Skip to main content
Log in

A semi-analytical method for computing dispersion curves of propagating waves underground

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We present a method to compute the dispersion curves of underground propagating waves. The method conceptualizes the underground space as consisting of two general layers. One is described numerically by variational finite elements which can model complex soil profiles; the other one is described analytically by interactions of bulk waves which represent leaking wave field in the unbounded deep soil. The dispersion curves are finally obtained from a linear generalized eigenproblem mathematically well-studied. The method and its computer program are verified by comparison with the published results for three cases of underground systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sharma, J.N., Kaur, D.: Modelling of circumferential waves in cylindrical thermoelastic plates with voids. Appl. Math. Modell. 34(2), 254–265 (2010). https://doi.org/10.1016/j.apm.2009.04.003

    Article  MathSciNet  MATH  Google Scholar 

  2. Towfighi, S., Kundu, T.: Elastic wave propagation in anisotropic spherical curved plates. Int. J. Solids Struct. 40(20), 5495–5510 (2003). https://doi.org/10.1016/s0020-7683(03)00278-6

    Article  MATH  Google Scholar 

  3. Zhang, X., Li, Z., Yu, J., Zhang, B.: Properties of circumferential non-propagating waves in functionally graded piezoelectric cylindrical shells. Adv. Mech. Eng. 11(4), 168781401983687 (2019). https://doi.org/10.1177/1687814019836878

    Article  Google Scholar 

  4. Crampin, S.: The dispersion of surface waves in multilayered anisotropic media. Geophys. J. R. Astrono. Soc. 21, 387–402 (1970)

    Article  MATH  Google Scholar 

  5. Haskell, N.: The dispersion of surface waves on multilayered media. Bull. Seismol. Soc. Am. 43, 17–34 (1953)

    Article  Google Scholar 

  6. Thompson, W.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 89–93 (1950)

    Article  MathSciNet  Google Scholar 

  7. Pavlakovic, B., Lowe, M.: User’s manual for program Disperse (2003)

  8. Cong, M., Wu, X., Liu, R.: Dispersion analysis of guided waves in the finned tube using the semi-analytical finite element method. J. Sound Vib. 401, 114–126 (2017). https://doi.org/10.1016/j.jsv.2017.04.037

    Article  Google Scholar 

  9. Deng, Q., Luo, S.: Characteristics of wave propagation in section-varying bar covered with piezoelectric laye. Comput. Struct. 86(11–12), 1297–1304 (2008). https://doi.org/10.1016/j.compstruc.2007.09.001

    Article  Google Scholar 

  10. Lin, Z., Kasai, A.: Analysis of wave propagation in a plate resting on a winkler foundation with a sample application to vibration control. Soil Dyn. Earthq. Eng. 46, 1–12 (2013). https://doi.org/10.1016/j.soildyn.2012.12.001

    Article  Google Scholar 

  11. Mukdadi, O.M., Datta, S.K., Dunn, M.L.: Elastic guided waves in a layered plate with a rectangular cross section. ASME J. Press. Vessel Technol. 124(3), 319 (2002). https://doi.org/10.1115/1.1491582

    Article  Google Scholar 

  12. Onipede, O., Dong, S.: Propagating waves and end modes in pretwisted beams. J. Sound Vib. 19, 313–330 (1996)

    Article  Google Scholar 

  13. Vaziri Astaneh, A., Guddati, M.N.: Dispersion analysis of composite acousto-elastic waveguides. Compos. Part B Eng. 130, 200–216 (2017). https://doi.org/10.1016/j.compositesb.2017.07.040

    Article  Google Scholar 

  14. Xu, X., Bo, X., Lu, Z., Shi, H., Zhu, L.: A graphical analysis method of guided wave modes in rails. Appl. Sci. 9(8), 1529 (2019). https://doi.org/10.3390/app9081529

    Article  Google Scholar 

  15. Lin, Z., Yu, P., Xu, H.: Numerical computation of circumferential waves in cylindrical curved waveguides. Int. J. Comput. Methods (2020). https://doi.org/10.1142/S0219876220500012

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang, Y., Li, Y., Liu, Y., Han, Q., Liu, D.: Investigation of wave propagation in piezoelectric helical waveguides with the spectral finite element method. Comp. Part B Eng. 160, 205–216 (2019). https://doi.org/10.1016/j.compositesb.2018.09.083

    Article  Google Scholar 

  17. Kiefer, D.A., Ponschab, M., Rupitsch, S.J., Mayle, M.: Calculating the full leaky lamb wave spectrum with exact fluid interaction. J. Acoust. Soci. Am. 145(6), 3341–3350 (2019). https://doi.org/10.1121/1.5109399

    Article  Google Scholar 

  18. Staples, B.M., Graham, T.J., Hibbins, A.P., Sambles, J.R.: Coupled scholte modes supported by soft elastic plates in water. Phys. Rev. E 103, 063002 (2021). https://doi.org/10.1103/PhysRevE.103.063002

    Article  MathSciNet  Google Scholar 

  19. Georgiades, E., Lowe, M.J.S., Craster, R.V.: Leaky wave characterisation using spectral methods. J. Acoust. Soc. Am. 152(3), 1487–1497 (2022). https://doi.org/10.1121/10.0013897

    Article  Google Scholar 

  20. Kiefer, D.A., Plestenjak, B., Gravenkamp, H., Prada, C.: Computing zero-group-velocity points in anisotropic elastic waveguides: globally and locally convergent methods. J. Acoust. Soc. Am. 153(2), 1386–1398 (2023). https://doi.org/10.1121/10.0017252

    Article  Google Scholar 

  21. Kohn, W., Krumhansl, J., Lee, E.: Variational methods for dispersion relations and elastic properties of composite materials. ASME J. Appl. Mech. 39, 327–336 (1972)

    Article  MATH  Google Scholar 

  22. Kuznetsov, S.V.: Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence. Waves Random Complex Media 31(6), 1540–1549 (2021). https://doi.org/10.1080/17455030.2019.1683257

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuznetsov, S.V.: Sh-waves in laminated plates. Q. Appl. Math. 64(1), 153–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruhe, A.: Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10(4), 674–689 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peters, G., Wilkinson, J.H.: Ax =bx and the generalized eigenproblem. SIAM J. Numer. Anal. 7(4), 479–492 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Patzak, B., Bittnar, Z.: Design of object oriented finite element code. Adv. Eng. Softw. 32(10–11), 759–767 (2001)

    Article  MATH  Google Scholar 

  27. Gomes, F., Sorensen, D.: Arpack++ (2000). http://www.ime.unicamp.br/~chico/arpack++/

  28. Sorensen, D., Lehoucq, R., Yang, C., Maschhoff, K.: Arpack (1996). http://www.caam.rice.edu/software/ARPACK/

  29. Jones, D., Petyt, M.: Ground vibration in the vicinity of a strip load: An elastic layer on a rigid foundation. J. Sound Vib. 152(3), 501–515 (1992)

    Article  MATH  Google Scholar 

  30. Miyakoshi, K., Ling, S., Okazaki, A.: SEGJ (ed.) Estimation of underground structures in plain using array measurement of microtremors. In: The 119th Meeting of Society of Exploration Geophysicists of Japan, vol. 119, pp. 9–12. Society of Exploration Geophysicists of Japan, Tokyo (2008)

  31. Alliance, A. L., of Civil Engineers.: A. S. Guidelines for the design of buried steel pipe (ASCE, 2005). https://books.google.com/books?id=ddoEMwEACAAJ

  32. Association, J. G.: Seismic design guidelines for gas pipelines (In Japanese) (JGA, 2004)

Download references

Acknowledgements

The authors would like to thank Professor Michael J. S. Lowe (Imperial College London) for kindly providing Fig. 3a and the Kansai Electric Power Company Japan and Mr. Ken Miyakoshi (Geo-Research Institute Japan) for kindly providing the field observation data in Fig. 4. The authors also acknowledge the financial support of the Wuhan Institute of Technology grant 18QD48 and the anonymous reviewers for invaluable comments that strengthened an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Huang, W. A semi-analytical method for computing dispersion curves of propagating waves underground. Acta Mech 234, 3595–3604 (2023). https://doi.org/10.1007/s00707-023-03578-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03578-3

Navigation