moving cantilever beam by magnetic force. Mech. Syst. Sig. Process. 25(8), 2863–2878 (2011)

    Article  Google Scholar 

  19. Hong, K.S., Pham, P.T.: Control of axially moving systems: a review. Int. J. Control Autom. Syst. 17(12), 2983–3008 (2019)

    Article  Google Scholar 

  20. He, W., Qin, H., Liu, J.K.: Modelling and vibration control for a flexible string system in three-dimensional space. IET Contr. Theory Appl. 9(16), 2387–2394 (2015)

    Article  MathSciNet  Google Scholar 

  21. Yang, B.: Noncolocated control of a damped stringusing time delay. J. Dyn. Syst. Meas. Control-Trans. ASME. 114(4), 736–740 (1992)

    Article  Google Scholar 

  22. Nguyen, Q.C., Hong, K.S.: Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J. Sound Vib. 329(22), 4588–4603 (2010)

    Article  Google Scholar 

  23. Cheng, Y., Wu, Y.H., Guo, B.Z.: Absolute boundary stabilization for an axially moving Kirchhoff beam. Automatica 129, 109667 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fung, R.F., Wu, J.W., Lu, P.Y.: Adaptive boundary control of an axially moving string system. J. Vib. Acoust.-Trans. ASME. 124(3), 435–440 (2002)

    Article  Google Scholar 

  25. Lee, S.Y., Mote, C.D.: Vibration control of an axially moving string by boundary control. J. Dyn. Syst. Meas. Control-Trans. ASME. 118(1), 66–74 (1996)

    Article  MATH  Google Scholar 

  26. Foda, M.A.: Vibration control and suppression of an axially moving string. J. Vib. Control. 18(1), 58–75 (2012)

    Article  MathSciNet  Google Scholar 

  27. Moslemi, A., Khadem, S.E., Khazaee, M., Davarpanah, A.: Nonlinear vibration and dynamic stability analysis of an axially moving beam with a nonlinear energy sink. Nonlinear Dyn. 104(3), 1955–1972 (2021)

    Article  Google Scholar 

  28. Hao, M.Y., Ding, H., Mao, X.Y., Chen, L.Q.: Stability and nonlinear response analysis of parametric vibration for elastically constrained pipes conveying pulsating fluid. Acta Mech. Solida Sin. (2022). https://doi.org/10.1007/s10338-022-00370-z

    Article  Google Scholar 

  29. Chen, E.W., Yuan, J.F., Ferguson, N.S., Zhang, K., Zhu, W.D., Lu, Y.M., Wei, H.Z.: A wave solution for energy dissipation and exchange at nonclassical boundaries of a traveling string. Mech. Syst. Sig. Process. 150, 107272 (2021)

    Article  Google Scholar 

  30. Kim, C.W., Hong, K.S., Park, H.: Boundary control of an axially moving string: actuator dynamics included. J. Mech. Sci. Technol. 19(1), 40–50 (2005)

    Article  Google Scholar 

  31. Lee, S.Y., Mote, C.D.: A Generalized treatment of the energetics of translating continua, part I: Strings and second order tensioned pipes. J. Sound Vib. 204(5), 717–734 (1997)

    Article  Google Scholar 

  32. McIver, D.B.: Hamilton’s principle for systems of changing mass. J. Eng. Math. 7(3), 249–261 (1973)

    Article  MATH  Google Scholar 

  33. Kreyszig, E., Kreyszig, H., Norminton, E.J.: Advanced Engineering Mathematics. Wiley, New York (2011)

    MATH  Google Scholar 

  34. Gaiko, N.V., van Horssen, W.T.: On wave reflections and energetics for a semi-infinite traveling string with a nonclassical boundary support. J. Sound Vib. 370, 336–350 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province [Grant Number 2208085ME130] and the National Natural Science Foundation of China [Grant Numbers 51675150, 51305115]. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enwei Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. The derivation of governing equation and boundary condition.

Appendix A. The derivation of governing equation and boundary condition.

In order to simplify the derivation, the notation La shown in Eq. (A.1):

$$La = \rho (U_{,T} + V_{0} U_{,X} )^{2} - T_{0} U_{,X}^{2}$$
(A.1)

Then, according to Eqs. (2) and (3), the following equation is obtained:

$$\begin{aligned} \int_{{T_{1} }}^{{T_{2} }} {\delta (E_{{\text{k}}} - E_{{\text{p}}} )} &= \int_{{T_{1} }}^{{T_{2} }} {\delta \left( {\frac{1}{2}\int_{0}^{L} {\left( {\rho (U_{,T} + V_{0} U_{,X} )^{2} - T_{0} U_{,X}^{2} } \right)} {\text{d}}X} \right){\text{d}}T} \hfill \\ &= \frac{1}{2}\int_{{T_{1} }}^{{T_{2} }} {\int_{0}^{L} {\delta L} a{\text{d}}X{\text{d}}T} = \frac{1}{2}\int_{{T_{1} }}^{{T_{2} }} {\int_{0}^{L} {\left( {\frac{\partial La}{{\partial U}}\delta U + \frac{\partial La}{{\partial U_{,X} }}\delta U_{,X} + \frac{\partial La}{{\partial U_{,T} }}\delta U_{,T} } \right)} {\text{d}}X{\text{d}}T} \hfill \\ \end{aligned}$$
(A.2)

We integrate it by parts, the Eq. (A.2) can be written in the following form:

$$\begin{aligned}& \frac{1}{2}\int_{{T_{1} }}^{{T_{2} }} {\int_{0}^{L} {\left( {\frac{\partial La}{{\partial U}}\delta U + \frac{\partial La}{{\partial U_{,X} }}\delta U_{,X} + \frac{\partial La}{{\partial U_{,T} }}\delta U_{,T} } \right)} {\text{d}}X{\text{d}}T} \\ &\quad= \frac{1}{2}\int_{{T_{1} }}^{{T_{2} }} {\int_{0}^{L} {\left( {\frac{\partial La}{{\partial U}} - \frac{\partial }{\partial X}\frac{\partial La}{{\partial U_{,X} }} - \frac{\partial }{\partial T}\frac{\partial La}{{\partial U_{,T} }}} \right)} \delta U{\text{d}}X{\text{d}}T} + \frac{1}{2}\int_{{T_{1} }}^{{T_{2} }} {\frac{\partial La}{{\partial U_{,X} }}\delta U\left| \begin{aligned} X &= L \hfill \\ X &= 0 \hfill \\ \end{aligned} \right.} {\text{d}}T \\ &\qquad + \frac{1}{2}\int_{0}^{L} {\frac{\partial La}{{\partial U_{,T} }}\delta U\left| \begin{aligned} T &= T_{2} \hfill \\ T &= T_{1} \hfill \\ \end{aligned} \right.} {\text{d}}T \hfill \\ &\quad= \int_{{T_{1} }}^{{T_{2} }} {\int_{0}^{L} {\left( { - \rho [V_{0}^{2} U_{,XX} + 2V_{0} U_{,XT} + U_{,TT} ] + T_{0} U_{,XX} } \right)} \delta U{\text{d}}X{\text{d}}T + \frac{1}{2}\int_{{T_{1} }}^{{T_{2} }} {\frac{\partial La}{{\partial U_{,X} }}\delta U\left| \begin{aligned} X &= L \hfill \\ X &= 0 \hfill \\ \end{aligned} \right.} {\text{d}}T} \hfill \\ &\qquad+ \frac{1}{2}\int_{0}^{L} {\frac{\partial La}{{\partial U_{,T} }}\delta U\left| \begin{aligned} T &= T_{2} \hfill \\ T &= T_{1} \hfill \\ \end{aligned} \right.} {\text{d}}T \hfill \\ \end{aligned}$$
(A.3)

Because the variations at T1 and T2 are zero, i.e., δU(X,T1) = δU(X,T2) = 0, the last term in Eq. (A.3) vanishes. Then, we substitute Eqs. (4), (5) and (A.3) into Eq. (1),

$$\begin{aligned} & \frac{1}{2}\int_{{T_{1} }}^{{T_{2} }} {\int_{0}^{L} {\left( { - \rho [V_{0}^{2} U_{{,XX}} + 2V_{0} U_{{,XT}} + U_{{,TT}} ] + T_{0} U_{{,XX}} } \right)} \delta U{\text{d}}X{\text{d}}T} \\ & \qquad + \left( {\frac{1}{2}\int_{{T_{1} }}^{{T_{2} }} {\frac{{\partial La}}{{\partial U_{{,X}} }}\delta U\left| \begin{gathered} X = L \hfill \\ X = 0 \hfill \\ \end{gathered} \right.} {\text{ + }}\delta W_{{nc}} + \delta W_{{vm}} } \right){\text{d}}T \\ & \quad = \int_{{T_{1} }}^{{T_{2} }} {\int_{0}^{L} {\left( { - \rho [V_{0}^{2} U_{{,XX}} + 2V_{0} U_{{,XT}} + U_{{,TT}} ] + T_{0} U_{{,XX}} } \right)} \delta U{\text{d}}X{\text{d}}T} \\ & \qquad + \int_{{T_{1} }}^{{T_{2} }} {\left( {\begin{array}{*{20}l} {\left( {\rho V_{0} \left( {U_{{,T}} + V_{0} U_{{,X}} } \right) - T_{0} U_{{,X}} } \right)\delta U\left| \begin{gathered} X = L \hfill \\ X = 0 \hfill \\ \end{gathered} \right. - H_{0} U_{{,X}} (0,T)\delta U(0,T)} \hfill \\ { - H_{1} U_{{,T}} (L,T)\delta U(L,T) + \rho V_{0} [U_{{,T}} (0,T) + VU_{{,X}} (0,T)]\delta U(0,T)} \hfill \\ { - \rho V_{0} [U_{{,T}} (L,T) + V_{0} U_{{,X}} (L,T)]\delta U(L,T)} \hfill \\ \end{array} } \right){\text{d}}T} \\ & \quad = \int_{{T_{1} }}^{{T_{2} }} {\int_{0}^{L} {\left( { - \rho [V_{0}^{2} U_{{,XX}} + 2V_{0} U_{{,XT}} + U_{{,TT}} ] + T_{0} U_{{,XX}} } \right)} \delta U{\text{d}}X{\text{d}}T} \\ & \qquad + \int_{{T_{1} }}^{{T_{2} }} {\{ - (T_{0} U_{{,X}} (L,T) + H_{1} U_{{,T}} (L,T))\delta U(L,T) + (T_{0} U_{{,X}} (0,T) - H_{0} U_{{,T}} (0,T))\delta U(0,T)\} {\text{d}}T} =0 \end{aligned}$$
(A.4)

Thus, the governing equation and boundary conditions at X = 0 and X = L are obtained as follows:

$$- \rho [V_{0}^{2} U_{,XX} + 2V_{0} U_{,XT} + U_{,TT} ] + T_{0} U_{,XX} = 0$$
(A.5)
$$T_{0} U_{,X} (0,T) - H_{0} U_{,T} (0,T) = 0$$
(A.6)
$$T_{0} U_{,X} (L,T) + H_{1} U_{,T} (L,T) = 0$$
(A.7)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, E., Dong, G. et al. On vibration and passive control of axially translating string with damping at both ends using reflected traveling wave superposition method. Acta Mech 234, 4917–4937 (2023). https://doi.org/10.1007/s00707-023-03635-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03635-x

Navigation