Skip to main content
Log in

Forced vibration analysis of a sandwich beam with functionally porous faces and viscoelastic core using Golla–Hughes–McTavish model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the forced vibration of a functionally porous sandwich beam with a viscoelastic core has been investigated. The upper and lower layers of the beam are made of functionally porous materials, and the porosity gradient in porous layers is distributed through their thickness. The core of the beam is made of viscoelastic materials. The Golla–Hughes–McTavish (GHM) model is employed to simulate the viscoelastic behavior of the core. Applying the Hamilton principle and Euler–Bernoulli theory, the governing equation of motion is obtained for a simply supported beam. The Newmark method is applied to solve the time-dependent differential equation of the beam. The results are compared with data from the literature review and a commercial finite element software. In the Results and Discussion section of the paper, a parametric study is performed to investigate the effects of porosity and viscoelastic parameters on the forced vibration of the beam. Finally, the results obtained by the GHM model are compared with the Kelvin–Voigt model for constant and variable input frequencies. According to the results, both models predict identical behavior for constant input frequency. However, the GHM model provides better results for the case of variable input frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Sisemore, C.L., Darvennes, C.M.: Transverse vibration of elastic-viscoelastic-elastic sandwich beams: compression-experimental and analytical study. J. Sound Vib. 252, 155–167 (2002). https://doi.org/10.1006/jsvi.2001.4038

    Article  Google Scholar 

  2. Wang, Y.: Viscoelastic behavior of a composite beam using finite element method: experimental and numerical assessment. In: International Conference on Composite Materials (2013)

  3. Banerjee, J.R., et al.: Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment. Int. J. Solids Struct. 44, 7543–7563 (2007). https://doi.org/10.1016/j.ijsolstr.2007.04.024

    Article  MATH  Google Scholar 

  4. Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015). https://doi.org/10.1016/j.compstruct.2015.07.052

    Article  Google Scholar 

  5. Pollien, A., et al.: Graded open-cell aluminium foam core sandwich beams. Mater. Sci. Eng. A 404, 9–18 (2005). https://doi.org/10.1016/j.msea.2005.05.096

    Article  Google Scholar 

  6. Anirudh, B., et al.: A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: bending, vibration and buckling. Compos. Struct. 222, 110899 (2019). https://doi.org/10.1016/j.compstruct.2019.110899

    Article  Google Scholar 

  7. He, J.-H., Moatimid, G.M., Zekry, M.H.: Forced nonlinear oscillator in a fractal space. Facta Univ. Ser. Mech. Eng. 20, 1–20 (2022). https://doi.org/10.22190/FUME220118004H

    Article  Google Scholar 

  8. He, C.-H., Liu, C.: A modified frequency–amplitude formulation for fractal vibration systems. Fractals 30, 2250046 (2022). https://doi.org/10.1142/S0218348X22500463

    Article  MATH  Google Scholar 

  9. Babaei, M., Asemi, K., Safarpour, P.: natural frequency and dynamic analyses of functionally graded saturated porous beam resting on viscoelastic foundation based on higher order beam theory. J. Solid Mech. 11, 615–634 (2019). https://doi.org/10.22034/JSM.2019.666691

    Article  Google Scholar 

  10. Akbaş, ŞD., et al.: Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01070-3

    Article  Google Scholar 

  11. Alnujaie, A., et al.: Forced vibration of a functionally graded porous beam resting on viscoelastic foundation. Geomech. Eng. 24, 91–103 (2021). https://doi.org/10.12989/gae.2021.24.1.091

    Article  Google Scholar 

  12. Bensaid, I., Saimi, A.: Dynamic investigation of functionally graded porous beams resting on viscoelastic foundation using generalised differential quadrature method. Austr. J. Mech. Eng. (2022). https://doi.org/10.1080/14484846.2021.2017115

    Article  Google Scholar 

  13. Al-Furjan, M.S.H., et al.: Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate. Mech. Syst. Signal Process. 178, 109269 (2022). https://doi.org/10.1016/j.ymssp.2022.109269

    Article  Google Scholar 

  14. Alavi, S.K., et al.: On the dynamic response of viscoelastic functionally graded porous plates under various hybrid loadings. Ocean Eng. 264, 112541 (2022). https://doi.org/10.1016/j.oceaneng.2022.112541

    Article  Google Scholar 

  15. Arikoglu, A., Ozkol, I.: Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method. Compos. Struct. 92, 3031–3039 (2010). https://doi.org/10.1016/j.compstruct.2010.05.022

    Article  Google Scholar 

  16. Bakhsheshy, A., Mahbadi, H.: Free vibration analysis of functionally graded viscoelastic plate. Modares Mech. Eng. 17, 143–149 (2017)

    Google Scholar 

  17. Liang, Y.-H., Wang, K.-J.: A new fractal viscoelastic element: promise and applications to Maxwell-Rheological model. Therm. Sci. 25, 1221–1227 (2021). https://doi.org/10.2298/TSCI200301015L

    Article  Google Scholar 

  18. Golla, D.F., Hughes, P.C.: Dynamics of viscoelastic structures—a time-domain, finite element formulation. J. Appl. Mech. 52, 897–906 (1985). https://doi.org/10.1115/1.3169166

    Article  MathSciNet  MATH  Google Scholar 

  19. McTavish, D., Hughes, P.: Finite element modeling of linear viscoelastic structures—The GHM method. In: 33rd Structures, Structural Dynamics and Materials Conference (1992). https://doi.org/10.2514/6.1992-2380

  20. Felippe, W.N., Barbosa, F.S.: A nondeterministic GHM based model applied to sandwich beams. Procedia Eng. 199, 1098–1103 (2017). https://doi.org/10.1016/j.proeng.2017.09.200

    Article  Google Scholar 

  21. Huang, Z.-C., et al.: Parameter determination for the Mini-Oscillator Model of the Viscoelastic Material. In: IOP Conference Series: Earth and Environmental Science, vol. 267, p. 032100 (2019). https://doi.org/10.1088/1755-1315/267/3/032100

  22. Safari, M., Biglari, H.: Transient response of sandwich plate with transversely flexible and viscoelastic frequency-dependent material core based on a three-layered theory. J. Sandw. Struct. Mater. 23, 1081–1117 (2021). https://doi.org/10.1177/1099636219854187

    Article  Google Scholar 

  23. Khoshmanesh, S., Watson, S., Zarouchas, D.: The effect of the fatigue damage accumulation process on the damping and stiffness properties of adhesively bonded composite structures. Compos. Struct. 287, 115328 (2022). https://doi.org/10.1016/j.compstruct.2022.115328

    Article  Google Scholar 

  24. Wang, Y., et al.: Wave localization in randomly disordered periodic piezoelectric rods with initial stress. Acta Mech. Solida Sin. 21, 529–535 (2008). https://doi.org/10.1007/s10338-008-0863-9

    Article  Google Scholar 

  25. Ning, L., Wang, Y.-Z., Wang, Y.-S.: Broadband square cloak in elastic wave metamaterial plate with active control. J. Acoust. Soc. Am. 150, 4343–4352 (2021). https://doi.org/10.1121/10.0008974

    Article  Google Scholar 

  26. Ning, L., Wang, Y.-Z., Wang, Y.-S.: Active control of a black hole or concentrator for flexural waves in an elastic metamaterial plate. Mech. Mater. 142, 103300 (2020). https://doi.org/10.1016/j.mechmat.2019.103300

    Article  Google Scholar 

  27. Li, G.-H., et al.: Active control on topological immunity of elastic wave metamaterials. Sci. Rep. 10, 9376 (2020). https://doi.org/10.1038/s41598-020-66269-2

    Article  Google Scholar 

  28. Wagg, D., Neild, S.: Nonlinear Vibration with Control: For Flexible and Adaptive Structures. Springer Netherlands, Dordrecht (2010)

    Book  MATH  Google Scholar 

  29. He, J.-H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999). https://doi.org/10.1016/S0045-7825(99)00018-3

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee, M.K., Hosseini Fouladi, M., Narayana Namasivayam, S.: Natural frequencies of thin rectangular plates using homotopy-perturbation method. Appl. Math. Model. 50, 524–543 (2017). https://doi.org/10.1016/j.apm.2017.05.050

    Article  MathSciNet  MATH  Google Scholar 

  31. Snehashish, C., et al.: Variational iteration method. In: Advanced Numerical and Semi-Analytical Methods for Differential Equations, pp. 141–147. Wiley, USA (2019)

    Google Scholar 

  32. He, J.-H.: Solution of nonlinear equations by an ancient Chinese algorithm. Appl. Math. Comput. 151, 293–297 (2004). https://doi.org/10.1016/S0096-3003(03)00348-5

    Article  MathSciNet  MATH  Google Scholar 

  33. He, J.-H.: Preliminary report on the energy balance for nonlinear oscillations. Mech. Res. Commun. 29, 107–111 (2002). https://doi.org/10.1016/S0093-6413(02)00237-9

    Article  MATH  Google Scholar 

  34. Eslami, M.R.: Finite Elements Methods in Mechanics. Springer International Publishing, Switzerland (2014)

    Book  MATH  Google Scholar 

  35. Zhao, J., et al.: Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions. Compos. B Eng. 168, 106–120 (2019). https://doi.org/10.1016/j.compositesb.2018.12.044

    Article  Google Scholar 

  36. Findley, W.N., Lai, J.S., Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials: With an Introduction to Linear Viscoelasticity. Dover Publications, New York (1989)

    MATH  Google Scholar 

  37. Meunier, M., Shenoi, R.A.: Forced response of FRP sandwich panels with viscoelastic materials. J. Sound Vib. 263, 131–151 (2003). https://doi.org/10.1016/S0022-460X(02)01101-X

    Article  Google Scholar 

  38. Vasques, C.M.A., Rodrigues, J.D., Moreira, R.A.S.: Experimental Identification of GHM and ADF Parameters for Viscoelastic Damping Modeling. Springer Netherlands, Dordrecht (2006)

    Book  Google Scholar 

  39. Meunier, M., Shenoi, R.A.: Dynamic analysis of composite sandwich plates with damping modelled using high-order shear deformation theory. Compos. Struct. 54, 243–254 (2001). https://doi.org/10.1016/S0263-8223(01)00094-0

    Article  Google Scholar 

  40. Martin, L.A., Inman, D.J.: A novel viscoelastic material modulus function for modifying the Golla–Hughes–McTavish method. Int. J Acoust. Vib. 18, 102–108 (2013). https://doi.org/10.20855/ijav.2013.18.3325

    Article  Google Scholar 

  41. Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108, 14–22 (2016). https://doi.org/10.1016/j.ijmecsci.2016.01.025

    Article  Google Scholar 

  42. Rojas, J.I., et al.: Viscoelastic behavior of a novel aluminum metal matrix composite and comparison with pure aluminum, aluminum alloys, and a composite made of Al–Mg–Si alloy reinforced with SiC particles. J. Alloy. Compd. 744, 445–452 (2018). https://doi.org/10.1016/j.jallcom.2018.02.103

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mahbadi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tafreshi, E.S., Darabi, B., Hamedi, J. et al. Forced vibration analysis of a sandwich beam with functionally porous faces and viscoelastic core using Golla–Hughes–McTavish model. Acta Mech 234, 4343–4364 (2023). https://doi.org/10.1007/s00707-023-03600-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03600-8

Navigation