Skip to main content
Log in

Multiphysical time-dependent creep response of FGMEE hollow cylinder in thermal and humid environment

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this paper, we investigate the history of radial displacement, stresses, electric potential, and magnetic potential of a functionally graded magneto-electro-elastic (FGMEE) hollow cylinder subjected to an axisymmetric hygro-thermo-magneto-electro-mechanical loading for the plane strain condition. The material properties are taken as a power-law function of radius. Using stress-displacement relations, equations of equilibrium, electrostatic and magnetostatic equations, we find a differential equation including creep strains. Initially, eliminating creep strains, we obtain an analytical solution for the primitive stresses and electric and magnetic potential. In the next step, considering creep strains, we find the creep stress rates by applying the Norton law and Prandtl–Reuss equations for steady-state hygrothermal boundary condition. Finally, using an iterative method, we find the time-dependent creep stresses, radial displacement, and magnetic and potential field redistributions at any time. In numerical section, are comprehensively investigate the effects of grading index, hygrothermal environmental conditions, rotating speed, and temperature- and moisture-dependency of elastic constant of FGMEE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbarzadeh, A.H., Chen, Z.T.: Magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hygrothermal loading. Smart Mater. Struct. 21, 125013 (2012)

    Google Scholar 

  • Akbarzadeh, A.H., Chen, Z.T.: Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field. Compos. Struct. 97, 317–331 (2013)

    Google Scholar 

  • Allam, M.N.M., Zenkour, A.M., Tantawy, R.: Analysis of functionally graded piezoelectric cylinders in a hygrothermal environment. Adv. Appl. Math. Mech. 6, 233–246 (2014)

    MathSciNet  MATH  Google Scholar 

  • Avellaneda, M., Harshe, G.: Magnetoelectric effect in piezoelectric/magnetostrictive multilayer composites. J. Intell. Mater. Syst. Struct. 5, 501–513 (1994)

    Google Scholar 

  • Babaei, M.H., Chen, Z.T.: Exact solutions for radially polarized and magnetized magneto electro elastic rotating cylinders. Smart Mater. Struct. 17, 025035 (2008)

    Google Scholar 

  • Bakhshizadeh, A., Nejad, M.Z., Kashkoli, M.D.: Time-dependent hygro-thermal creep analysis of pressurized FGM rotating thick cylindrical shells subjected to uniform magnetic field. J. Mech. Phys. Solids 9, 663–679 (2017)

    Google Scholar 

  • Chang, W.J.: Transient hygrothermal responses in a solid cylinder by linear theory of coupled heat and moisture. Appl. Math. Model. 18, 467–473 (1994)

    MATH  Google Scholar 

  • Dai, H.L., Jiang, H.J., Yang, L.: Time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields. Solid State Sci. 14, 587–597 (2012)

    Google Scholar 

  • Dai, H.L., Rao, Y.N., Dai, T.: A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015. Compos. Struct. 152, 199–225 (2016)

    Google Scholar 

  • Dai, H.L., Zheng, Z.Q., Dai, T.: Investigation on a rotating FGPM circular disk under a coupled hygrothermal field. Appl. Math. Model. 46, 28–47 (2017)

    MathSciNet  MATH  Google Scholar 

  • Dai, T., Dai, H.L., Lin, Z.Y.: Multi-field mechanical behavior of a rotating porous FGMEE circular disk with variable thickness under hygrothermal environment. Compos. Struct. 210, 641–656 (2019a)

    Google Scholar 

  • Dai, T., Yang, Y., Dai, H.L., Tang, H., Lin, Z.Y.: Hygrothermal mechanical behaviors of a porous FG-CRC annular plate with variable thickness considering aggregation of CNTs. Compos. Struct. 215, 198–213 (2019b)

    Google Scholar 

  • Ghorbanpour Arani, A., Kolahchi, R.: Successive approximation method for time-dependent creep modeling of functionally graded piezoelectric cylinder. Turk. J. Eng. Environ. Sci. 38, 309–322 (2014)

    Google Scholar 

  • Ghorbanpour Arani, A., Kolahchi, R., Mosallaie Barzoki, A.A., Loghman, A.: Thermo-electro-mechanical creep behavior of radially polarized FGPM rotating cylinder. J. Mech. Phys. Solids 3, 142–157 (2011a)

    MATH  Google Scholar 

  • Ghorbanpour Arani, A., Mosallaie Barzoki, A.A., Kolahchi, R., Mozdianfard, M.R., Loghman, A.: Semi-analytical solution of time-dependent electro-thermo-mechanical creep for radially polarized piezoelectric cylinder. Comput. Struct. 89, 1494–1502 (2011b)

    Google Scholar 

  • Hou, P.F., Leung, A.Y.T.: The transient responses of magneto-electro-elastic hollow cylinders. Smart Mater. Struct. 13, 762 (2004)

    Google Scholar 

  • Jabbari, M., Sohrabpour, S., Eslami, M.R.: Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int. J. Press. Vessels Piping 79, 493–497 (2002)

    MATH  Google Scholar 

  • Jafari Fesharaki, J., Loghman, A., Yazdipoor, M., Golabi, S.: Semi-analytical solution of time-dependent thermomechanical creep behavior of FGM hollow spheres. Mech. Time-Depend. Mater. 18, 41–53 (2014)

    Google Scholar 

  • Jamian, S., Sato, H., Tsukamoto, H., Watanabe, Y.: Creep analysis of functionally graded material thick-walled cylinder. Appl. Mech. Mater. 315, 867–871 (2013)

    Google Scholar 

  • Kashkoli, M.D., Tahan, K.N., Nejad, M.Z.: Time-dependent creep analysis for life assessment of cylindrical vessels using first order shear deformation theory. J. Mech. 33, 461–474 (2017a)

    Google Scholar 

  • Kashkoli, M.D., Tahan, K.N., Nejad, M.Z.: Time-dependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure. Int. J. Appl. Mech. 9, 750086 (2017b)

    Google Scholar 

  • Loghman, A., Atabakhshian, V.: Semi-analytical solution for time-dependent creep analysis of rotating cylinders made of anisotropic exponentially graded material (EGM). J. Mech. Phys. Solids 4, 313–326 (2012)

    Google Scholar 

  • Loghman, A., Ghorbanpour Arani, A., Amir, A.S., Vajedi, A.: Magnetothermoelastic creep analysis of functionally graded cylinders. Int. J. Press. Vessels Piping 87, 389–395 (2010)

    Google Scholar 

  • Loghman, A., Abdollahian, M., Jafarzadeh Jazi, M., Ghorbanpour Arani, M.: Semi-analytical solution for electromagnetothermoelastic creep response of functionally graded piezoelectric rotating disk. Int. J. Therm. Sci. 65, 254–266 (2013)

    Google Scholar 

  • Loghman, A., Shayestemoghadam, H., Loghman, S.: Creep evolution analysis of composite cylinder made of polypropylene reinforced by functionally graded MWCNTs. J. Mech. Phys. Solids 8, 372–383 (2016)

    Google Scholar 

  • Mahesh, V., Kattimani, S.: Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis. Compos. Struct. 180, 617–637 (2017)

    Google Scholar 

  • Nejad, M.Z., Kashkoli, M.D.: Time-dependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux. Int. J. Eng. Sci. 82, 222–237 (2014)

    MathSciNet  MATH  Google Scholar 

  • Nejad, M.Z., Hoseini, Z., Niknejad, A., Ghannad, M.: Steady-state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels. J. Mech. 31, 1–6 (2015)

    Google Scholar 

  • Ootao, Y., Ishihara, M.: Exact solution of transient thermal stress problem of a multilayered magneto-electro-thermoelastic hollow. Cylinder 5, 90–103 (2011)

    MATH  Google Scholar 

  • Raja, S., Sinha, P.K., Prathap, G., Dwarakanthan, D.: Thermally induced vibration control of composite plates and shells with piezoelectric active damping. Smart Mater. Struct. 13, 939–950 (2004)

    Google Scholar 

  • Saadatfar, M.: Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding. Meccanica 50, 2135–2152 (2015)

    MathSciNet  MATH  Google Scholar 

  • Saadatfar, M.: Effect of interlaminar weak bonding and constant magnetic field on the hygrothermal stresses of a FG hybrid cylindrical shell using DQM. J. Stress Anal. 3, 93–110 (2018)

    Google Scholar 

  • Saadatfar, M.: Analytical solution for the creep problem of a rotating functionally graded magneto–electro–elastic hollow cylinder in thermal environment. Int. J. Appl. Mech. 11, 1950053 (2019a)

    Google Scholar 

  • Saadatfar, M.: Effect of hygrothermal environmental conditions on the time-dependent creep response of functionally graded magneto-electro-elastic hollow sphere. J. Stress. Anal. 4, 27–41 (2019b)

    Google Scholar 

  • Saadatfar, M., Aghaie-Khafri, M.: Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation. Smart Mater. Struct. 23, 035004 (2014)

    Google Scholar 

  • Saadatfar, M., Aghaie-Khafri, M.: Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder resting on an elastic foundation. Smart Struct. Syst. 15, 1411–1437 (2015a)

    Google Scholar 

  • Saadatfar, M., Aghaie-Khafri, M.: Hygrothermal analysis of a rotating smart exponentially graded cylindrical shell with imperfect bonding supported by an elastic foundation. Aerosp. Sci. Technol. 43, 37–50 (2015b)

    Google Scholar 

  • Saadatfar, M., Aghaie-Khafri, M.: On the magneto-thermo-elastic behavior of a FGM cylindrical shell with pyroelectric layers featuring interlaminar bonding imperfections rested in an elastic foundation. J. Solid Mech. 7, 344–363 (2015c)

    Google Scholar 

  • Saadatfar, M., Aghaie-Khafri, M.: On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition. J. Therm. Stresses 38, 854–881 (2015d)

    Google Scholar 

  • Sharma, S., Sahay, I., Kumar, R.: Creep transition in non-homogeneous thick-walled circular cylinder under internal and external pressure. Appl. Math. Sci. 122, 6075–6080 (2012)

    MathSciNet  MATH  Google Scholar 

  • Sharma, S., Yadav, S., Sharma, R.: Thermal creep analysis of functionally graded thick-walled cylinder subjected to torsion and internal and external pressure. J. Mech. Phys. Solids 9, 302–318 (2017)

    Google Scholar 

  • Singh, T., Gupta, V.K.: Effect of anisotropy on steady state creep in functionally graded cylinder. Compos. Struct. 93, 747–758 (2011)

    Google Scholar 

  • Singh, T., Gupta, V.K.: Analysis of steady state creep in whisker reinforced functionally graded thick cylinder subjected to internal pressure by considering residual stress. Mech. Adv. Mat. Struct. 21, 384–392 (2014)

    Google Scholar 

  • Smittakorn, W., Heyliger, P.R.: A discrete-layer model of laminated hygrothermopiezoelectric plates. Mech. Compos. Mater. Struct. 7, 79–104 (2000)

    Google Scholar 

  • Smittakorn, W., Heyliger, P.R.: An adaptive wood composite: theory. Wood Fiber Sci. 33, 595–608 (2001)

    Google Scholar 

  • Wang, H.M., Ding, H.J.: Transient responses of a special non-homogeneous magneto-electro-elastic hollow cylinder for a fully coupled axisymmetric plane strain problem. Acta Mech. 184, 137–157 (2006)

    MATH  Google Scholar 

  • Zenkour, A.M.: Bending analysis of piezoelectric exponentially graded fiber-reinforced composite cylinders in hygrothermal environments. Int. J. Mech. Mater. Des. 13, 515–529 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saadatfar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The components of matrices \(H\) and \(E\) for the primitive state can be expressed as

$$\begin{aligned} H =& \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a^{\beta + m_{1} - 1}V_{1} & a^{\beta + m_{2} - 1}V_{2} & V_{3}/a^{2} & V_{6}/a^{2} & 0& 0\\ b^{\beta + m_{1} - 1}V_{1} & b^{\beta + m_{2} - 1}V_{2} & V_{3}/b^{2} & V_{6}/b^{2} & 0& 0\\ a^{m_{1}}E_{1} &a^{m_{2}}E_{2} & a^{ - \beta } V_{4}&a^{ - \beta } V_{7} &1 &0\\ b^{m_{1}}E_{1} &b^{m_{2}}E_{2}&b^{ - \beta } V_{4}&b^{ - \beta } V_{7}&1&0\\ a^{m_{1}}N_{1} &a^{m_{2}}N_{2}&a^{ - \beta } V_{5} &a^{ - \beta } V_{8}&0&1\\ b^{m_{1}}N_{1} &b^{m_{2}}N_{2}&b^{ - \beta } V_{5} &b^{ - \beta } V_{8} &0&1\\ \end{array}\displaystyle \right ], \\ V_{i} =& ( C_{1} m_{i} + C_{2} ), \qquad E_{i} =\biggl( \frac{L_{2}}{m_{i}} + L_{1} \biggr), \qquad N_{i} =\biggl( P_{1} + \frac{P_{2}}{m_{i}} \biggr), \quad i= 1, \! 2, \\ V_{3} = & C_{4} - C_{1} \beta B_{8} + C_{2} B_{8}, \qquad V_{4} =\biggl( \frac{L_{5}}{\beta } - \frac{L_{2} B_{8}}{\beta } + L_{1} B_{8} \biggr), \\ V_{5} =& \biggl( P_{1} B_{8} - \frac{P_{2} B_{8}}{\beta } - \frac{P_{3}}{\beta } \biggr), \\ V_{6} =& C_{3} - C_{1} \beta B_{7} + C_{2} B_{7}, \qquad V_{7} = \biggl( - \frac{L_{3}}{\beta } - \frac{L_{2} B_{7}}{\beta } + L_{1} B_{7} \biggr), \\ V_{8} = & \biggl( B_{7} P_{1} - \frac{P_{2} B_{7}}{\beta } + \frac{P_{5}}{\beta } \biggr), \\ E =& \left [ \textstyle\begin{array}{c} P_{a} - S_{1}(a) \\ P_{b} - S_{1}(b) \\ \phi _{a} - S_{2}(a) \\ \phi _{b} - S_{2}(b) \\ \psi _{a} - S_{3}(a) \\ \psi _{b} - S_{3}(b) \end{array}\displaystyle \right ], \\ S_{1} = & C_{1}\bigl(B_{3}r^{\beta } + B_{4}(\beta + 1)r^{2\beta } + B_{5}(1 - \beta ) + 3B_{6}r^{2 + \beta } \bigr) \\ &{} + C_{2}\bigl(B_{3}r^{\beta } + B_{4}r^{2\beta } + B_{5} + B_{6}r^{2 + \beta } \bigr) \\ &{} + \bigl( C_{5}r^{\beta } - \dot{\lambda }_{1}r^{2\beta } \bigr) \bigl( W_{1}r^{ - \beta } + W_{2} \bigr) + \bigl( C_{6}r^{\beta } - \bar{ \zeta }_{1}r^{2\beta } \bigr) \bigl( S_{1}r^{ - \beta } + S_{2} \bigr) , \\ S_{2} =& L_{1} \bigl( B_{3} r+ B_{4} r^{\beta +1} + B_{5} r^{1-\beta } + B_{6} r^{3} \bigr) \\ &{} + L_{2} \biggl( B_{3} r+ \frac{B_{4}}{\beta +1} r^{\beta +1} + \frac{B_{5}}{1-\beta } r^{1-\beta } + \frac{B_{6}}{3} r^{3} \biggr) \\ &{} + L_{4} \biggl( \frac{W_{1}}{-\beta +1} r^{-\beta +1} + W_{2} r \biggr) + L_{6} \biggl( \frac{S_{1}}{-\beta +1} r^{-\beta +1} + S_{2} r \biggr), \\ S_{3} =& P_{1} \bigl( B_{3} r+ B_{4} r^{\beta +1} + B_{5} r^{1-\beta } + B_{6} r^{3} \bigr) \\ &{} + P_{2} \biggl( B_{3} r+ \frac{B_{4}}{\beta +1} r^{\beta +1} + \frac{B_{5}}{1-\beta } r^{1-\beta } + \frac{B_{6}}{3} r^{3} \biggr) \\ &{} + P_{4} \biggl( \frac{W_{1}}{-\beta +1} r^{-\beta +1} + W_{2} r \biggr) + P_{6} \biggl( \frac{S_{1}}{-\beta +1} r^{-\beta +1} + S_{2} r \biggr). \end{aligned}$$

Besides, for the state of creep progress, the components of \(H\) are as before, and the components of \(E\) can be rewritten as

$$\begin{aligned} E = & - \left [ \textstyle\begin{array}{c} S_{1}(a) \\ S_{1}(b) \\ S_{2}(a) \\ S_{2}(b) \\ S_{3}(a) \\ S_{3}(b) \end{array}\displaystyle \right ], \\ S_{1} = & C_{1} r^{\beta } \biggl( \frac{\partial G_{11}}{\partial r} r^{m_{1}} + G_{11} m_{1} r^{m_{1} -1} + \frac{\partial G_{21}}{\partial r} r^{m_{2}} + G_{21} m_{2} r^{m_{2} -1} \biggr) \\ &{} + C_{2} r^{\beta -1} \bigl( G_{11} r^{m_{1}} + G_{21} r^{m_{2}} \bigr) + ( C_{1} - C_{2} ) \frac{\sqrt{3}}{2} b_{0} r^{b_{1} +\beta } \sigma _{e}^{n_{0}}, \\ S_{2} =& + \int \biggl( L_{1} \biggl( \frac{\partial G_{11}}{\partial r} r^{m_{1}} + G_{11} m_{1} r^{m_{1} -1} + \frac{\partial G_{21}}{\partial r} r^{m_{2}} + G_{21} m_{2} r^{m_{2} -1} \biggr) \\ &{} + L_{2} \bigl(+ G_{11} r^{m_{1} -1} + G_{21} r^{m_{2} -1} \bigr)+( L_{1} - L_{2} ) \frac{\sqrt{3}}{2} b_{0} r^{b_{1}} \sigma _{e}^{n_{0}} \biggr)\,dr, \\ S_{3} = &+ \int \biggl( P_{1} \biggl( \frac{\partial G_{11}}{\partial r} r^{m_{1}} + G_{11} m_{1} r^{m_{1} -1} + \frac{\partial G_{21}}{\partial r} r^{m_{2}} + G_{21} m_{2} r^{m_{2} -1} \biggr) \\ & + P_{2} \bigl(+ G_{11} r^{m_{1} -1} + G_{21} r^{m_{2} -1} \bigr)+( P_{1} - P_{2} ) \frac{\sqrt{3}}{2} b_{0} r^{b_{1}} \sigma _{e}^{n_{0}} \biggr)\,dr. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadatfar, M. Multiphysical time-dependent creep response of FGMEE hollow cylinder in thermal and humid environment. Mech Time-Depend Mater 25, 151–173 (2021). https://doi.org/10.1007/s11043-019-09433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-019-09433-0

Keywords

Navigation