Skip to main content
Log in

Polarization in the van der Waals–bonded graphene/hBN heterostructures with triangular pores

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study investigates the effect of strain gradient on polarization with non-centrosymmetric triangular pores in graphene and hexagonal boron nitride (hBN) nanosheets heterostructure using density functional theory (DFT). Two-dimensional (2D) nanosheets, like hexagonal boron nitride and graphene, are vertically stacked to create a new class of materials called van der Waals (vdW) heterostructures. These heterostructures have distinctive and highly controllable electrical characteristics. The change in the piezoelectric coefficient due to the change in graphene layers is analyzed using DFT. Firstly, the polarization of bilayer graphene with non-centrosymmetric triangular holes has been determined by applying an axial load. Further, variation in polarization with an increment in graphene layers and its heterostructure with hBN nanosheets has been studied with the help of the quantum electrostatic heterostructure (QEH) model. The QEH model has been implemented to reduce computational efforts, and it was found to be reliable with the results obtained using the first principles. Additionally, the polarization properties of different heterostructure configurations have been evaluated. It was found that strain-induced polarization in graphene heterostructure with non-centrosymmetric defects is a nanoscale phenomenon that converts non-piezoelectric graphene into piezoelectric graphene. The calculations are performed using the real-space, grid-based projector-augmented wave (GPAW) DFT method and the QEH model. These models were implemented in python script. The work presented in this paper signifies the importance of slight tweaking of pores and heterostructure layering, which can help achieve improvements in piezoelectric properties that, in turn, have tremendous application in nanoelectromechanical systems (NEMS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Data are available on request from the authors.

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233

    Article  Google Scholar 

  3. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  4. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  5. Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J., Zamora, F.: 2D materials: To graphene and beyond. Nanoscale 3, 20–30 (2011). https://doi.org/10.1039/c0nr00323a

    Article  Google Scholar 

  6. Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012). https://doi.org/10.1002/adma.201103241

    Article  Google Scholar 

  7. Xiao, B., Gu, M., Xiao, S.: Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl. Opt. 56, 5458 (2017). https://doi.org/10.1364/ao.56.005458

    Article  Google Scholar 

  8. Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 1–4 (2006). https://doi.org/10.1103/PhysRevLett.97.216803

    Article  Google Scholar 

  9. Gui, G., Li, J., Zhong, J.: Band structure engineering of graphene by strain: First-principles calculations. Phys. Rev. B - Condensed Matter Mater. Phys. 78, 1–6 (2008). https://doi.org/10.1103/PhysRevB.78.075435

    Article  Google Scholar 

  10. Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Phys. Solid State. 5, 2069–2070 (1964)

    Google Scholar 

  11. Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013). https://doi.org/10.1146/annurev-matsci-071312-121634

    Article  Google Scholar 

  12. Berry, M. V, A, P.R.S.L.: Quantal phase factors accompanying adiabatic changes. proceedings of the royal society of London. A. Mathemat. Phys. Sci. 392, 45–57 (1984). https://doi.org/10.1098/rspa.1984.0023

  13. Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017). https://doi.org/10.1016/j.carbon.2017.03.013

    Article  Google Scholar 

  14. Javvaji, B., He, B., Zhuang, X.: The generation of piezoelectricity and flexoelectricity in graphene by breaking the materials symmetries. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aab5ad

    Article  Google Scholar 

  15. Zhuang, X., He, B., Javvaji, B., Park, H.S.: Intrinsic bending flexoelectric constants in two-dimensional materials. Phys. Rev. B. (2019). https://doi.org/10.1103/PhysRevB.99.054105

    Article  Google Scholar 

  16. Dumitricǎ, T., Landis, C.M., Yakobson, B.I.: Curvature-induced polarization in carbon nanoshells. Chem. Phys. Lett. 360, 182–188 (2002). https://doi.org/10.1016/S0009-2614(02)00820-5

    Article  Google Scholar 

  17. Xu, T., Sun, L.: Structural defects in graphene. Defects Adv. Electron. Mater. Novel Low Dimension Struct. 5, 137–160 (2018). https://doi.org/10.1016/B978-0-08-102053-1.00005-3

    Article  Google Scholar 

  18. Stone, A.J., Wales, D.J.: Theortical studies of Icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986)

    Article  Google Scholar 

  19. He, L., Guo, S., Lei, J., Sha, Z., Liu, Z.: The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets - a molecular dynamics study. Carbon 75, 124–132 (2014). https://doi.org/10.1016/j.carbon.2014.03.044

    Article  Google Scholar 

  20. Xia, X., Du, Z., Zhang, J., Li, J., Weng, G.J.: A hierarchical scheme from nano to macro scale for the strength and ductility of graphene/metal nanocomposites. Int J Eng Sci. 162, 103476 (2021). https://doi.org/10.1016/j.ijengsci.2021.103476

    Article  MathSciNet  Google Scholar 

  21. Nevhal, S.K., Kundalwal, S.I.: Polarization in graphene nanoribbons with inherent defects using first-principles calculations. Acta Mech. 233, 399–411 (2022). https://doi.org/10.1007/s00707-021-03136-9

    Article  MATH  Google Scholar 

  22. Kundalwal, S.I., Choyal, V.K., Choyal, V.: Flexoelectric effect in boron nitride–graphene heterostructures. Acta Mech. 232, 3781–3800 (2021). https://doi.org/10.1007/s00707-021-03022-4

    Article  MATH  Google Scholar 

  23. Xia, X., Zhao, S., Zhang, J., Fang, C., Weng, G.J.: A unified investigation into the tensile and compressive sensing performance in highly sensitive MWCNT/epoxy nanocomposite strain sensor through loading-dependent tunneling distance. Composite. Sci. Technol. 230, 109723 (2022). https://doi.org/10.1016/j.compscitech.2022.109723

    Article  Google Scholar 

  24. Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Modern Phys. 81(1), 109 (2009)

    Article  Google Scholar 

  25. Oostinga, J.B., Heersche, H.B., Liu, X., Morpurgo, A.F., Vandersypen, L.M.K.: Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008). https://doi.org/10.1038/nmat2082

    Article  Google Scholar 

  26. Bunch, J, S., Verbridge, S.S., Alden, J.S., Zande, A.M., Parpia, J.M., Craighead, H.G., Mceuen, P.L.: Impermeable Atomic Membranes. Nano Letters. 8(8): 3–7 (2008)

  27. Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J., Schlom, D.G.: Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004). https://doi.org/10.1038/nature02773

    Article  Google Scholar 

  28. Deng, Q., Liu, L., Sharma, P.: Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209–227 (2014). https://doi.org/10.1016/j.jmps.2013.09.021

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, H., Chu, L., Li, Y., Dui, G., Deng, Q.: Study on PN heterojunctions associated bending coupling in flexoelectric semiconductor composites considering the effects of size-dependent and symmetry-breaking. J. Appl. Phys. (2022). https://doi.org/10.1063/5.0102209

    Article  Google Scholar 

  30. Withers, F., Del Pozo-Zamudio, O., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015). https://doi.org/10.1038/nmat4205

    Article  Google Scholar 

  31. Massicotte, M., Schmidt, P., Vialla, F., Schädler, K.G., Reserbat-Plantey, A., Watanabe, K., Taniguchi, T., Tielrooij, K.J., Koppens, F.H.L.: Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016). https://doi.org/10.1038/nnano.2015.227

    Article  Google Scholar 

  32. Furchi, M.M., Pospischil, A., Libisch, F., Burgdörfer, J., Mueller, T.: Photovoltaic effect in an electrically tunable Van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014). https://doi.org/10.1021/nl501962c

    Article  Google Scholar 

  33. Britnell, L., Morozov, S.V., Peres, N.M., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A.: Field effect tunneling transistor based on vertical graphene heterostructures. Science 335, 1–11 (2012)

    Article  Google Scholar 

  34. Georgiou, T., Jalil, R., Belle, B.D., Britnell, L., Gorbachev, R.V., Morozov, S.V., Kim, Y.J., Gholinia, A., Haigh, S.J., Makarovsky, O., Eaves, L., Ponomarenko, L.A., Geim, A.K., Novoselov, K.S., Mishchenko, A.: Vertical field-effect transistor based on graphene-WS 2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013). https://doi.org/10.1038/nnano.2012.224

    Article  Google Scholar 

  35. Schmidt, P., Vialla, F., Latini, S., Massicotte, M., Tielrooij, K.J., Mastel, S., Navickaite, G., Danovich, M., Ruiz-Tijerina, D.A., Yelgel, C., Fal’ko, V., Thygesen, K.S., Hillenbrand, R., Koppens, F.H.L.: Nano-imaging of intersubband transitions in van der Waals quantum wells. Nature Nanotechnology. 13, 1035–1041 (2018). https://doi.org/10.1038/s41565-018-0233-9

  36. Bistritzer, R., MacDonald, A.H.: Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 108, 12233–12237 (2011). https://doi.org/10.1073/pnas.1108174108

    Article  Google Scholar 

  37. Yankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K., Taniguchi, T., Graf, D., Young, A.F., Dean, C.R.: Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019). https://doi.org/10.1126/science.aav1910

    Article  Google Scholar 

  38. Cui, X., Lee, G.H., Kim, Y.D., Arefe, G., Huang, P.Y., Lee, C.H., Chenet, D.A., Zhang, X., Wang, L., Ye, F., Pizzocchero, F., Jessen, B.S., Watanabe, K., Taniguchi, T., Muller, D.A., Low, T., Kim, P., Hone, J.: Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015). https://doi.org/10.1038/nnano.2015.70

    Article  Google Scholar 

  39. Xi, S., Su, Y.: A phase field study of the grain-size effect on the thermomechanical behavior of polycrystalline NiTi thin films. Acta Mech. 232, 4545–4566 (2021). https://doi.org/10.1007/s00707-021-03074-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Xuan, F., Chen, Y., Quek, S.Y.: Quasiparticle levels at large interface systems from many-body perturbation theory: The XAF-GW method. J. Chem. Theory Comput. 15, 3824–3835 (2019). https://doi.org/10.1021/acs.jctc.9b00229

    Article  Google Scholar 

  41. Andersen, K., Latini, S., Thygesen, K.S.: Dielectric genome of van der waals heterostructures. Nano Lett. 15, 4616–4621 (2015). https://doi.org/10.1021/acs.nanolett.5b01251

    Article  Google Scholar 

  42. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  43. Mortensen, J.J., Hansen, L.B., Jacobsen, K.W.: Real-space grid implementation of the projector augmented wave method. Phys. Rev. B - Condensed Matter Mater. Phys. 71, 1–11 (2005). https://doi.org/10.1103/PhysRevB.71.035109

    Article  Google Scholar 

  44. Larsen, A.H., Mortensen, J.J., Jakob B., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Groves, M.N., Hammer, B., Hargus, C., Hermes, E.D, Jennings, P.C., Jensen, P.B., Kermode, J., Kitchin, J.R., Kolsbjerg, S.T., Kubal, J., Kaasbjerg, K., Lysgaar, K.W.: The atomic simulation environment—A python library for working with atoms. J. Phys.: Condens. Matter. 29, 273002 (2017). https://doi.org/10.1109/5992.998641

  45. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  46. Chen, J., Badioli, M., Alonso-González, P., Thongrattanasiri, S., Huth, F., Osmond, J., Spasenović, M., Centeno, A., Pesquera, A., Godignon, P., Zurutuza, E.A.: Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405), 77–81 (2012). https://doi.org/10.1038/nature11254

    Article  Google Scholar 

  47. Adrian Parsegian, V.: Van der waals forces a handbook for biologists, chemists, engineers, and physicists. Cambridge University Press, New York (2006). ISBN 0-521-83906-8, ISBN 0-521-54778-4

  48. Cai, Q., Scullion, D., Gan, W., Falin, A., Zhang, S., Watanabe, K., Taniguchi, T., Chen, Y., Santos, E.J.G., Li, L.H.: High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 5, 1–9 (2019). https://doi.org/10.1126/sciadv.aav0129

    Article  Google Scholar 

  49. Li, L.H., Cervenka, J., Watanabe, K., Taniguchi, T., Chen, Y.: Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8, 1457–1462 (2014). https://doi.org/10.1021/nn500059s

    Article  Google Scholar 

  50. Duerloo, K.A.N., Ong, M.T., Reed, E.J.: Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012). https://doi.org/10.1021/jz3012436

    Article  Google Scholar 

  51. Rostami, H., Guinea, F., Polini, M., Roldán, R.: Piezoelectricity and valley chern number in inhomogeneous hexagonal 2D crystals. npj 2D Mater. Appl. (2018). https://doi.org/10.1038/s41699-018-0061-7

Download references

Acknowledgements

The work was jointly supported by Indian Institute of Technology Indore and the Science Engineering Research Board (SERB), Department of Science and Technology, Government of India. The corresponding author (SIK) acknowledges the support of the SERB Early Career Research Award Grant (ECR/2017/001863) awarded to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kundalwal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevhal, S.K., Gupta, M. & Kundalwal, S.I. Polarization in the van der Waals–bonded graphene/hBN heterostructures with triangular pores. Acta Mech 234, 3469–3482 (2023). https://doi.org/10.1007/s00707-023-03568-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03568-5

Navigation