Skip to main content
Log in

Atomistic study of mono/multi-atomic vacancy defects on the mechanical characterization of boron-doped graphene sheets

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Graphene is known for its exceptional mechanical and electrical properties when in the form of a hexagonal monolayer of carbon atoms. In this study, the mechanical properties of hexagonal boron-doped graphene (h-BdGr) sheets with a 2% concentration of boron atoms distributed randomly throughout the layer were investigated. The effects of mono/multi-atomic vacancy defects, with different concentrations and various orientations, as well as temperature, on the tensile behavior of the sheets were examined utilizing molecular dynamic simulations. Meanwhile, the deformation behavior and corresponding stress distribution of the graphene sheets were demonstrated. The results obtained provide valuable insights into the mechanical behavior of graphene based nano-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Areshkin DA, White CT (2007) Building blocks for integrated graphene circuits. Nano Lett 7(11):3253–3259

    Article  CAS  Google Scholar 

  2. Westervelt R (2008) Graphene nanoelectronics. Science 320(5874):324–325

    Article  CAS  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  4. Standley B, Bao W, Zhang H, Bruck J, Lau CN, Bockrath M (2008) Graphene-based atomic-scale switches. Nano Lett 8(10):3345–3349

    Article  CAS  Google Scholar 

  5. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493

    Article  CAS  Google Scholar 

  6. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  CAS  Google Scholar 

  7. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  8. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  9. Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555–558

    Article  CAS  Google Scholar 

  10. Martins TB, Miwa RH, da Silva AJ, Fazzio A (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98(19):196803

    Article  CAS  Google Scholar 

  11. Yang H, Tang Y, Gong J, Liu Y, Wang X, Zhao Y, Yang P, Wang S (2013) Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons. J Mol Model 19(11):4781–4788

    Article  CAS  Google Scholar 

  12. Cermignani W, Paulson TE, Onneby C, Pantano CG (1995) Synthesis and characterization of boron-doped carbons. Carbon 33(4):367–374

    Article  CAS  Google Scholar 

  13. Murata N, Haruyama J, Reppert J, Rao AM, Koretsune T, Saito S, Matsudaira M, Yagi Y (2008) Superconductivity in thin films of boron-doped carbon nanotubes. Phys Rev Lett 101(2):027002

    Article  CAS  Google Scholar 

  14. Wang D-W, Li F, Chen Z-G, Lu GQ, Cheng H-M (2008) Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem Mater 20(22):7195–7200

    Article  CAS  Google Scholar 

  15. Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20(35):7491–7496

    Article  CAS  Google Scholar 

  16. Sumpter BG, Meunier V, Romo-Herrera JM, Cruz-Silva E, Cullen DA, Terrones H, Smith DJ, Terrones M (2007) Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano 1(4):369–375

    Article  CAS  Google Scholar 

  17. Xia K, Zhan H, Wei Y, Gu Y (2014) Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure. Beilstein J Nanotechnol 5(1):329–336

    Article  Google Scholar 

  18. Fakhrabadi MMS, Allahverdizadeh A, Norouzifard V, Dadashzadeh B (2012) Effects of boron doping on mechanical properties and thermal conductivities of carbon nanotubes. Solid State Commun 152(21):1973–1979

    Article  CAS  Google Scholar 

  19. Setoodeh AR, Jahanshahi M, Attariani H (2009) Atomistic simulations of the buckling behavior of perfect and defective silicon carbide nanotubes. Comput Mater Sci 47(2):388–397

    Article  CAS  Google Scholar 

  20. Setoodeh AR, Jahanshah M (2011) Mechanical properties of silicon-germanium nanotubes under tensile and compressive loadings. J Nano Res 15:105–114

    Article  CAS  Google Scholar 

  21. Banhart F, Kotakoski J, Krasheninnikov AV (2010) Structural defects in graphene. ACS Nano 5(1):26–41

    Article  Google Scholar 

  22. Carpenter C, Maroudas D, Ramasubramaniam A (2013) Mechanical properties of irradiated single-layer graphene. Appl Phys Lett 103(1):013102

    Article  Google Scholar 

  23. Wei Y, Zhan H, Xia K, Zhang W, Sang S, Gu Y (2014) Resonance of graphene nanoribbons doped with nitrogen and boron: a molecular dynamics study. Beilstein J Nanotechnol 5(1):717–725

    Article  Google Scholar 

  24. Zhan H, Wei Y, Gu Y (2014) Tuneable resonance properties of graphene by nitrogen-dopant. Appl Mech Mater 553:3–9

    Article  Google Scholar 

  25. He L, Guo S, Lei J, Sha Z, Liu Z (2014) The effect of stone–thrower–Wales defects on mechanical properties of graphene sheets–a molecular dynamics study. Carbon 75:124–132

    Article  CAS  Google Scholar 

  26. Jeng Y-R, Tsai P-C, Fang T-H (2004) Effects of temperature and vacancy defects on tensile deformation of single-walled carbon nanotubes. J Phys Chem Solids 65(11):1849–1856

    Article  CAS  Google Scholar 

  27. Tang C, Guo W, Chen C (2009) Molecular dynamics simulation of tensile elongation of carbon nanotubes: temperature and size effects. Phys Rev B 79(15):155436

    Article  Google Scholar 

  28. Fennimore A, Yuzvinsky T, Han W-Q, Fuhrer M, Cumings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424(6947):408–410

    Article  CAS  Google Scholar 

  29. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  30. Tersoff J (1988) Empirical interatomic potential for carbon, with application to amorphous carbon. Phys Rev Lett 61(25):2879–2882

    Article  CAS  Google Scholar 

  31. Katsuyuki M, Craig F, Hideaki M (2000) Tersoff potential parameters for simulating cubic boron carbonitrides. Jpn J Appl Phys 39(1A):L48

    Google Scholar 

  32. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B Condens Matter 37(12):6991–7000

    Article  CAS  Google Scholar 

  33. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  CAS  Google Scholar 

  34. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76(1):637–649

    Article  CAS  Google Scholar 

  35. Mortazavi B, Ahzi S (2012) Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Commun 152(15):1503–1507

    Article  CAS  Google Scholar 

  36. Mortazavi B, Ahzi S, Toniazzo V, Rémond Y (2012) Nitrogen doping and vacancy effects on the mechanical properties of graphene: a molecular dynamics study. Phys Lett A 376(12):1146–1153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Setoodeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setoodeh, A.R., Badjian, H. & Jahromi, H.S. Atomistic study of mono/multi-atomic vacancy defects on the mechanical characterization of boron-doped graphene sheets. J Mol Model 23, 2 (2017). https://doi.org/10.1007/s00894-016-3176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3176-9

Keywords

Navigation