Skip to main content
Log in

Dynamic analysis of laminated composite double cylindrical and conical shells with bulkheads using meshfree method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the free vibration and dynamic response of laminated composite double cylindrical and conical shells with bulkheads are investigated by means of the meshfree method. The laminated composite double conical shell with bulkheads (DCOSB) is divided into several conical shells and annular plates to ensure the numerical stability. The theoretical formulation of the individual segment is established by using the energy principle in framework of first order shear deformation theory (FSDT). The displacement components of each segment are approximated by a meshfree shape function along the meridional direction and Fourier series for the circumferential direction. The formulation of entire system are derived by using coupling conditions obtained through the geometrical relations between the segments. The double cylindrical shell with bulkheads (DCYSB) is considered as a DCOSB with semi-vertex angle of α = 0. The harmonic load and stationary stochastic excitation are considered as the external force. Convergence and verification studies are performed to confirm the reliability and accuracy of the present formulation. Satisfactory agreements are achieved between the numerical results by the proposed method and those from the published literature. Finally, the effect of some parameters on the free vibration and dynamic response of laminated composite DCYSB and DCOSB is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. Jin, G., Ye, T., Jia, X., Gao, S.: A general Fourier solution for the vibration analysis of composite laminated structure elements of revolution with general elastic restraints. Compos. Struct. 109, 150–168 (2014)

    Google Scholar 

  2. Zhang, Y., Wang, C., Pedroso, D., Zhang, H.: Extension of Hencky bar-net model for vibration analysis of rectangular plates with rectangular cutouts. J. Sound Vib. 432, 65–87 (2018)

    Google Scholar 

  3. Zhang, H., Zhu, R., Shi, D., Wang, Q.: A simplified plate theory for vibration analysis of composite laminated sector, annular and circular plate. Thin Walled Struct. 143, 106252 (2019)

    Google Scholar 

  4. Khare, S., Mittal, N.D.: Free vibration of thick laminated circular and annular plates using three-dimensional finite element analysis. Alex. Eng. J. 57, 1217–1228 (2018)

    Google Scholar 

  5. Qin, B., Zhong, R., Wu, Q., Wang, T., Wang, Q.: A unified formulation for free vibration of laminated plate through Jacobi-Ritz method. Thin Walled Struct. 144, 106354 (2019)

    Google Scholar 

  6. Xie, X., Jin, G., Li, W., Liu, Z.: A numerical solution for vibration analysis of composite laminated conical, cylindrical shell and annular plate structures. Compos. Struct. 111, 20–30 (2014)

    Google Scholar 

  7. Fallah, N., Delzendeh, M.: Free vibration analysis of laminated composite plates using meshless finite volume method. Eng. Anal. Bound. Elem. 88, 132–144 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Mantari, J.L., Oktem, A.S., Soares, C.G.: A new higher order shear deformation theory for sandwich and composite laminated plates. Comp. Part B 43, 1489–1499 (2012)

    Google Scholar 

  9. Choe, K., Kim, K., Wang, Q.: Dynamic analysis of composite laminated doubly-curved revolution shell based on higher order shear deformation theory. Compos. Struct. 225, 111155 (2019)

    Google Scholar 

  10. Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N., Rabczuk, T.: Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mech. Adv. Mater. Struct. 22, 451–469 (2015)

    Google Scholar 

  11. Zhou, J., Bhaskar, A., Zhang, X.: Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation. J. Sound Vib. 357, 253–268 (2015)

    Google Scholar 

  12. Zhang, Q., Mao, Y., Qi, D.: Effect of perforation on the sound transmission through a double-walled cylindrical shell. J. Sound Vib. 410, 344–363 (2017)

    Google Scholar 

  13. Ramezani, H., Talebitooti, R.: Vibroacoustic response of a double-walled cylindrical FGM shell with a porous sandwiched layer. Mech. Compos. Mater. 51, 581–592 (2015)

    Google Scholar 

  14. Yin, C., Jin, Z., Chen, Y., Hua, H.: Effects of sacrificial coatings on stiffened double cylindrical shells subjected to underwater blasts. Int. J. Impact Eng. 136, 103412 (2020)

    Google Scholar 

  15. Zhang, C., Jin, G., Ma, X., Ye, T.: Vibration analysis of circular cylindrical double-shell structures under general coupling and end boundary conditions. Appl. Acoust. 110, 176–193 (2016)

    Google Scholar 

  16. Ma, X., Jin, G., Xiong, Y., Liu, Z.: Free and forced vibration analysis of coupled conical-cylindrical shells with arbitrary boundary conditions. Int. J. Mech. Sci. 88, 122–137 (2014)

    Google Scholar 

  17. Shakouri, M.: Free vibration analysis of functionally graded rotating conical shells in thermal environment. Comp. Part B 163, 574–584 (2019)

    Google Scholar 

  18. Haddadpour, H., Mahmoudkhani, S., Navazi, H.M.: Free vibration analysis of functionally graded cylindrical shells including thermal effects. Thin Walled Struct. 45, 591–599 (2007)

    Google Scholar 

  19. Jooybar, N., Malekzadeh, P., Fiouz, A., Vaghefi, M.: Thermal effect on free vibration of functionally graded truncated conical shell panels. Thin Walled Struct. 103, 45–61 (2016)

    Google Scholar 

  20. Sheikh, A.H., Mukhopadhyay, M.: Linear and nonlinear transient vibration analysis of stiffened plate structures. Finite Elem. Anal. Des. 38, 477–502 (2002)

    MATH  Google Scholar 

  21. De Rosa, S., Franco, F.: Exact and numerical responses of a plate under a turbulent boundary layer excitation. J. Fluid Struct. 24(2), 212–230 (2008)

    Google Scholar 

  22. Franco, F., De Rosa, S., Ciappi, E.: Numerical approximations on the predictive responses of plates under stochastic and convective loads. J. Fluid Struct. 42, 296–312 (2013)

    Google Scholar 

  23. Zhang, Z., et al.: Non-stationary random vibration analysis for train–bridge systems subjected to horizontal earthquakes. Eng. Struct. 32(11), 3571–3582 (2010)

    Google Scholar 

  24. Dogan, V.: Nonlinear vibration of FGM plates under random excitation. Compos. Struct. 95, 366–374 (2013)

    Google Scholar 

  25. Zhou, K., Ni, Z., Huang, X., Hua, H.: Stationary/nonstationary stochastic response analysis of composite laminated plates with aerodynamic and thermal loads. Int. J. Mech. Sci. 173, 105461 (2020)

    Google Scholar 

  26. Chen, G., Zhou, J., Yang, D.: Benchmark solutions of stationary random vibration for rectangular thin plate based on discrete analytical method. Probabilist. Eng. Mech. 50, 17–24 (2017)

    Google Scholar 

  27. Lin, J., Zhao, Y., Zhang, Y.: Accurate and highly efficient algorithms for structural stationary/non-stationary random responses. Comput. Methods Appl. Mech. Eng. 191, 103–111 (2001)

    MATH  Google Scholar 

  28. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Ferreira, A.J.M.: On the Convergence of Laminated Composite Plates of Arbitrary Shape through Finite Element Models. J. Compos. Sci. 16, 1–50 (2018). https://doi.org/10.3390/jcs2010016

    Article  Google Scholar 

  29. Bediz, B.: A spectral-Tchebychev solution technique for determining vibrational behavior of thick plates having arbitrary geometry. J. Sound Vib. 432, 272–289 (2018)

    Google Scholar 

  30. Yagci, B., Filiz, S., Romero, L.L., Ozdoganlar, O.B.: A spectral-Tchebychev technique for solving linear and nonlinear beam equations. J. Sound Vib. 321, 375–404 (2009)

    Google Scholar 

  31. Ali, M.I., Azam, M.S., Ranjan, V., Banerjee, J.R.: Free vibration of sigmoid functionally graded plates using the dynamic stiffness method and the Wittrick-Williams algorithm. Comp. Struct. 244, 106424 (2021)

    Google Scholar 

  32. Kumar, S., Ranjan, V., Jana, P.: Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Compos. Struct. 197, 39–53 (2018)

    Google Scholar 

  33. Yadav, S., Kumar, P.: Free vibration analysis of an orthotropic plate by dynamic stiffness method and Wittrick–Williams algorithm. Mater. Today Proc. 47(13), 4046–4051 (2021)

    Google Scholar 

  34. Liu, G.R., Gu, Y.T.: An Introduction to Meshfree Methods and Their Programming. Springer, Dordrecht (2005)

    Google Scholar 

  35. Kwak, S., Kim, K., Jang, P., Ri, Y., Kim, I.: A meshfree local weak-form method for free vibration analysis of an open laminated cylindrical shell with elliptical section. Compos. Struct. 275, 114484 (2021)

    Google Scholar 

  36. Mellouli, H., Jrad, H., Wali, M., Dammak, F.: Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method. Comput. Math. Appl. 79, 3160–3178 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Dai, M.J., Tanaka, S., Sadamoto, S., Yu, T., Bui, T.Q.: Advanced reproducing kernel meshfree modeling of cracked curved shells for mixed-mode stress resultant intensity factors. Eng. Fract. Mech. 233, 107012 (2020)

    Google Scholar 

  38. Guo, H., Cao, S., Yang, T., Chen, Y.: Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Int. J. Mech. Sci. 142–143, 610–621 (2018)

    Google Scholar 

  39. Wang, J.F., Yang, J.P., Lai, S.K., Zhang, W.: Stochastic meshless method for nonlinear vibration analysis of composite plate reinforced with carbon fibers. Aerosp. Sci. Technol. 105, 105919 (2020)

    Google Scholar 

  40. Ozdemir, M., Sadamoto, S., Tanaka, S., Okazawa, S., Yu, T.T., Bui, T.Q.: Application of 6-DOFs meshfree modeling to linear buckling analysis of stiffened plates with curvilinear surfaces. Acta. Mech. 229, 4995–5012 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Sadamoto, S., Ozdemir, M., Tanaka, S., Taniguchi, K., Yu, T.T., Bui, T.Q.: An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts. Comput. Mech. 59, 919–932 (2017)

    MathSciNet  Google Scholar 

  42. Chen, W., Luo, W.M., Chen, S.Y., Peng, L.X.: A FSDT Meshfree method for free vibration analysis of arbitrary laminated composite shells and spatial structures. Compos. Struct. 279, 114763 (2022)

    Google Scholar 

  43. Zhong, R., Wang, Q., Hu, S., Qin, B., Shuai, C.: Meshless analysis for modal properties and stochastic responses of heated laminated rectangular/sectorial plates in supersonic airflow. Eur. J. Mech. A Solids 98, 104872 (2023)

    MathSciNet  MATH  Google Scholar 

  44. Zhong, R., Wang, Q., Hu, S., Gao, X., Qin, B., Shuai, C.: Meshless stochastic vibration for laminated quadrilateral plates considering thermal factor. Int. J. Mech. Sci. 232, 107608 (2022)

    Google Scholar 

  45. Kwak, S., Kim, K., Jong, G., Cha, J., Juhyok, U.: A meshfree approach for free vibration analysis of ply drop-off laminated conical, cylindrical shells and annular plates. Acta Mech. 232, 4775–4800 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Kwak, S., Kim, K.: Three-dimensional free vibration analysis of thick laminated combination shell using a meshfree approach. AIP Adv. 11, 105306 (2021)

    Google Scholar 

  47. Qu, Y., Long, X., Wu, S., Meng, G.: A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Compos. Struct. 98, 169–191 (2013)

    Google Scholar 

Download references

Acknowledgements

I would like to take the opportunity to express my hearted gratitude to all those who make a contribution to the completion of my article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jangsu Kim or Tong Ho Choe.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The components of the matrices M and F

$$ C_{c} = \left\{ {\begin{array}{*{20}c} \pi & {n \ne 0} \\ {2\pi } & {n = 0} \\ \end{array} } \right.\quad ,\quad S_{s} = \pi $$

-Matrix M

$$ {\varvec{M}} = \int\limits_{x} {\left[ {\begin{array}{*{20}c} {M_{11} } & {M_{12} } & {M_{13} } & {\quad M_{14} } & \quad \cdots & { \quad M_{110} } \\ {} & {M_{22} } & {M_{23} } & { \quad M_{24} } &\quad \cdots & {\quad M_{210} } \\ {} & {} & {M_{33} } & {\quad M_{34} } & \quad \cdots & { \quad M_{310} } \\ {} & {Symmetric} & {} & { \quad M_{44} } & \quad \cdots & { \quad M_{410} } \\ {} & {} & {} & {} & \ddots & \vdots \\ {} & {} & {} & {} & {} & {M_{1010} } \\ \end{array} } \right]Rdx} $$
$$M_{11} = M_{33} = I_{0} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c},$$
$$M_{14} = I_{1} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c},$$
$$M_{22} = I_{0} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s},$$
$$M_{25} = I_{1} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s},$$
$$M_{44} = I_{2} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c},$$
$$M_{55} = I_{2} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s},$$
$$M_{66} = M_{88} = I_{0} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s},$$
$$M_{69} = I_{1} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s},$$
$$M_{710} = I_{1} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c},$$
$$M_{77} = I_{0} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c},$$
$$M_{99} = I_{2} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s},$$
$$M_{1010} = I_{2} \omega^{2}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c},$$

Other elements of the matrix M are zero.

-Matrix F

$$ \begin{gathered} {\varvec{F}} = \int\limits_{x} {\int\limits_{\theta } {\left[ {q_{u}{\varvec{\varPhi}}\cos n\theta \quad q_{v}{\varvec{\varPhi}}\sin n\theta \quad q_{w}{\varvec{\varPhi}}\cos n\theta \quad m_{x}{\varvec{\varPhi}}\cos n\theta \quad m_{\theta }{\varvec{\varPhi}}\sin n\theta } \right.} } \hfill \\ \quad \quad \quad \left. {q_{u}{\varvec{\varPhi}}\sin n\theta \quad q_{v}{\varvec{\varPhi}}\cos n\theta \quad q_{w}{\varvec{\varPhi}}\sin n\theta \quad m_{x}{\varvec{\varPhi}}\sin n\theta \quad m_{\theta }{\varvec{\varPhi}}\cos n\theta } \right]^{T} Rdxd\theta \hfill \\ \end{gathered} $$

Appendix B: The components of the matrix K

$$ {\varvec{K}} = {\varvec{K}}_{c} + {\varvec{K}}_{bl} + {\varvec{K}}_{br} $$
$$ \begin{gathered} {\varvec{K}}_{bl} = diag\left[ {k_{u0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R\quad k_{v0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R\quad k_{w0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R\quad k_{x0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R\quad k_{\theta 0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R} \right. \hfill \\ \left. {\quad \quad \quad \quad k_{u0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R\quad k_{v0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R\quad k_{w0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R\quad k_{x0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R\quad k_{\theta 0}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R} \right]_{x = 0} \hfill \\ \end{gathered} $$
$$ \begin{gathered} {\varvec{K}}_{br} = diag\left[ {k_{u1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R\quad k_{v1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R\quad k_{w1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R\quad k_{x1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R\quad k_{\theta 1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R} \right. \hfill \\ \quad \quad \quad \quad \left. {k_{u1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R\quad k_{v1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R\quad k_{w1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R\quad k_{x1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} R\quad k_{\theta 1}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} R} \right]_{x = L} \hfill \\ \end{gathered} $$
$$ {\varvec{K}}_{c} = \int\limits_{x} {\left[ {\begin{array}{*{20}c} {k_{{11}} } & {\quad k_{{12}} } & {\quad k_{{13}} } & {\quad k_{{14}} } & {\quad \cdots } & {\quad k_{{110}} } \\ {k_{{12}}^{T} } & {\quad k_{{22}} } & {\quad k_{{23}} } & {\quad k_{{24}} } & {\quad \cdots } & {\quad k_{{210}} } \\ {k_{{13}}^{T} } & {\quad k_{{23}}^{T} } & {\quad k_{{33}} } & {\quad k_{{34}} } & {\quad \cdots } & {\quad k_{{310}} } \\ {k_{{14}}^{T} } & {\quad k_{{24}}^{T} } & {\quad k_{{34}}^{T} } & {\quad k_{{44}} } & {\quad \cdots } & {\quad k_{{410}} } \\ \vdots & {\quad \vdots } & {\quad \vdots } & {\quad \vdots } & {\quad \ddots } & {\quad \vdots } \\ {k_{{110}}^{T} } & {\quad k_{{210}}^{T} } & {\quad k_{{310}}^{T} } & {\quad k_{{410}}^{T} } & {\quad \cdots } & {\quad k_{{1010}} } \\ \end{array} } \right]Rdx} $$
$$ \begin{gathered} k_{11} = A_{11} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{n^{2} A_{66} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{A_{22} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{A_{12} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \qquad\quad + \frac{{A_{12} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} \hfill \\ \end{gathered} $$
$$ k_{12} = \frac{{nA_{12} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nA_{66} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{nA_{22} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{nA_{66} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{13} = \frac{{A_{12} \cos \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} + \frac{{A_{22} \sin \alpha \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{14} = B_{11} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{n^{2} B_{66} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{B_{12} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} + \frac{{B_{12} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{B_{22} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{15} = \frac{{nB_{12} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nB_{66} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{nB_{22} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{nB_{66} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{16} = \frac{{nA_{16} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nA_{16} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} - \frac{{nA_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nA_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ \begin{gathered} k_{17} = A_{16} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{n^{2} A_{26} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{A_{26} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{A_{16} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \qquad\quad - \frac{{A_{26} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \end{gathered} $$
$$ k_{18} = - \frac{{nA_{26} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{19} = \frac{{nB_{16} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nB_{16} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} - \frac{{nB_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nB_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{110} = B_{16} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{n^{2} B_{26} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} - \frac{{B_{16} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} + \frac{{B_{26} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{B_{26} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ \begin{gathered} k_{22} = A_{66} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} - \frac{{A_{66} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} - \frac{{A_{66} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{n^{2} A_{22} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \quad\qquad + \frac{{A_{66} \sin^{2} \alpha + A_{44} \cos^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \end{gathered} $$
$$ k_{23} = \frac{{nA_{44} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nA_{22} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{24} = \frac{{nB_{12} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{nB_{66} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nB_{66} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nB_{22} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ \begin{gathered} k_{25} = B_{66} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} B_{22} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{B_{66} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} - \frac{{B_{66} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{B_{66} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \qquad\quad - \frac{{A_{44} \cos \alpha }}{R}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \end{gathered} $$
$$ \begin{gathered} k_{26} = A_{16} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} A_{26} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{A_{26} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} - \frac{{A_{16} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \qquad\quad- \frac{{A_{26} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \end{gathered} $$
$$ k_{27} = - \frac{{nA_{26} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nA_{26} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{nA_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} - \frac{{nA_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{28} = \frac{{A_{26} \cos \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} - \frac{{A_{45} \cos \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} - \frac{{A_{26} \sin \alpha \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ \begin{gathered} k_{29} = B_{16} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} B_{26} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{B_{26} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} - \frac{{B_{16} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} - \frac{{B_{26} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \quad\qquad - \frac{{A_{45} \cos \alpha }}{R}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \end{gathered} $$
$$ k_{210} = - \frac{{nB_{26} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nB_{26} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{nB_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} - \frac{{nB_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{33} = A_{55} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{n^{2} A_{44} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{A_{22} \cos^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{34} = A_{55} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} + \frac{{B_{12} \cos \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{B_{22} \sin \alpha \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{35} = - \frac{{nA_{44} }}{R}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nB_{22} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{36} = \frac{{nA_{26} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{37} = \frac{{A_{26} \cos \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{A_{45} \cos \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{A_{26} \sin \alpha \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{38} = \frac{{nA_{45} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nA_{45} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} $$
$$ k_{39} = - \frac{{nA_{45} }}{R}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nB_{26} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{310} = A_{45} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} + \frac{{B_{26} \cos \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{B_{26} \sin \alpha \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ \begin{gathered} k_{44} = D_{11} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{n^{2} D_{66} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{D_{22} \sin^{{2}} \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + A_{55}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{D_{12} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} \hfill \\ \qquad\quad + \frac{{D_{12} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \end{gathered} $$
$$ k_{45} = \frac{{nD_{12} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nD_{66} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{nD_{66} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nD_{22} \sin \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{46} = - \frac{{nB_{16} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{nB_{16} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} + \frac{{nB_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nB_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ \begin{gathered} k_{47} = B_{16} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{n^{2} B_{26} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{B_{26} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{B_{16} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{B_{26} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \quad\qquad- \frac{{A_{45} \cos \alpha }}{R}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \end{gathered} $$
$$ k_{48} = \frac{{nA_{45} }}{R}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nB_{26} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{49} = \frac{{nD_{16} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nD_{16} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{nD_{26} \sin \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nD_{26} \sin \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ \begin{gathered} k_{410} = D_{16} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{n^{2} D_{26} }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} - \frac{{D_{16} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} + \frac{{D_{26} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{D_{26} \sin^{{2}} \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \quad\qquad + A_{45}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \end{gathered} $$
$$ \begin{gathered} k_{55} = D_{66} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} D_{22} }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{D_{66} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + A_{44}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} - \frac{{D_{66} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} \hfill \\ \quad\qquad - \frac{{D_{66} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \end{gathered} $$
$$ k_{56} = B_{16} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} B_{26} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{B_{16} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{B_{26} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} - \frac{{B_{26} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{57} = \frac{{nB_{26} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{nB_{26} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} - \frac{{nB_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{nB_{26} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{58} = A_{45}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{B_{26} \cos \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} - \frac{{B_{26} \sin \alpha \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ \begin{gathered} k_{59} = D_{16} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} D_{26} }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{D_{16} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{D_{26} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} - \frac{{D_{26} \sin^{{2}} \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \quad\qquad + A_{45}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \end{gathered} $$
$$ k_{510} = - \frac{{nD_{26} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nD_{26} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{nD_{26} \sin \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} - \frac{{nD_{26} \sin \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ \begin{gathered} k_{66} = A_{11} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} A_{66} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{A_{22} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{A_{12} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \quad\qquad + \frac{{A_{12} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} \hfill \\ \end{gathered} $$
$$ k_{67} = - \frac{{nA_{12} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nA_{66} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{nA_{22} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} - \frac{{nA_{66} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ k_{68} = \frac{{A_{12} \cos \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{A_{22} \sin \alpha \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{69} = B_{11} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} B_{66} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{B_{12} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{B_{12} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{B_{22} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{610} = - \frac{{nB_{12} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nB_{66} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{nB_{22} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} - \frac{{nB_{66} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} $$
$$ \begin{gathered} k_{77} = A_{66} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{A_{66} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{A_{66} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} + \frac{{n^{2} A_{22} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \quad\quad+ \frac{{A_{66} \sin^{2} \alpha + A_{44} \cos^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \end{gathered} $$
$$ k_{78} = - \frac{{nA_{44} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nA_{22} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{79} = - \frac{{nB_{12} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{nB_{66} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nB_{66} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nB_{22} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ \begin{gathered} k_{710} = B_{66} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} + \frac{{n^{2} B_{22} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} - \frac{{B_{66} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}C_{c} - \frac{{B_{66} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} \hfill \\ \qquad\quad+ \frac{{B_{66} \sin^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{A_{44} \cos \alpha }}{R}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} \hfill \\ \end{gathered} $$
$$ k_{88} = A_{55} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} A_{44} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{A_{22} \cos^{2} \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{89} = A_{55} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{B_{12} \cos \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{B_{22} \sin \alpha \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ k_{810} = \frac{{nA_{44} }}{R}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nB_{22} \cos \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ \begin{gathered} k_{99} = D_{11} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} + \frac{{n^{2} D_{66} }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} + \frac{{D_{22} \sin^{{2}} \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + A_{55}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} + \frac{{D_{12} \sin \alpha }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}S_{s} \hfill \\ \quad\qquad+ \frac{{D_{12} \sin \alpha }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} \hfill \\ \end{gathered} $$
$$ k_{910} = - \frac{{nD_{12} }}{R}\frac{{\partial{\varvec{\varPhi}}}}{\partial x}^{T}{\varvec{\varPhi}}S_{s} + \frac{{nD_{66} }}{R}{\varvec{\varPhi}}^{T} \frac{{\partial{\varvec{\varPhi}}}}{\partial x}C_{c} - \frac{{nD_{66} \sin \alpha }}{{R^{2} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}C_{c} - \frac{{nD_{22} \sin \alpha }}{{R^{{2}} }}{\varvec{\varPhi}}^{T}{\varvec{\varPhi}}S_{s} $$
$$ \begin{aligned} k_{{1010}} & = D_{{66}} \frac{{\partial \user2{\Phi }}}{{\partial x}}^{T} \frac{{\partial \user2{\Phi }}}{{\partial x}}C_{c} + \frac{{n^{2} D_{{22}} }}{{R^{{\text{2}}} }}\user2{\Phi }^{T} \user2{\Phi }S_{s} + \frac{{D_{{66}} \sin ^{2} \alpha }}{{R^{2} }}\user2{\Phi }^{T} \user2{\Phi }C_{c} + A_{{44}} \user2{\Phi }^{T} \user2{\Phi }C_{c} - \frac{{D_{{66}} \sin \alpha }}{R}\user2{\Phi }^{T} \frac{{\partial \user2{\Phi }}}{{\partial x}}C_{c} \\ & \quad - \frac{{D_{{66}} \sin \alpha }}{R}\frac{{\partial \user2{\Phi }}}{{\partial x}}^{T} \user2{\Phi }C_{c} \\ \end{aligned} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Om, C., Kang, D. et al. Dynamic analysis of laminated composite double cylindrical and conical shells with bulkheads using meshfree method. Acta Mech 234, 4775–4800 (2023). https://doi.org/10.1007/s00707-023-03628-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03628-w

Navigation