Skip to main content
Log in

Geometrically nonlinear rapid surface heating in FGM hermetic capsule

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present study examines the geometrically non-linear dynamic response of hermetic capsule construction made of functionally graded materials subjected to thermal shock. The Voigt and Toloukian models are used to derive the material properties, where dependence of the properties to position and temperature is included. The one-dimensional transient heat transfer equation is established. The Crank-Nicholson approximation and Picard’s iterative method are used to solve this nonlinear equation using the GDQ numerical method in accordance with the temperature dependence of the material properties. After obtaining the temperature distribution along the thickness, it is possible to determine the thermal force and moment. Using the first-order shear theory to calculate the displacement field and the von Kármán form of geometry non-linearity, the equations of motion are determined. The Newton-Raphson iterative approach and the \(\beta \)-Newmark time estimate approach are used to solve the non-linear coupled equations of motion. The influencing factors on the reaction of the structure, such as the radius of the sphere and the length of the cylinder, the power law index, and the shell thickness are determined after the equations, techniques, and findings are validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boley, B.A.: Thermally induced vibration of beams. J. Aeronaut. Sci. 23(2), 177–181 (1956)

    MATH  Google Scholar 

  2. Manolis, G.D., Beskos, D.E.: Thermally induced vibrations of beam structures. Comput. Methods Appl. Mech. Eng. 21(3), 337–355 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Kidawa-Kukla, J.: Application of the Green functions to the problem of the thermally induced vibration of a beam. J. Sound Vib. 262(4), 865–876 (2003)

    MATH  Google Scholar 

  4. Manoach, E., Ribeiro, P.: Coupled, thermoelastic, large amplitude vibrations of Timoshenko beams. Int. J. Mech. Sci. 46(11), 1589–1606 (2004)

    MATH  Google Scholar 

  5. Ganesan, N., Sethuraman, R.: Thermally induced vibrations of piezo-thermo-viscoelastic composite beam with relaxation times and system response. Multidiscip. Model. Mater. Struct. 6(1), 120–140 (2010)

    Google Scholar 

  6. Marakala, N., Appu Kuttan, K.K., Kadoli, R.: Thermally induced vibration of a simply supported beam using finite element method. Int. J. Eng. Sci. Technol. 2(12), 7874–7879 (2010)

    Google Scholar 

  7. Adam, C., Heuer, R., Raue, A., Ziegler, F.: Thermally induced vibrations of composite beams with interlayer slip. J. Therm. Stress. 23(8), 747–772 (2000)

    Google Scholar 

  8. Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using Absolute Nodal Coordinate Formulation. Aerosp. Sci. Technol. 29(1), 386–393 (2013)

    Google Scholar 

  9. Ghiasian, S.E., Kiani, Y., Eslami, M.R.: Nonlinear rapid heating of FGM beams. Int. J. Non-Linear Mech. 6(1), 74–84 (2014)

    Google Scholar 

  10. Bagheri, H., Kiani, Y., Eslami, M.R.: Geometrically nonlinear response of FGM beams on elastic foundation subjected to thermal shock. Iran. J. Sci. Technol. Trans. Mech. Eng. 47, 187–201 (2023)

    Google Scholar 

  11. Keibolahi, A., Kinai, Y., Eslami, M.R.: Dynamic snap-through of shallow arches under thermal shock. Aerosp. Sci. Technol. 77, 545–554 (2018)

    Google Scholar 

  12. Keibolahi, A., Kinai, Y., Eslami, M.R.: Nonlinear rapid heating of shallow arches. J. Therm. Stress. 41(10–12), 1244–1258 (2018)

    Google Scholar 

  13. Khalili, M.M., Keibolahi, A., Kinai, Y., Eslami, M.R.: Application of Ritz method to large amplitude rapid surface heating of FGM shallow arches. Arch. Appl. Mech. 92(4), 1287–1301 (2022)

    Google Scholar 

  14. Stroud, R.C., Mayers, J.: Dynamic response of rapidly heated plate elements. AIAA J. 9(1), 76–83 (1971)

    Google Scholar 

  15. Jadeja, N.D., Loo, T.-C.: Heat induced vibration of a rectangular plate. J. Eng. Ind. 96(3), 1015–1021 (1974)

    Google Scholar 

  16. Hill, D., Mazumdar, J., Clements, D.L.: Dynamic response of viscoelastic plates of arbitrary shape to rapid heating. Int. J. Solids Struct. 18(11), 937–945 (1982)

    MATH  Google Scholar 

  17. Hill, D.L., Mazumdar, J.: A study of the thermally induced large amplitude vibrations of viscoelastic plates and shallow shells. J. Sound Vib. 116(2), 323–337 (1987)

    Google Scholar 

  18. Mazumdar, J., Hill, D.: Thermally induced vibrations of viscoelastic shallow shells. J. Sound Vib. 93(2), 189–200 (1984)

    MATH  Google Scholar 

  19. Mazumdar, J., Hill, D., Clements, D.L.: Thermally induced vibrations of a viscoelastic plate. J. Sound Vib. 73(1), 31–39 (1980)

    MATH  Google Scholar 

  20. Nakajo, Y., Hayashi, K.: Response of circular plates to thermal impact. J. Sound Vib. 95(2), 213–222 (1984)

    MATH  Google Scholar 

  21. Nakajo, Y., Hayashi, K.: Response of simply supported and clamped circular plates to thermal impact. J. Sound Vib. 122(2), 347–356 (1988)

    Google Scholar 

  22. Tauchert, T.R.: Thermal shock of orthotropic rectangular plates. J. Therm. Stress. 12(2), 241–258 (1989)

    MathSciNet  Google Scholar 

  23. Chang, J.S., Wang, J.H., Tsai, T.Z.: Thermally induced vibrations of thin laminated plates by finite element method. Comput. Struct. 42(1), 117–128 (1992)

    Google Scholar 

  24. Kiani, Y., Eslami, M.R.: Geometrically non-linear rapid heating of temperature-dependent circular FGM plates. J. Therm. Stress. 37(12), 1495–1518 (2014)

    Google Scholar 

  25. Alipour, S.M., Kiani, Y., Eslami, M.R.: Rapid heating of FGM rectangular plates. Acta Mech. 227(2), 421–436 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Javani, M., Kiani, Y., Eslami, M.R.: Large amplitude thermally induced vibrations of temperature dependent annular FGM plates. Compos. B Eng. 163, 371–383 (2019)

    Google Scholar 

  27. Javani, M., Kiani, Y., Eslami, M.R.: Rapid heating vibrations of FGM annular sector plates. Eng. Comput. 37(1), 305–322 (2021)

    Google Scholar 

  28. Kraus, H.: Thermally induced vibrations of thin nonshallow spherical shells. AIAA J. 4(3), 500–505 (1966)

    Google Scholar 

  29. Lu, S.Y., Sun, C.L.: Vibrations of thin conical shells subjected to sudden heating. J. Aircr. 4(1), 11–15 (1967)

    Google Scholar 

  30. Khdeir, A.A.: Thermally induced vibration of cross-ply laminated shallow shells. Acta Mech. 151(3–4), 135–147 (2001)

    MATH  Google Scholar 

  31. Chang, J.S., Shyong, J.W.: Thermally induced vibration of laminated circular cylindrical shell panels. Compos. Sci. Technol. 51(3), 419–427 (1994)

    Google Scholar 

  32. Pandey, S., Pradyumna, S.: A finite element formulation for thermally induced vibrations of functionally graded material sandwich plates and shell panels. Compos. Struct. 160(2), 877–886 (2017)

    Google Scholar 

  33. Esmaeili, H.R., Arvin, H., Kiani, Y.: Axisymmetric nonlinear rapid heating of FGM cylindrical shells. J. Therm. Stress. 42(4), 490–505 (2019)

    Google Scholar 

  34. Javani, M., Kiani, Y., Eslami, M.R.: Nonlinear axisymmetric response of temperature-dependent FGM conical shells under rapid heating. Acta Mech. 230(9), 3019–3039 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Javani, M., Kiani, Y., Eslami, M.R.: Nonlinear vibration behavior of rapidly heated temperature-dependent FGM shallow spherical shells. AIAA J. 57(9), 4071–4084 (2019)

    Google Scholar 

  36. Javani, M., Kiani, Y., Eslami, M.R.: Dynamic snap-through of shallow spherical shells subjected to thermal shock. Int. J. Press. Vessels Pip. 179, 104028 (2020)

    Google Scholar 

  37. Tavakoli, M.S., Singh, R.: Eigensolutions of joined/hermetic shell structures using the state space method. J. Sound Vib. 130, 97–123 (1989)

    MATH  Google Scholar 

  38. Shang, X.: Exact solution for free vibration of a hermetic capsule. Mech. Res. Commun. 28(3), 283–288 (2001)

    MATH  Google Scholar 

  39. Qu, Y., Hua, H., Meng, G.: Vibro-acoustic analysis of coupled spherical-cylindrical-spherical shells stiffened by ring and stringer reinforcements. J. Sound Vib. 335(5), 345–359 (2015)

    Google Scholar 

  40. Kang, J.: 3D vibration analysis of hermetic capsules by using Ritz method. Int. J. Struct. Stab. Dyn. 16(10), 1750040 (2016)

    MathSciNet  Google Scholar 

  41. Kang, J.H.: Three-dimensional vibration analysis of a hermetic capsule with variable thickness. AIAA J. 55(6), 2093–2112 (2017)

    Google Scholar 

  42. Lee, J.: Free vibration analysis of joined spherical-cylindrical shells by matched Fourier-Chebyshev expansions. Int. J. Mech. Sci. 122, 53–62 (2017)

    Google Scholar 

  43. Ko, S.M., Kang, J.H.: Vibration of hemispherical-cylindrical-hemispherical shells and complete hollow spherical shells with variable thickness. Int. J. Struct. Stab. Dyn. 19(3), 1950018 (2019)

    MathSciNet  Google Scholar 

  44. Bagheri, H., Eslami, M.R., Kiani, Y.: Geometrically nonlinear response of FGM joined conical-conical shells subjected to thermal shock. Thin-Walled Struct. 182, 110171 (2023)

    Google Scholar 

  45. Bagheri, H., Eslami, M.R., Kiani, Y.: Application of GDQ method to large amplitude response of FGM joined spherical-conical shells under rapid surface heating. Mech. Based Design Struct. Mach. https://doi.org/10.1080/15397734.2023.2193625

  46. Shen, H.S., Wang, Z.X.: Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates. Compos. Struct. 94(7), 2197–2208 (2012)

    Google Scholar 

  47. Bagheri, H., Kiani, Y., Eslami, M.R.: Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation. Comput. Math. Appl. 75(6), 1566–1581 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Pagani, A., Azzara, R., Carrera, E.: Geometrically nonlinear analysis and vibration of in-plane-loaded variable angle tow composite plates and shells. Acta Mech. 234, 85–108 (2023)

    MathSciNet  MATH  Google Scholar 

  49. Dastjerdi, S., Akgoz, B., Civalek, O., Malikan, M., Eremeyev, V.: On the non-linear dynamics of torus-shaped and cylindrical shell structures. Int. J. Eng. Sci. 156, 103371 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Sobhani, E., Arbabian, A., Civalek, O., Avcar, M.: The free vibration analysis of hybrid porous nanocomposite joined hemispherical-cylindrical-conical shells. Eng. Comput. 38(4), 3125–3152 (2022)

    Google Scholar 

  51. Dastjerdi, S., Akgoz, B., Civalek, O.: On the effect of viscoelasticity on behavior of gyroscopes. Int. J. Eng. Sci. 149, 103236 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Abouelregal, A.E., Akgöz, B., Civalek, O.: Magneto-thermoelastic interactions in an unbounded orthotropic viscoelastic solid under the Hall current effect by the fourth-order Moore-Gibson-Thompson equation. Comput. Math. Appl. 141, 102–115 (2023)

    MathSciNet  MATH  Google Scholar 

  53. Van Do, V.N., Lee, C.H.: Bending and instability behaviour of functionally graded cylindrical shells with porosities. Acta Mech. 234, 1811–1842 (2023)

    MathSciNet  MATH  Google Scholar 

  54. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, Theory and Application. CRC Press, Boca Raton (2003)

    Google Scholar 

  55. Bagheri, H., Kiani, Y., Eslami, M.R.: Free vibration of joined conical-conical shells. Thin-Walled Struct. 120(6), 446–457 (2017)

    MATH  Google Scholar 

  56. Bagheri, H., Kiani, Y., Eslami, M.R.: Free vibration of joined conical-cylindrical-conical shells. Acta Mech. 229(6), 2751–2764 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Bagheri, H., Kiani, Y., Bagheri, N., Eslami, M.R.: Free vibration of joined cylindrical-hemispherical FGM shells. Arch. Appl. Mech. 90(10), 2185–2199 (2020)

    MATH  Google Scholar 

  58. Bagheri, H., Kiani, Y., Eslami, M.R.: Free vibration of FGM conical-spherical shells. Thin-Walled Struct. 160(10), 107387 (2021)

    Google Scholar 

  59. Tornabene, F., Fantuzzi, N., Bacciocchi, M.: Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: convergence and accuracy. Eng. Anal. Boundary Elem. 92, 3–37 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Neves, A.A.M., Ferreira, A.J.M.: Stability and accuracy of three Fourier expansion-based strong form finite elements for the free vibration analysis of laminated composite plates. Int. J. Numer. Meth. Eng. 111(4), 354–382 (2017)

    MathSciNet  Google Scholar 

  61. Tornabene, F., Fantuzzi, N., Ubertini, F., Viola, E.: Strong formulation finite element method based on Differential Quadrature: a survey. Appl. Mech. Rev. 67(2), 354–382 (2015)

    Google Scholar 

  62. Reddy, J.N.: Nonlinear Finite Element Analysis. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  63. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21(6), 593–626 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The governing equations of motion in the cylindrical shell using the GDQ method may be expressed as

$$\begin{aligned}&A_{11}\left( \sum _{j=1}^{N_{x}}{\overline{B}}_{ij}u_{j}+\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{B}}_{ik}w_{k}\right) \right) +B_{11}\left( \sum _{j=1}^{N_{x}}{\overline{B}}_{ij}\psi _{j}\right) \nonumber \\&\quad +A_{12}\left( \dfrac{1}{R}\sum _{j=1}^{N_{x}}{\overline{A}}_{ij}w_{j} \right) =I_{1}\ddot{u}_{0,i}+I_{2}\ddot{\psi _{x,i}} \end{aligned}$$
(A1)
$$\begin{aligned}&A_{11}\left( -\dfrac{1}{R^{2}}w_{i}+\left( \sum _{j=1}^{N_{x}}{\overline{B}}_{ij}u_{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{A}}_{ik}w_{k}\right) +\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{ij}u_{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{B}}_{ik}w_{k}\right) \right. \nonumber \\&\quad \left. +\dfrac{3}{2} \left( \sum _{j=1}^{N_{x}}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{A}}_{ik}w_{k}\right) \left( \sum _{l=1}^{N_{x}}{\overline{B}}_{il}w_{l}\right) \right) \nonumber \\&\quad +B_{11}\left( \left( \sum _{j=1}^{N_{x}}{\overline{B}}_{ij}\psi _{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{A}}_{ik}w_{k}\right) +\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{ij}\psi _{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{B}}_{ik}w_{k}\right) \right) \nonumber \\&\quad +\dfrac{A_{12}}{R}\left( -\sum _{j=1}^{N_{x}}{\overline{A}}_{ij}u_{j}+w_{i}\left( \sum _{j=1}^{N_{x}}{\overline{B}}_{ij}w_{j}\right) + \dfrac{1}{2}\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{A}}_{ik}w_{k}\right) \right) \nonumber \\&\quad +\dfrac{B_{12}}{R}\left( -\sum _{j=1}^{N_{x}}{\overline{A}}_{ij}\psi _{j}\right) +A_{55}\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{ij}\psi _{j}+\sum _{j=1}^{N_{x}}{\overline{B}}_{ij}w_{j}\right) -N^{T}\left( \sum _{j=1}^{N_{x}}{\overline{B}}_{ij}w_{j}-\dfrac{1}{R}\right) =I_{1}\ddot{w}_{0,i} \end{aligned}$$
(A2)
$$\begin{aligned}&B_{11}\left( \sum _{j=1}^{N_{x}}{\overline{B}}_{ij}u_{j}+ \left( \sum _{j=1}^{N_{x}}{\overline{B}}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{A}}_{ik}w_{k}\right) \right) +D_{11}\left( \sum _{j=1}^{N_{x}}{\overline{B}}_{ij}\psi _{j}\right) \nonumber \\&\quad +B_{12}\left( \dfrac{1}{R}\sum _{j=1}^{N_{x}}{\overline{A}}_{ij}w_{j}\right) -A_{55}\left( \psi _{i}+\sum _{j=1}^{N_{x}}{\overline{A}}_{ij}w_{j}\right) =I_{2}\ddot{u}_{0,i}+I_{3}\ddot{\psi }_{x,i} \end{aligned}$$
(A3)

Similarly, the governing equations of motion in the spherical shell using the GDQ method may be expressed as

$$\begin{aligned}&\dfrac{1}{R^{2}}\left\{ A_{11}\sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}u_{j}+A_{11}\cot \left( \phi \right) \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}-\dfrac{A_{12}}{\sin ^{2}\left( \phi \right) }u_{i}+\left( A_{12}-A_{11}\right) \cot ^{2}\left( \phi \right) u_{i}-A_{55}u_{i}+N^{T}u_{i}\right. \nonumber \\&\quad \left. +\dfrac{ A_{11}-3 A_{12}}{2R}\cot \left( \phi \right) u_{i}u_{i}-\dfrac{ A_{11}+ A_{12}}{R}u_{i}w_{i}-\dfrac{ A_{11}-2 A_{12}}{R}\cot \left( \phi \right) u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) \right. \nonumber \\&\quad \left. -\dfrac{ A_{11}}{R}u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j} \right) -\dfrac{ A_{11}}{2R^{2}}\left[ u_{i}^3 -3u_{i}^2 \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) \right. \right. \nonumber \\&\quad + \left. \left. 3u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) \left( \sum _{k=1}^{N_{\phi }}{\overline{A}}_{ik}w_{k} \right) -\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) \left( \sum _{k=1}^{N_{\phi }}{\overline{A}}_{ik}w_{k} \right) \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{il}w_{l} \right) \right] -\dfrac{B_{11}}{R}u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}\psi _{j} \right) \right. \nonumber \\&\quad - \left. \dfrac{B_{12}}{R}\cot \left( \phi \right) u_{i}\psi _{i} +B_{11}\sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}\psi _{j} +B_{11}\cot \left( \phi \right) \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}\psi _{j}-\dfrac{B_{12}}{\sin ^{2}\left( \phi \right) }\psi _{i} +\left( B_{12}-B_{11}\right) \cot ^{2}\left( \phi \right) \psi _{i} \right. \nonumber \\&\quad \left. + A_{55}R\psi _{i}+\dfrac{B_{11}}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}\psi _{j} \right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) +\dfrac{B_{12}}{R}\cot \left( \phi \right) \psi _{i} \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) \right. \nonumber \\&\quad \left. +\left( A_{11}+A_{12}+A_{55}-N^{T}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) +\dfrac{A_{11}}{R} \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) \left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j} \right) \right. \nonumber \\&\quad \left. +\dfrac{\left( A_{11}-A{12}\right) }{2R}\cot \left( \phi \right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) +\dfrac{\left( A_{11}+A_{12}\right) }{R}w_{i} \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j} \right) \right\} =I_{1}\ddot{ u}_{0,i}+I_{1}\ddot{ \psi }_i \end{aligned}$$
(A4)
$$\begin{aligned}&\dfrac{1}{R^{2}}\left\{ \left( -\left( A_{11}+A_{12}+ A_{55}\right) +N^{T}\right) \cot \left( \phi \right) u_{i}+\left( -\left( A_{11}+A_{12}+ A_{55}\right) +N^{T}\right) \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right. \nonumber \\&\quad \left. -2\left( A_{11}+A_{12}\right) w_{i}+\left( A_{55}-N^{T}\right) \cot \left( \phi \right) \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}+\left( A_{55}-N^{T}\right) \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij} w_{j}\right. \nonumber \\ {}&\qquad \left. \left( R A_{55}-\left( B_{11}+ B_{12}\right) \right) \cot \left( \phi \right) \psi _{i} +\left( RA_{55} -\left( B_{11}+ B_{12}\right) \right) \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij} \psi _{j} \right. \nonumber \\ {}&\quad \left. -\dfrac{\left( A_{11}-A_{12}\right) }{2R}u_{i}^2-\left( A_{11}+2A_{12} \right) \cot \left( \phi \right) \dfrac{1}{R}u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{kj}u_{j} \right) -\dfrac{A_{11}}{R}u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{kj}u_{j} \right) \right. \nonumber \\ {}&\quad \left. -\dfrac{\left( A_{11}+A_{12} \right) }{R}\cot \left( \phi \right) u_{i}w_{i} - \dfrac{A_{12}}{R}u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{kj}w_{j} \right) +\dfrac{A_{12}}{R}\cot \left( \phi \right) u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{kj}w_{j} \right) \right. \nonumber \\ {}&\quad \left. + \left( -B_{12}\cot ^{2}\left( \phi \right) +\dfrac{B_{12}}{\sin \left( \phi \right) } \right) \dfrac{1}{R}u_{i}\psi _{i}-\left( B_{11}+B_{12} \right) \cot \left( \phi \right) \dfrac{1}{R}u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{kj}\psi _{j} \right) \right. \nonumber \\ {}&\quad \left. -B_{11}\dfrac{1}{R}u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{kj}\psi _{j} \right) -\dfrac{A_{11} }{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) \left( \sum _{k=1}^{N_{\phi }}{\overline{A}}_{ij}u_{k}\right) -\dfrac{\left( A_{11}+A_{12} \right) }{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) w_{i}\right. \nonumber \\&\quad \left. + \dfrac{\left( A_{11}+A_{12} \right) }{R}\cot \left( \phi \right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) +\dfrac{A_{11}}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j}\right) \right. \nonumber \\&\quad \left. -\dfrac{B_{12}}{R}\cot \left( \phi \right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) \psi _{i}-\dfrac{B_{11}}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}\psi _{j}\right) +\dfrac{A_{11}}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}u_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \right. \nonumber \\&\quad \left. +\dfrac{\left( A_{11}+A_{12} \right) }{R}\cot \left( \phi \right) w_{i} \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) +\dfrac{\left( A_{11}+A_{12} \right) }{R}w_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j}\right) \right. \nonumber \\&\quad \left. +\dfrac{\left( A_{11} +A_{12}\right) }{2R} \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) - \dfrac{B_{12}}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \psi _{i}\right. \nonumber \\&\quad \left. +\left( B_{11}+B_{12} \right) \cot \left( \phi \right) \dfrac{1}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}\psi _{j}\right) +B_{11}\dfrac{1}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}\psi _{j}\right) \right. \nonumber \\&\quad \left. +\dfrac{A_{11}}{2R^{2}}\left[ -\cot \left( \phi \right) \left( u_{i}^3-3u_{i}^2 \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) +3u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_{\phi }}{\overline{A}}_{ik}w_{k}\right) \right. \right. \right. \nonumber \\&\quad \left. \left. \left. -\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_{\phi }}{\overline{A}}_{ik}w_{k}\right) \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{il}w_{l}\right) \right) -6u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j}\right) \right. \right. \nonumber \\&\quad \left. \left. +6u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) +3u_{i}^2 \left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j}\right) -3u_{i}^2\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) \right. \right. \nonumber \\&\quad \left. \left. -3\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_{\phi }}{\overline{A}}_{ik}w_{k}\right) +3\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j}\right) \right] \right. \nonumber \\&\quad \left. +B_{12}\cot \left( \phi \right) \dfrac{1}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j}\right) \psi _{i}+B_{11}\dfrac{1}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}\psi _{j}\right) +2RN^{T}\right\} =I_{1}\ddot{w}_{0,i} \end{aligned}$$
(A5)
$$\begin{aligned}&\dfrac{1}{R^{2}}\left\{ B_{11}\sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}u_{j}+B_{11}\cot \left( \phi \right) \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}-\dfrac{B_{12}}{\sin ^{2}\left( \phi \right) ^{2}}u_{i}+\left( B_{12}-B_{11}\right) \cot ^{2}\left( \phi \right) u_{i}+A_{55}Ru_{i} \right. \nonumber \\ {}&\quad \left. +\dfrac{ B_{11}-B_{12}}{2R}\cot \left( \phi \right) u_{i}^2+\dfrac{B_{11}}{R}u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) - \dfrac{ B_{11}-B_{12}}{R}\cot \left( \phi \right) u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \right. \nonumber \\&\quad \left. -\dfrac{ B_{11}}{R}\cot \left( \phi \right) u_{i}\left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j}\right) -\dfrac{ B_{11}}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}u_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \right. \nonumber \\ {}&\quad \left. +D_{11}\sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}\psi _{j}+D_{11}\cot \left( \phi \right) \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}\psi _{j} -\dfrac{D_{12}}{\sin ^{2}\left( \phi \right) }\psi _{i} +\left( D_{12}-D_{11}\right) \cot ^{2}\left( \phi \right) \psi _{i} - A_{55}R^{2}\psi _{i} \right. \nonumber \\&\quad \left. + \left( B_{11}+B_{12} \right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) +\dfrac{B_{11}}{R} \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{B}}_{ij}w_{j}\right) \right. \nonumber \\&\quad \left. +\dfrac{\left( B_{11}-B_{12}\right) }{2R}\cot \left( \phi \right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_{\phi }}{\overline{A}}_{ik}w_{k}\right) -RA_{55}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{ij}w_{j}\right) \right\} =I_{2}\ddot{u}_{0,i}+I_{3}\ddot{\psi }_i \end{aligned}$$
(A6)

where in the above equations, \(u_i\), \(w_i\), and \(\psi _i\) are the magnitudes of \(u_0\), \(w_0\), and \(\psi _\xi \) at \(\xi _i\). Also, \({\overline{A}}\) and \({\overline{B}}\) are the weighting coefficients of the GDQ method associated to first and second derivatives.

Also, the boundary conditions should be discretized using GDQ method as follow

$$\begin{aligned} N_{x,s}&=A_{11}\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{sj}u_{j}+\frac{1}{2}\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{sj}w_{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{A}}_{sk}w_{k}\right) \right) +A_{12}\dfrac{1}{R}w_{s} \nonumber \\&\quad +B_{11}\sum _{j=1}^{N_{x}}{\overline{A}}_{sj}\psi _{j} -N^{T}, \quad s=1,N_{x} \end{aligned}$$
(A7)
$$\begin{aligned} Q_{xz,s}&=A_{55}\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{sj}w_{j}+\psi _{s}\right) +\left( \sum _{l=1}^{N_{x}}{\overline{A}}_{sl}w_{l}\right) \left\{ A_{11}\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{sj}u_{j}+\frac{1}{2}\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{sj}w_{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{A}}_{sk}w_{k}\right) \right) \right. \nonumber \\&\quad \left. +A_{12}\left( \dfrac{1}{R}w_{s} \right) + B_{11}\sum _{j=1}^{N_{x}}{\overline{A}}_{sj}\psi _{j} -N^{T}\right\} , \quad s=1,N_{x} \end{aligned}$$
(A8)
$$\begin{aligned} M_{x,s}&=B_{11}\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{sj}u_{j}+\frac{1}{2}\left( \sum _{j=1}^{N_{x}}{\overline{A}}_{sj}w_{j}\right) \left( \sum _{k=1}^{N_{x}}{\overline{A}}_{sk}w_{k}\right) \right) +B_{12}\left( \dfrac{1}{R}w_{s} \right) \nonumber \\&\quad + D_{11}\sum _{j=1}^{N_{x}}{\overline{A}}_{sj}\psi _{j}-M^{T}, \quad s=1,N_{x} \end{aligned}$$
(A9)
$$\begin{aligned} N_{\phi ,s}&=\dfrac{A_{11}}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}u_{j}+w_{s}+\frac{1}{2R}\left( \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}w_{j}\right) \left( \sum _{k=1}^{N_{\phi }}{\overline{A}}_{sk}w_{k}\right) -2\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}w_{j}\right) u_{s}+u_{s}^2\right) \right) \nonumber \\&\quad +\dfrac{A_{12}}{R}\left( \cot \left( \phi \right) u_{s} +w_{s} \right) +\dfrac{B_{11}}{R}\sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}\psi _{j} +\dfrac{B_{12}}{R}\cot \left( \phi \right) \psi _{s}-N^{T}, \quad s=1,N_{\phi } \end{aligned}$$
(A10)
$$\begin{aligned} Q_{\phi z,s}&=\dfrac{A_{55}}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}w_{j}+\psi _{s}\right) +\dfrac{A_{11}}{R^{2}}\left\{ \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}u_{j}\right) \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{sl}w_{l}\right) -\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}u_{j}\right) u_{s}\right. \nonumber \\&\quad \left. + \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{sl}w_{l}\right) w_{s}-u_{s}w_{s}+\dfrac{1}{2R}\left( \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{sl}w_{l}\right) \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{sl}w_{l}\right) \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{sl}w_{l}\right) \right. \right. \nonumber \\&\quad \left. \left. -3 \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{sl}w_{l}\right) \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{sl}w_{l}\right) u_{s}+3 \left( \sum _{l=1}^{N_{\phi }}{\overline{A}}_{sl}w_{l}\right) u_{s}^2- u_{s}^3\right) \right\} \nonumber \\ {}&\quad +\dfrac{A_{12}}{R^{2}}\cot \left( \phi \right) \left( \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}w_{j}\right) u_{s}-u_{s}^2+\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}w_{j}\right) w_{s}-u_{s}w_{s}\right) \nonumber \\&\quad +\dfrac{B_{11}}{R^{2}} \left( \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}\psi _{j}\right) \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}w_{j}\right) -\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}\psi _{j}\right) u_{s}\right) \nonumber \\&\quad +\dfrac{B_{12}}{R^{2}}\cot \left( \phi \right) \left( \psi _{s} \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}w_{j}\right) - \psi _{s} u_{s}\right) -\dfrac{N^{T}}{R}, \quad s=1,N_{\phi } \end{aligned}$$
(A11)
$$\begin{aligned} M_{\phi ,s}&=\dfrac{B_{11}}{R}\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}u_{j}+w_{s}+\frac{1}{2R}\left( \left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}w_{j}\right) \left( \sum _{k=1}^{N_{\phi }}{\overline{A}}_{sk}w_{k}\right) -2\left( \sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}w_{j}\right) u_{s}+u_{s}^2\right) \right) \nonumber \\&\quad +\dfrac{B_{12}}{R}\left( \cot \left( \phi \right) u_{s} +w_{s} \right) +\dfrac{D_{11}}{R}\sum _{j=1}^{N_{\phi }}{\overline{A}}_{sj}\psi _{j} +\dfrac{D_{12}}{R}\cot \left( \phi \right) \psi _{s}-M^{T}, \quad s=1,N_{\phi } \end{aligned}$$
(A12)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, H., Kiani, Y. & Eslami, M.R. Geometrically nonlinear rapid surface heating in FGM hermetic capsule. Acta Mech 234, 4443–4465 (2023). https://doi.org/10.1007/s00707-023-03625-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03625-z

Navigation