Skip to main content

Advertisement

Log in

Refined plate elements for the analysis of composite plate using Carrera unified formulation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The analysis of a composite plate by refined plate theories is presented in this paper. The displacement fields of monolayer plate are expressed by means of Carrera unified formulation (CUF), and Taylor-like series expansion is employed along the thickness direction. The governing differential equation of monolayer plate is derived by Hamilton's principle, and the related element stiffness matrix, mass matrix, and load vector are obtained. The element matrix of composite plate is obtained by superimposing single-layer plate elements, and the global matrix is obtained in the finite element framework. Due to the shear locking phenomenon of thin plate, the higher-order model is revised by tensor component mixed interpolation (MITC). The accuracy and reliability of the present model are demonstrated by comparing with classical plate model (classical plate theory and first-order shear deformation theory) and a solid model generated in the commercial software ANSYS. Meanwhile, the geometric parameter optimization of composite plate is studied based on the constructed higher-order model by the multi-objective genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(2), A69–A77 (1945). https://doi.org/10.1115/1.4009435

    Article  MathSciNet  MATH  Google Scholar 

  2. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18(1), 31–38 (1951). https://doi.org/10.1115/1.4010217

    Article  MATH  Google Scholar 

  3. Srinivas, S., Rao, A.K.: A three-dimensional solution for plates and laminates. J. Franklin Inst. 291(6), 469–481 (1971). https://doi.org/10.1016/0016-0032(71)90004-4

    Article  Google Scholar 

  4. Özakça, M., Hinton, E., Rao, N.V.R.: Comparison of three-dimensional solid elements in the analysis of plates. Comput. Struct. 42(6), 953–968 (1992). https://doi.org/10.1016/0045-7949(92)90106-A

    Article  Google Scholar 

  5. Carvelli, V., Savoia, M.: Assessment of plate theories for multilayered angle-ply plates. Compos. Struct. 39(3), 197–207 (1997). https://doi.org/10.1016/S0263-8223(97)00114-1

    Article  Google Scholar 

  6. Ballhause, D., D Ottavio, M., Kröplin, B., Carrera, E.: A unified formulation to assess multilayered theories for piezoelectric plates. Comput. Struct. 83(15), 1217–1235 (2005)

  7. Brischetto, S., Carrera, E.: Advanced mixed theories for bending analysis of functionally graded plates. Comput. Struct. 88(23), 1474–1483 (2010). https://doi.org/10.1016/j.compstruc.2008.04.004

    Article  Google Scholar 

  8. Carrera, E., Petrolo, M.: Guidelines and recommendations to construct theories for metallic and composite plates. Aiaa J. 48(12), 2852–2866 (2010). https://doi.org/10.2514/1.J050316

    Article  Google Scholar 

  9. Carrera, E., Cinefra, M., Nali, P.: MITC technique extended to variable kinematic multilayered plate elements. Compos. Struct. 92(8), 1888–1895 (2010)

    Article  Google Scholar 

  10. Cinefra, M., Kumar, S.K., Carrera, E.: MITC9 Shell elements based on RMVT and CUF for the analysis of laminated composite plates and shells. Compos. Struct. 209, 383–390 (2019)

    Article  Google Scholar 

  11. Cinefra, M., D Ottavio, M., Polit, O., Carrera, E.: Assessment of MITC plate elements based on CUF with respect to distorted meshes. Compos. Struct. 238, 111962 (2020)

  12. Carrera, E., Büttner, A., Nali, P.: Mixed elements for the analysis of anisotropic multilayered piezoelectric plates. J. Intell. Mater. Syst. Struct. 21(7), 701–717 (2010)

    Article  Google Scholar 

  13. Carrera, E., Miglioretti, F., Petrolo, M.: Guidelines and recommendations on the use of higher order finite elements for bending analysis of plates. Int. J. Comput. Methods Eng. Sci. Mech. 12(6), 303–324 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carrera, E., Miglioretti, F.: Selection of appropriate multilayered plate theories by using a genetic like algorithm. Compos. Struct. 94(3), 1175–1186 (2012)

    Article  Google Scholar 

  15. Pagani, A., Carrera, E., Banerjee, J.R., Cabral, P.H., Caprio, G., Prado, A.: Free vibration analysis of composite plates by higher-order 1D dynamic stiffness elements and experiments. Compos. Struct. 118, 654–663 (2014). https://doi.org/10.1016/j.compstruct.2014.08.020

    Article  Google Scholar 

  16. Zappino, E., Cavallo, T., Carrera, E.: Free vibration analysis of reinforced thin-walled plates and shells through various finite element models. Mech. Adv. Mater. Struct. 23(9), 1005–1018 (2016)

    Article  Google Scholar 

  17. Carrera, E., Cinefra, M., Li, G.: Refined finite element solutions for anisotropic laminated plates. Compos. Struct. 183, 63–76 (2018). https://doi.org/10.1016/j.compstruct.2017.01.014

    Article  Google Scholar 

  18. Daraei, B., Shojaee, S., Hamzehei Javaran, S.: Finite strip method based on Carrera unified formulation for the free vibration analysis of variable stiffness composite laminates. Int. J. Numer. Methods Eng. 123(18), 4244–4266 (2022). https://doi.org/10.1002/nme.7007

    Article  MathSciNet  Google Scholar 

  19. Carrera, E., Zappino, E., Cavallo, T.: Static analysis of reinforced thin-walled plates and shells by means of finite element models. Int. J. Comput. Methods Eng. Sci. Mech. 17(2), 106–126 (2016). https://doi.org/10.1080/15502287.2016.1157647

    Article  MathSciNet  Google Scholar 

  20. Jiang, H., Liang, L., Ma, L., Guo, J., Dai, H., Wang, X.: An analytical solution of three-dimensional steady thermodynamic analysis for a piezoelectric laminated plate using refined plate theory. Compos. Struct. 162, 194–209 (2017). https://doi.org/10.1016/j.compstruct.2016.11.078

    Article  Google Scholar 

  21. Rouzegar, J., Abbasi, A.: A refined finite element method for bending of smart functionally graded plates. Thin-Walled Struct. 120, 386–396 (2017). https://doi.org/10.1016/j.tws.2017.09.018

    Article  Google Scholar 

  22. Yarasca, J., Mantari, J.L., Petrolo, M., Carrera, E.: Best theory diagrams for cross-ply composite plates using polynomial, trigonometric and exponential thickness expansions. Compos. Struct. 161, 362–383 (2017). https://doi.org/10.1016/j.compstruct.2016.11.053

    Article  Google Scholar 

  23. Yarasca, J., Mantari, J.L.: N-objective genetic algorithm to obtain accurate equivalent single layer models with layerwise capabilities for challenging sandwich plates. Aerosp. Sci. Technol. 70, 170–188 (2017). https://doi.org/10.1016/j.ast.2017.07.035

    Article  Google Scholar 

  24. Xue, Y., Jin, G., Ding, H., Chen, M.: Free vibration analysis of in-plane functionally graded plates using a refined plate theory and isogeometric approach. Compos. Struct. 192, 193–205 (2018)

    Article  Google Scholar 

  25. Cinefra, M., Moruzzi, M.C., Bagassi, S., Zappino, E., Carrera, E.: Vibro-acoustic analysis of composite plate-cavity systems via CUF finite elements. Compos. Struct. 259, 113428 (2021)

    Article  Google Scholar 

  26. Foroutan, K., Carrera, E., Pagani, A., Ahmadi, H.: Post-buckling and large-deflection analysis of a sandwich FG plate with FG porous core using Carrera’s Unified Formulation. Compos. Struct. 272, 114189 (2021). https://doi.org/10.1016/j.compstruct.2021.114189

    Article  Google Scholar 

  27. Van Do, V.N., Lee, C.: Nonlinear thermal buckling analyses of functionally graded circular plates using higher-order shear deformation theory with a new transverse shear function and an enhanced mesh-free method. Acta Mech. 229(9), 3787–3811 (2018)

    Article  MathSciNet  Google Scholar 

  28. Carrera, E., Zozulya, V.V.: Carrera unified formulation (CUF) for shells of revolution I. Higher-order theory. Acta Mech. 234(1), 109–136 (2023). https://doi.org/10.1007/s00707-022-03372-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Carrera, E., Zozulya, V.V.: Carrera unified formulation (CUF) for the shells of revolution. II. Navier close form solutions. Acta Mech. 234(1), 137–161 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hui, Y., Giunta, G., De Pietro, G., Belouettar, S., Carrera, E., Huang, Q., Liu, X., Hu, H.: A geometrically nonlinear analysis through hierarchical one-dimensional modelling of sandwich beam structures. Acta Mech. 234(1), 67–83 (2023). https://doi.org/10.1007/s00707-022-03194-7

    Article  MathSciNet  MATH  Google Scholar 

  31. Nagaraj, M.H., Reiner, J., Vaziri, R., Carrera, E., Petrolo, M.: Compressive damage modeling of fiber-reinforced composite laminates using 2D higher-order layer-wise models. Composites B Eng. 215, 108753 (2021). https://doi.org/10.1016/j.compositesb.2021.108753

    Article  Google Scholar 

  32. Ferreira, G.F.O., Almeida, J.H.S., Ribeiro, M.L., Ferreira, A.J.M., Tita, V.: A finite element unified formulation for composite laminates in bending considering progressive damage. Thin-Walled Struct. 172, 108864 (2022). https://doi.org/10.1016/j.tws.2021.108864

    Article  Google Scholar 

  33. Carrera, E., Zozulya, V.V.: Carrera unified formulation (CUF) for the micropolar plates and shells I Higher order theory. Mech. Adv. Mater. Struct. 29(6), 773–795 (2022)

    Article  Google Scholar 

  34. Carrera, E., Zozulya, V.V.: Carrera unified formulation (CUF) for the micropolar plates and shells. II. Complete linear expansion case. Mech. Adv. Mater. Struct. 29(6), 796–815 (2022)

    Article  Google Scholar 

  35. Nouri, Z., Sarrami-Foroushani, S., Azhari, F., Azhari, M.: Application of Carrera unified formulation in conjunction with finite strip method in static and stability analysis of functionally graded plates. Mech. Adv. Mater. Struct. 29(2), 250–266 (2022). https://doi.org/10.1080/15376494.2020.1762265

    Article  Google Scholar 

  36. Rahmani, F., Kamgar, R., Rahgozar, R.: Optimum material distribution of porous functionally graded plates using Carrera unified formulation based on isogeometric analysis. Mech. Adv. Mater. Struct. 29(20), 2927–2941 (2022). https://doi.org/10.1080/15376494.2021.1881845

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a project supported by the Natural Science Research of Anhui University (KJ2020A0285), a project supported by the National Key Research and Development Program (2020YFB1314103), a project supported by the National Key Research and Development Program (2020YFB1314203), and a project supported by Anhui Province Key Research and Development Program (202004a07020043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Pengyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenxiang, T., Pengyu, L., Gang, S. et al. Refined plate elements for the analysis of composite plate using Carrera unified formulation. Acta Mech 234, 3801–3820 (2023). https://doi.org/10.1007/s00707-023-03594-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03594-3

Navigation