Skip to main content
Log in

Inverse design of phononic crystals for anticipated wave propagation by integrating deep learning and semi-analytical approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Inversely designing and optimizing topological structures of phononic crystals that dominate extraordinary wave characteristics has become a research hotspot. In this study, a joint framework combining a data-driven deep learning model with the semi-analytical two-dimensional periodic spectral finite element method is applied to achieve the inverse design and optimization of topology. A convolutional neural network and a generative adversarial network are trained for inverse design. Meanwhile, the semi-analytical periodic approach is utilized to analyze the wave characteristics of two-dimensional phononic crystals. Through the proactive tuning of the band structures, the topologies of phononic crystals are inversely on-demand designed and optimized for the anticipated partial bandgap or complete bandgap, respectively, which revealed the unidirectional wave transmission or vibration isolation characteristics within the desired frequency segment. The unidirectional wave propagation and vibration isolation performance are validated through numerical simulations. This work holds the potential to benefit the design, optimization, and application of metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993)

    Google Scholar 

  2. Wang, Y.F., Wang, Y.Z., Wu, B., Chen, W., Wang, Y.S.: Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev. 72, 040801 (2020)

    Google Scholar 

  3. Zhang, X., Liu, Z.: Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85, 341–343 (2004)

    Google Scholar 

  4. Lee, M.K., Ma, P.S., Lee, I.K., Kim, H.W., Kim, Y.Y.: Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates. Appl. Phys. Lett. 98, 011909 (2011)

    Google Scholar 

  5. Li, X.F., Ni, X., Feng, L., Lu, M.H., He, C., Chen, Y.F.: Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011)

    Google Scholar 

  6. Li, Y., Shen, C., Xie, Y., Li, J., Wang, W., Cummer, S.A., Jing, Y.: Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys. Rev. Lett. 119, 035501 (2017)

    Google Scholar 

  7. Ma, N.F., Han, Q., Han, S.H., Li, C.L.: Hierarchical re-entrant honeycomb metamaterial for energy absorption and vibration insulation. Int. J. Mech. Sci. 250, 108307 (2023)

    Google Scholar 

  8. Jiang, T.J., Han, Q., Li, C.L.: Design and bandgap optimization of multi-scale composite origami-inspired metamaterials. Int. J. Mech. Sci. 248, 108233 (2023)

    Google Scholar 

  9. Jiang, T.J., Han, Q., Li, C.L.: Topologically tunable local-resonant origami metamaterials for wave transmission and impact mitigation. J. Sound Vib. 548, 117548 (2023)

    Google Scholar 

  10. Xie, B., Wang, H.X., Zhang, X., Zhan, P., Jiang, J.H., Lu, M., Chen, Y.: Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021)

    Google Scholar 

  11. Wang, P., Lu, L., Bertoldi, K.: Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015)

    Google Scholar 

  12. Huang, H., Chen, J., Huo, S.: Simultaneous topological Bragg and locally resonant edge modes of shear horizontal guided wave in one-dimensional structure. J. Phys. D Appl. Phys. 50, 275102 (2017)

    Google Scholar 

  13. Kulpe, J.A., Sabra, K.G., Leamy, M.J.: Bloch-wave expansion technique for predicting wave reflection and transmission in two-dimensional phononic crystals. J. Acoust. Soc. Am. 135, 1808–1819 (2014)

    Google Scholar 

  14. Palermo, A., Marzani, A.: Extended Bloch mode synthesis: ultrafast method for the computation of complex band structures in phononic media. Int. J. Solids Struct. 100, 29–40 (2016)

    Google Scholar 

  15. Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132 (2010)

  16. Yu, D., Liu, Y., Wang, G., Zhao, H., Qiu, J.: Flexural vibration band gaps in Timoshenko beams with locally resonant structures. J. Appl. Phys. 100, 124901 (2006)

    Google Scholar 

  17. Zhou, W., Lim, C.W.: Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves. Int. J. Mech. Sci. 159, 359–372 (2019)

    Google Scholar 

  18. Li, Z.N., Yuan, B., Wang, Y.Z., Shui, G.S., Zhang, C., Wang, Y.S.: Diode behavior and nonreciprocal transmission in nonlinear elastic wave metamaterial. Mech. Mater. 133, 85–101 (2019)

    Google Scholar 

  19. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Electro-mechanical coupling diode of elastic wave in nonlinear piezoelectric metamaterials. J. Acoust. Soc. Am. 150, 891–905 (2021)

    Google Scholar 

  20. Dal Poggetto, V.F., Serpa, A.L.: Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method. Int. J. Mech. Sci. 184, 105841 (2020)

    Google Scholar 

  21. Dal Poggetto, V.F., Serpa, A.L.: Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. J. Sound Vib. 495, 115909 (2021)

    Google Scholar 

  22. Dal Poggetto, V.F., de Franca Arruda, J.R.: Widening wave band gaps of periodic plates via shape optimization using spatial Fourier coefficients. Mech. Syst. Signal Pr. 147, 107098 (2021)

    Google Scholar 

  23. Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330, 2536–2553 (2011)

    Google Scholar 

  24. Veres, I.A., Berer, T., Matsuda, O.: Complex band structures of two dimensional phononic crystals: analysis by the finite element method. J. Appl. Phys. 114, 083519 (2013)

    Google Scholar 

  25. Palermo, A., Marzani, A.: A reduced Bloch operator finite element method for fast calculation of elastic complex band structures. Int. J. Solids Struct. 191, 601–613 (2020)

    Google Scholar 

  26. Wu, Z., Li, F.M., Zhang, C.: Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method. J. Sound Vib. 421, 246–260 (2018)

    Google Scholar 

  27. Wu, Z., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)

    Google Scholar 

  28. Wu, Z., Li, F.M.: Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. J. Vib. Control 22, 710–721 (2016)

    MathSciNet  Google Scholar 

  29. Li, C.L., Jiang, T.J., Liu, S., Han, Q.: Dispersion and band gaps of elastic guided waves in the multi-scale periodic composite plates. Aerosp. Sci. Technol. 124, 107513 (2022)

    Google Scholar 

  30. Han, S.H., Han, Q., Jiang, T.J., Li, C.L.: Complex dispersion relations and evanescent waves in periodic magneto-electro curved phononic crystal plates. Appl. Math. Model. 119, 373–390 (2023)

    MathSciNet  Google Scholar 

  31. Oudich, M., Gerard, N.J.R.K., Deng, Y., Jing, Y.: Tailoring Structure-Borne Sound through Bandgap Engineering in phononic crystals and metamaterials: a comprehensive review. Adv. Funct. Mater. 33, 2206309 (2023)

    Google Scholar 

  32. Xie, L.X., Xia, B.Z., Liu, J., Huang, G.L., Lei, J.R.: An improved fast plane wave expansion method for topology optimization of phononic crystals. Int. J. Mech. Sci. 120, 171–181 (2017)

    Google Scholar 

  33. Sharma, K.A., Kosta, M., Shmuel, G., Amir, O.: Gradient-based topology optimization of soft dielectrics as tunable phononic crystals. Compos. Struct. 280, 114846 (2022)

    Google Scholar 

  34. Dalklint, A., Wallin, M., Bertoldi, K., Tortorelli, D.: Tunable phononic bandgap materials designed via topology optimization. J. Mech. Phys. Solids 163, 104849 (2022)

    MathSciNet  Google Scholar 

  35. Li, W., Meng, F., Chen, Y., Li, Y.F., Huang, X.: Topology optimization of photonic and phononic crystals and metamaterials: a review. Adv. Theor. Simul. 2, 1900017 (2019)

    Google Scholar 

  36. Chen, Y., Meng, F., Huang, X.: Creating acoustic topological insulators through topology optimization. Mech. Syst. Signal Pr. 146, 107054 (2021)

    Google Scholar 

  37. Chen, Y., Meng, F., Zhu, J., Huang, X.: Inverse design of second-order photonic topological insulators in C3-symmetric lattices. Appl. Math. Model. 102, 194–206 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Dong, H.W., Zhao, S.D., Zhu, R., Wang, Y.S., Cheng, L., Zhang, C.: Customizing acoustic dirac cones and topological insulators in square lattices by topology optimization. J. Sound Vib. 493, 115687 (2021)

    Google Scholar 

  39. Dong, H.W., Su, X.X., Wang, Y.S., Zhang, C.: Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct. Multidiscip. O 50, 593–604 (2014)

    MathSciNet  Google Scholar 

  40. Dong, H.W., Zhao, S.D., Miao, X.B., Shen, C., Zhang, X., Zhao, Z., Zhang, C., Wang, Y.S., Cheng, L.: Customized broadband pentamode metamaterials by topology optimization. J. Mech. Phys. Solids 152, 104407 (2021)

    MathSciNet  Google Scholar 

  41. Sanchez-Lengeling, B., Aspuru-Guzik, A.: Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018)

    Google Scholar 

  42. Killoran, N., Lee, L.J., Delong, A., Duvenaud, D., Frey, B.J.: Generating and Designing DNA with Deep Generative Models. arXiv preprint. arXiv:1712.06148(2017)

  43. Jin, Y., He, L., Wen, Z., Mortazavi, B., Guo, H., Torrent, D., Djafari-Rouhani, B., Rabczuk, T., Zhuang, X.Y., Li, Y.: Intelligent on-demand design of phononic metamaterials. Nanophotonics 11(3), 439–460 (2022)

    Google Scholar 

  44. Kennedy, J., Lim, C.W.: Machine learning and deep learning in phononic crystals and metamaterials a review. Mater. Today Commun. 104606 (2022)

  45. Jiang, W., Zhu, Y., Yin, G., Lu, H., Xie, L., Yin, M.: Dispersion relation prediction and structure inverse design of elastic metamaterials via deep learning. Mater. Today Phys. 22, 100616 (2022)

    Google Scholar 

  46. Liu, C.X., Yu, G.L.: Inverse design of locally resonant metabarrier by deep learning with a rule-based topology dataset. Comput. Method Appl. M. 394, 114925 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Maghami, A., Hosseini, S.M.: IAutomated design of phononic crystals under thermoelastic wave propagation through deep reinforcement learning. Eng. Struct. 263, 114385 (2022)

    Google Scholar 

  48. He, L., Wen, Z., Jin, Y., Torrent, D., Zhuang, X., Rabczuk, T.: Inverse design of topological metaplates for flexural waves with machine learning. Mater. Design. 199, 109390 (2021)

    Google Scholar 

  49. Ma, W., Cheng, F., Xu, Y., Wen, Q., Liu, Y.: Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31, 1901111 (2019)

    Google Scholar 

  50. Han, S.H., Han, Q., Li, C.L.: Deep-learning-based inverse design of phononic crystals for anticipated wave attenuation. J. Appl. Phys. 132, 154901 (2022)

    Google Scholar 

  51. Chen, C.T., Gu, G.X.: Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv. Sci. 7, 1902607 (2020)

    Google Scholar 

  52. Ahmed, W.W., Farhat, M., Zhang, X., Wu, Y.: Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak. Phys. Rev. Res. 3, 013142 (2021)

    Google Scholar 

  53. Challapalli, A., Patel, D., Li, G.: Inverse machine learning framework for optimizing lightweight metamaterials. Mater. Design. 208, 109937 (2021)

    Google Scholar 

  54. Li, X., Ning, S., Liu, Z., Yan, Z., Luo, C., Zhuang, Z.: Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput. Method Appl. M 361, 112737 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Schattschneider, D.: The plane symmetry groups: their recognition and notation. Am. Math. Mon. 85, 439–450 (1978)

    MathSciNet  MATH  Google Scholar 

  56. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020)

    Google Scholar 

  57. Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1125–1134 (2017)

  58. Amari, S.: Backpropagation and stochastic gradient descent method. Neurocomputing 5, 185–196 (1993)

    MATH  Google Scholar 

  59. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv preprint. arXiv:1412.6980 (2014)

  60. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A. A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2536–2544 (2016)

Download references

Acknowledgements

The authors wish to acknowledge the support from National Natural Science Foundation of China (11972160), Guangdong Basic and Applied Basic Research Foundation(2022A1515010143), Young Talent Support Project of Guangzhou Association for Science and Technology (QT2023013) and Science and Technology Program of Guangzhou (2023A04J1302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Han, Q., Jiang, T. et al. Inverse design of phononic crystals for anticipated wave propagation by integrating deep learning and semi-analytical approach. Acta Mech 234, 4879–4897 (2023). https://doi.org/10.1007/s00707-023-03634-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03634-y

Navigation