Skip to main content
Log in

Effect of SH-type waves and shear stress discontinuity on a moving loaded composite structure

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates the displacement of SH-type waves at the free surface of a layered media composed of transversely isotropic fiber-reinforced layer overlying orthotropic homogeneous half-space. The inverse Fourier transform is obtained by deforming the path of integration. The mathematical expression of the displacement is obtained in the form of inverse Laplace transform by using the convolution theorem. The impulsive normal line moving loads in terms of the delta function is assumed at the free surface. Two dynamic stress discontinuities at the interface of layered media are assumed in such a way that: (i) the uniform motion of stress discontinuity is in the direction of propagation of SH-type waves; (ii) the stress discontinuities are created and then expanded uniformly along the path of propagation of SH-type waves. The analytical form of displacement is evaluated using numerical integration technique (Simpson’s 3/8 method) and further plotted using MATLAB software. The variation of displacements with respect to time and fiber orientation has been studied. Some important results have been depicted using graphs. Furthermore, some special cases are derived to validate the model with the revealed literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spencer, A.J.M.: Constitutive theory for strongly anisotropic solids. In: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer, Vienna (1984)

    Chapter  MATH  Google Scholar 

  2. Chattopadhyay, A., Michel, V.: A model for spherical SH wave propagation in self-reinforced linearly elastic media. Arch. Appl. Mech. 75(2), 113–124 (2006)

    Article  MATH  Google Scholar 

  3. Kim, J.Y.: Dynamic self-consistent analysis for elastic wave propagation in fiber reinforced composites. J. Acoust. Soc. Am. 100(4), 2002–2010 (1996)

    Article  Google Scholar 

  4. Parnell, W.J., Abrahams, I.D.: Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH wave. Wave Motion 43(6), 474–498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Manna, S., Bhat, M.: Love wave fields in a non-local elastic model with reinforced and inhomogeneous media. Soil Dyn. Earthq. Eng. 161, 107388 (2022)

    Article  Google Scholar 

  6. Chattopadhyay, A., Singh, A.K.: Propagation of magnetoelastic shear waves in an irregular self-reinforced layer. J. Eng. Math. 75, 139–155 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kundu, S., Pandit, D.K., Gupta, S., Manna, S.: Love wave propagation in a fiber-reinforced medium sandwiched between an isotropic layer and gravitating half-space. J. Eng. Math. 100, 109–119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kundu, S., Gupta, S., Manna, S.: SH-type waves dispersion in an isotropic medium sandwiched between an initially stressed orthotropic and heterogeneous semi-infinite media. Meccanica 49(3), 749–758 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wong, H.L., Trifunac, M.D.: Two-dimensional, antiplane, building-soil-building interaction for two or more buildings and for incident planet SH waves. Bull. Seismol. Soc. Am. 65(6), 1863–1885 (1975)

    Google Scholar 

  10. Chattopadhyay, A., Gupta, S., Sharma, V.K., Kumari, P.: Propagation of SH waves in an irregular monoclinic crustal layer. Arch. Appl. Mech. 78(12), 989–999 (2008)

    Article  MATH  Google Scholar 

  11. Pramanik, D., Manna, S.: Dynamic behavior of material strength due to the effect of prestress, aeolotropy, non-homogeneity, irregularity, and porosity on the propagation of torsional waves. Acta Mech. 33(3), 1125–1146 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Manna, S., Pramanik, D., Althobaiti, S.: Love-type surface wave propagation due to interior impulsive point source in a homogeneous-coated anisotropic poroelastic layer over a non-homogeneous extended substance. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2081737

    Article  Google Scholar 

  13. Cole, J., Huth, J.: Stresses produced in a half plane by moving loads (1958)

  14. Chattopadhyay, A., Saha, S.: Dynamic response of normal moving load in the plane of symmetry of a monoclinic half-space. J. Appl. Sci. Eng. 9(4), 307–312 (2006)

    Google Scholar 

  15. Alekseyeva, L.A.: The dynamics of an elastic half-space under the action of a moving load. J. Appl. Math. Mech. 71, 511–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garvin, W.W.: Exact transient solution of the buried line source problem. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 234(1199), 528–541 (1956)

    MathSciNet  MATH  Google Scholar 

  17. Debnath, L., Bhatta, D.: Integral Transforms and their Applications. Chapman and Hall/CRC (2016)

  18. Ponnusamy, S., Silverman, H.: Complex Variables with Applications. Boston Birkhäuser (2006)

  19. Nag, K.R.: Disturbance due to shearing-stress discontinuity in a semi-infinite elastic medium. Geophys. J. Int. 6(4), 468–478 (1962)

    Article  MATH  Google Scholar 

  20. Kundu, S., Gupta, S., Manna, S.: Propagation of Love wave in fiber-reinforced medium lying over an initially stressed orthotropic half-space. Int. J. Numer. Anal. Meth. Geomech. 38(11), 1172–1182 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors, convey their sincere thanks to Applied Mathematics and Geomechanics (AMG) Lab, Indian Institute of Technology Indore for providing the research facility, and the Bhaskaracharya Mathematics Laboratory supported by the DST-FIST Project [file number SR/FST/MS -I/2018/26]. One of the authors, Dipendu Pramanik, is thankful to the CSIR, Government of India for providing the PhD fellowship under the file No. 09/1022(0100)/2020-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Manna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The value of dimensionless parameters are defined as,

$$\begin{aligned} t&=\frac{H \tau }{\beta _{T}},\quad X_{1}=\frac{x_{1}}{H},\quad X_{3}=\frac{x_{3}}{H},\quad U_{2}=\frac{u_{2}}{H},\quad V_{2}=\frac{v_{2}}{H},\quad \phi =\frac{Q_{1}}{Q_{3}},\quad \phi _{2}=\frac{\phi _{1}}{\phi },\quad \phi _{1}=\frac{\beta _{t}^2}{\beta _{s^2}},\end{aligned}$$
(83)
$$\begin{aligned} \beta _{s}^2&=\frac{Q_{3}}{\rho _{1}},\quad \beta _{1}=\frac{\beta _{t}}{\gamma _{1}},\quad F_{1}=\frac{F}{H \mu _{t}},\quad Q_{4}=\frac{Q_{1}}{\mu _{t}},\quad P_{2}=\frac{P_{1}}{\mu _{t}},\quad a=\frac{a_{0}}{H},\quad \eta =\left( \frac{P}{R}-\frac{Q^2}{R^2}\right) ,\end{aligned}$$
(84)
$$\begin{aligned} q_{1}&=\frac{\sqrt{X_{1}^2 \eta +(2n)^2\eta ^2}}{\eta \sqrt{R}},\quad Y=X_{1}+ \frac{Q}{R},\quad Y'=Y-b,\quad Y''=Y-a,\quad q_{2}=q_{3}=\frac{\sqrt{Y^2 \eta +(n)^2\eta ^2}}{\eta \sqrt{R}}. \end{aligned}$$
(85)

The expressions for some functions are given as follows,

$$\begin{aligned} G_{2,n}(g_{2,n}(\lambda _{2}))= & {} {\textit{Re}}\left( F_{2,n}(g_{2,n}(\lambda _{2}))~\frac{d g_{2,n}(\lambda _{2})}{d \lambda _{2}}\right) ~ K_{2}^n~H_{1}(\lambda _{2}-q_{1}), \\ F_{2,n}(g_{2,n}(\lambda _{2}))= & {} \frac{1}{\left( \sqrt{\eta g_{2,n}^2 +\frac{1}{R}}\right) \left( \beta _{1} +i g_{2,n}\right) },\\ g_{2,n}(\lambda _{2})= & {} \frac{1}{X_{1}^2 + (2n)^2 \eta }\left( iX_{1} \lambda _{2} + 2n \sqrt{\eta \lambda _{2}^2 - \left( \frac{X_{1}^2 +(2n)^2 \eta }{R}\right) }\right) ,\\ G_{3,n}(g_{3,n}(\lambda _{3}+\frac{\beta _{t}a}{\gamma _{2}}))= & {} {\textit{Re}}\left( F_{3,n}(g_{3,n}(\lambda _{3}))~\frac{d g_{3,n}(\lambda _{3})}{d \lambda _{3}} \right) ~ K_{3}^\frac{n-1}{2}~H_{1}(\lambda _{3}-q_{2}),\\ F_{3,n}(g_{3,n}(\lambda _{3}))= & {} \frac{1}{\left( \frac{\beta _{t}}{\gamma _{2}}+ig_{3,n}\right) \left( R \sqrt{\frac{1}{R}+g_{3,n}^2 \eta }+ Q_{4} \sqrt{\frac{g_{3,n}^2}{\phi }+\phi _{2}^2}\right) },\\ g_{3,n}(\lambda _{3} + \frac{2\beta _{t}}{\gamma _{2}}a)= & {} \frac{1}{ Y^2 +n^2 \eta }\left( iY (\lambda _{3}+\frac{\beta _{t}}{\gamma _{2}}a) + n\sqrt{\eta (\lambda _{3}+ \frac{\beta _{t}}{\gamma _{2}}a)^2 - \left( \frac{Y^2 + \eta n^2}{R}\right) }\right) ,\\ G_{4,n}(g_{4,n}(\lambda _{4}))= & {} {\textit{Re}}\left( F_{4,n}(g_{4,n}(\lambda _{4}))~\frac{d g_{4,n}(\lambda _{4})}{d \lambda _{4}}\right) ~ K_{4}^\frac{n-1}{2}~H_{1}(\lambda _{4}-q_{3}),\\ F_{4,n}(g_{4,n}(\lambda _{4}))= & {} \frac{1}{\left( \frac{\beta _{t}}{\gamma _{2}}+ig_{4,n}\right) \left( R \sqrt{\frac{1}{R}+g_{4,n}^2 \eta }+ Q_{4} \sqrt{\frac{g_{4,n}^2}{\phi }+\phi _{2}^2}\right) },\\ g_{4,n}(\lambda _{4} )= & {} \frac{1}{ Y^2 +n^2 \eta }\left( iY(\lambda _{4}) + n\sqrt{\eta \lambda _{4}^2 - \left( \frac{Y^2 + \eta n^2}{R}\right) }\right) ,\\ G_{5,n}(g_{5,n}(\lambda _{5}))= & {} {\textit{Im}}\left( f_{5,n}(g_{5,n}(\lambda _{5}))\frac{dg_{5,n}(\lambda _{5})}{d\lambda _{5}}\right) ~ K_{4}^\frac{n-1}{2}~H_{1}(\lambda _{5}-q_{5}),\\ f_{5,n}(g_{5,n}(\lambda _{5}))= & {} \frac{1}{g_{5,n}\left( R \sqrt{\eta g_{5,n}^2 +\frac{1}{R}}+Q_{4} \sqrt{\frac{g_{5,n}^2}{\phi }+\phi _{2}}\right) },\\ g_{5,n}(\lambda _{5})= & {} \frac{1}{Y''^2 + \eta }\left( iY'' \lambda _{5} + \sqrt{\eta \lambda _{5}^2 - \left( \frac{Y''^2 + \eta }{R}\right) }\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, S., Kumari, T. & Pramanik, D. Effect of SH-type waves and shear stress discontinuity on a moving loaded composite structure. Acta Mech 234, 3437–3457 (2023). https://doi.org/10.1007/s00707-023-03566-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03566-7

Navigation