Skip to main content

Advertisement

Log in

Multi-objective structural robust optimization under stress criteria based on mixed plate super-elements and genetic algorithms

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a methodology for the multi-objective (MO) robust optimization of plate structures under stress criteria, based on Mixed Super-Elements (MSEs). The optimization is performed with a classical Genetic Algorithm (GA) method based on Pareto-optimal solutions. It considers antagonist objectives among them stress criteria and thickness parameters distributed along the plate. This work aims at providing fast and efficient objective calculations. Our method is based on the implementation of MSEs for each zone of the plate featured by its own thickness. They are constructed with a Mixed Finite Element Model (MFEM) based on a displacement-stress mechanical formulation, and is enhanced with a sub-structuring modal reduction method in order to reduce the size of each constant thickness MSE. Those methods combined enable a fast and stress-wise efficient structure analysis, which improves the performance of the repetitive GA. A few cases minimizing the mass and the maximum Von Mises stress within a plate structure under dynamic loads put forward the relevance of our method with promising results. For the sake of robustness, both discrete frequencies and frequency bands are studied. The MO optimization is able to satisfy multiple damage criteria with different thickness distributions. It brings simplicity, saves computational time and the Pareto-front presentation with stress objective provides a good overview of the possibilities for the designers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araujo AL, Martins P, Mota Soares CM, Mota Soares CA, Herskovits J (2009) Damping optimization of viscoelastic laminated sandwich composite structures. S Struct Multidiscip Optim 39:569–579

    Article  MathSciNet  Google Scholar 

  • Benjeddou A (2000) Advances in piezoelectric finite element modeling of adaptative structural elements: a survey. Comput Struct 76:347–363

    Article  Google Scholar 

  • Besset S, Jézéquel L (2008) Dynamic sub-structuring based on a double modal analysis. J Vib Acoust 130(1):011008

    Article  Google Scholar 

  • Brizard D, Jézéquel L, Besset S, Troclet B (2012) Determinental method for locally modified structures. application to the vibration damping of a space launcher. Comput Mech 20:631–644

    Article  Google Scholar 

  • Carrera E, Demasi L (2002) Classical and advanced multilayered plate elements based upon pvd and rmvt. part 1: Derivation of finite element matrices. Int J Numer Methods Eng 55:191–231

    Article  MathSciNet  MATH  Google Scholar 

  • Carrera E, Demasi L (2002) Classical and advanced multilayered plate elements based upon pvd and rmvt. part 2: Numerical implementation. Int J Numer Methods Eng 55:253–291

    Article  MathSciNet  MATH  Google Scholar 

  • Craig RR, Bampton MCC (1968) Coupling of substructures for dynamic analysis. AIAA J 6(7):1313–1319

    Article  MATH  Google Scholar 

  • Dai L, Guan ZQ, Chen BS, Zhang HW (2008) An open platform of shape design optimization for shell structures. Struct Multidiscip Optim 35:609–622

    Article  Google Scholar 

  • de Miranda S, Ubertini F (2006) A simple hybrid stress element for shear deformable plates. Int J Numer Methods Eng 65:808– 833

    Article  MATH  Google Scholar 

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-2. Notes in Computer Science

  • Deb K, Pratap A, Agrawal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-2. Trans Evol Comput 6(2)

  • Duan M, Miyamoto Y, Iwasaki S, Deto H (1999) Numerical implementation of hybrid-mixed finite element model for reissner-mindlin plates. Finite Element in Analysis and Design 33:167–185

    Article  MATH  Google Scholar 

  • Dumitrescu D, Groşan C, Oltean M (2001) A new evolutionary adaptative representation paradigm. Studia Universitas Babes-Boylai, Seria Informatica XLVI(1):15–30

    Google Scholar 

  • Dumitrescu D, Groşan C, Oltean M (2001) Simple multiobjective evolutionary algorithm. In Seminars on Computer Science, Faculty of Mathematics and Computer Science, Babes-Boylai University of Cluj-Napoca

  • Garambois P, Besset S, Jézéquel L (2014) Modal synthesis applied to a reissner mixed plate finite element dynamic model. Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014

  • Garambois P, Besset S, Jézéquel L (2015) Various double component mode synthesis and sub-structuring methods for dynamic mixed fem. Eur J Mech - A/Solids 53:196–219

    Article  MathSciNet  Google Scholar 

  • Garcia Lage R, Mota Soares CM, Mota Soares CA, Reddy JN (2004) Analysis of adaptative plate structures by mixed layerwise finite elements. Compos Struct 66:269–276

    Article  Google Scholar 

  • Garcia Lage R, Mota Soares CM, Mota Soares CA, Reddy JN (2004) Modelling of piezolamited plates using layerwise mixed elements. Compos Struct 82:1849–1863

    Article  Google Scholar 

  • Gellert M, Laursen ME (1976) Formulation and convergence of a mixed finite element method applied to elastic arches of arbitrary geometry and loading. Comput Methods Appl Mech Eng 7:285–302

    Article  MATH  Google Scholar 

  • Groşan C, Dumitrescu D (2002) A comparison of multiobjective evolutionary algorithms. Acta Universitatis Apulensis

  • Hellinger E (1914) Die allgemeinen ansatze der mechanik der kontinua. Encyklopadie der mathematischen Wissenschaften

  • Jézéquel L, Setio HD (1994) Component modal synthesis methods based on hybrid models, part 1: Theory of hybrid models and modal truncation methods. J Appl Mech 61:100–108

    Article  MATH  Google Scholar 

  • Knowles JD, Corne DW (1999) The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimization. Congress on Evolutionary Computation (CEC 99), 1, Piscataway

  • Kudikala R, Deb K, Bhattacharya B (2009) Multi-objective optimization of piezoelectric actuator placement for shape control of plates using genetic algorithms. J Mech Des 131:091007–1–11

    Article  Google Scholar 

  • Lagaros ND, Papadopoulos V (2006) Optimum design of shell structures with random geometric, material and thickness imperfections. Int J Solids Struct 43:6948–6964

    Article  MATH  Google Scholar 

  • MacNeal RH (1971) A hybrid method of component mode synthesis. Comput Struct 1:581–601

    Article  Google Scholar 

  • Paluch B, Grédiac M, Faye A (2008) Combining a finite element programme and a genetic algorithm to optimize composite structures with variable thickness. Composite and Structures 83:284– 294

    Article  Google Scholar 

  • Pian THH, Chen DP, Kang D (1983) A new formulation of hybrid/mixed finite element. Comput Struct 16:81–87

    Article  MATH  Google Scholar 

  • Reissner E (1950) On a variational theorem in elasticity. J Math Phys 29:90–95

    Article  MathSciNet  MATH  Google Scholar 

  • Reissner E (1984) On a certain mixed variational theorem and a proposed application. Int J Numer Methods Eng 20(7):1366–1368

    Article  MATH  Google Scholar 

  • Reissner E (1986) On a mixed variational theorem and on shear feformable plate theory. Int J Numer Methods Eng 23(2):193–198

    Article  MATH  Google Scholar 

  • Saleeb AF, Chang TY (1987) On the hybrid-mixed formulation of c0 curved beams. Computer Method in Applied Mechanics and Engineering 60:95–121

    Article  MATH  Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. J Evol Computation 2:221–248

    Article  Google Scholar 

  • Stolarski H, Belytschko T (1986) On the equivalence of mode decomposition and mixed finite element based on the hellinger-reissner principle. part 1: Theory. Computers Methods in Applied Mechanics and Engineering 58:249–263

    Article  MathSciNet  MATH  Google Scholar 

  • Stolarski H, Belytschko T (1986) On the equivalence of mode decomposition and mixed finite element based on the hellinger-reissner principle. part 2: Application. Computers Methods in Applied Mechanics and Engineering 58:265–284

    Article  MathSciNet  MATH  Google Scholar 

  • Tran DM (2001) Component mode synthesis methods using interface modes. application to structures with cyclic symmetry. Comput Struct 79:209–222

    Article  Google Scholar 

  • Washizu K (1975) Variational methods in elasticity and plasticity, 2nd edn. Pergamon Press

  • Wriggers P, Carstensen C (2009) Mixed Finite Element Technologies. Applied Mathematics/Computational Methods of Engineering

  • Zitzler E, Deb K, Thiele L (1999) Comparison of multiobjectivr evolutionary algorithms: empirical results. Technical report, Technical Report 70, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich

  • Zitzler E, Laumanns E, Thiele L (2001) Spea2: Improving the strength pareto evolutionary algorithm. Technical report, Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. evolutionary computation. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Garambois.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garambois, P., Besset, S. & Jézéquel, L. Multi-objective structural robust optimization under stress criteria based on mixed plate super-elements and genetic algorithms. Struct Multidisc Optim 53, 205–213 (2016). https://doi.org/10.1007/s00158-015-1339-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1339-4

Keywords

Navigation