Skip to main content
Log in

An efficient interval moment method for uncertainty propagation analysis with non-parameterized probability-box

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper proposes an efficient interval moment method (IMM) for uncertainty propagation analysis with non-parameterized probability-box (p-box), where the bounds of statistical moments and cumulative distribution function (CDF) of output response can be simultaneously obtained. Firstly, two output response bounds are defined based on the equivalent probability transformation, which converts the original imprecise uncertainty propagation problem into two precise uncertainty propagation problems. Then, sparse grid numerical integration (SGNI) is employed to estimate the statistical moments of output response bounds. To improve computational efficiency, a multi-interval efficient global optimization (MI-EGO) algorithm is developed to capture the minimum and maximum responses on all collocation intervals of SGNI. By reconstructing the distributions of output response bounds using the maximum entropy method, the CDF bounds of output response can be acquired accordingly. Furthermore, by reusing the previous functional evaluations in the interval multiplication, the bounds of the statistical moments of output response can be estimated by SGNI again. Three numerical examples are investigated to verify the accuracy and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu, C., Youn, B.D., Wang, P.: Engineering Design Under Uncertainty and Health Prognostics. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  2. Zhao, Y.G., Lu, Z.H.: Structural Reliability: Approaches from Perspectives of Statistical moments. Wiley, Hoboken (2021)

    Book  Google Scholar 

  3. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Dover Publications, INC (2003)

    MATH  Google Scholar 

  4. Beer, M., Ferson, S., Kreinovich, V.: Imprecise probabilities in engineering analyses. Mech. Syst. Signal. Process. 37(1–2), 4–29 (2013)

    Article  Google Scholar 

  5. Yang, X.F., Liu, Y.S., Zhang, Y.S., Yue, Z.F.: Hybrid reliability analysis with both random and probability-box variables. Acta. Mech. 226, 1341–1357 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, C., Zhang, H., Beer, M.: Computing tight bounds of structural reliability under imprecise probabilistic information. Comput. Struct. 208, 92–104 (2018)

    Article  Google Scholar 

  7. Jiang, C., Zheng, J., Han, X.: Probability-interval hybrid uncertainty analysis for structures with both aleatory and epistemic uncertainties: a review. Struct. Multidiscip. Optim. 57(6), 2485–2502 (2018)

    Article  Google Scholar 

  8. Faes, M., Daub, M., Marelli, S., Patelli, E., Beer, M.: Engineering analysis with probability boxes: a review on computational methods. Struct. Saf. 93, 102092 (2021)

    Article  Google Scholar 

  9. Dubois, D., Prade, H.: Random sets and fuzzy interval analysis. Fuzzy Sets Syst. 42(1), 87–101 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alvarez, D.A., Uribe, F., Hurtado, J.E.: Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory. Mech. Syst. Signal Process. 100, 782–801 (2018)

    Article  Google Scholar 

  11. Cao, L., Liu, J., Jiang, C., Wu, Z., Zhang, Z.: Evidence-based structural uncertainty quantification by dimension reduction decomposition and marginal interval analysis. J. Mech. Des. 142(5), 051701 (2020)

    Article  Google Scholar 

  12. Zhang, Z., Jiang, C.: Evidence-theory-based structural reliability analysis with epistemic uncertainty: a review. Struct. Multidiscip. Optim. 63, 2935–2953 (2021)

    Article  MathSciNet  Google Scholar 

  13. Möller, B., Beer, M.: Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  14. Ghosh, D.D., Olewnik, A.: Computationally efficient imprecise uncertainty propagation. J. Mech. Des. 135(5), 051002 (2013)

    Article  Google Scholar 

  15. Xiong, F., Greene, S., Chen, W., Xiong, Y., Yang, S.: A new sparse grid based method for uncertainty propagation. Struct. Multidiscip. Optim. 41(3), 335–349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, J., Gao, S., Gong, J.: A sparse grid stochastic collocation method for structural reliability analysis. Struct. Saf. 51, 29–34 (2014)

    Article  Google Scholar 

  17. Xiao, Z., Han, X., Jiang, C., Yang, G.: An efficient uncertainty propagation method for parameterized probability boxes. Acta Mech. 227(3), 633–649 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, H.B., Jiang, C., Jia, X.Y., Long, X.Y., Zhang, Z., Guan, F.J.: A new uncertainty propagation method for problems with parameterized probability-boxes. Reliab. Eng. Syst. Saf. 172, 64–73 (2018)

    Article  Google Scholar 

  19. Liu, H.B., Jiang, C., Liu, J., Mao, J.Z.: Uncertainty propagation analysis using sparse grid technique and saddlepoint approximation based on parameterized p-box representation. Struct. Multidiscip. Optim. 59(1), 61–74 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liu, H.B., Jiang, C., Xiao, Z.: Efficient uncertainty propagation for parameterized p-box using sparse-decomposition-based polynomial chaos expansion. Mech. Syst. Signal Process. 138, 106589 (2020)

    Article  Google Scholar 

  21. Zhao, Z., Lu, Z.H., Zhao, Y.G.: An efficient extreme value moment method combining adaptive Kriging model for time-variant imprecise reliability analysis. Mech. Syst. Signal Process. 171, 108905 (2022)

    Article  Google Scholar 

  22. Zhang, H.: Interval Monte Carlo methods for structural reliability. Struct. Saf. 32, 183–190 (2010)

    Article  Google Scholar 

  23. Zhang, H., Dai, H., Beer, M., Wang, W.: Structural reliability analysis on the basis of small samples: an interval quasi-Monte Carlo method. Mech. Syst. Signal Process. 37(1–2), 137–151 (2013)

    Article  Google Scholar 

  24. Schöbi, R., Sudret, B.: Uncertainty propagation of p-boxes using sparse polynomial chaos expansions. J. Comput. Phys. 339, 307–327 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J.W., Jiang, C., Ni, B.Y.: An efficient uncertainty propagation analysis method for problems involving non-parameterized probability-boxes. J. Mech. Design. 143(10), 101704 (2021)

    Article  Google Scholar 

  26. Smolyak, S.A.: Quadrature and interpolation formulae on tensor products of certain function classes. Dokl. Akad. Nauk. SSSR 4(5), 240–243 (1963)

    MathSciNet  Google Scholar 

  27. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu, Z., Du, X.: Mixed efficient global optimization for time-dependent reliability analysis. J. Mech. Des. 137(5), 051401 (2015)

    Article  Google Scholar 

  29. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  30. Zhao, Z., Lu, Z.H., Zhao, Y.G.: Time-variant reliability analysis using moment-based equivalent Gaussian process and importance sampling. Struct. Multidiscip. Optim. 65, 73 (2022)

    Article  MathSciNet  Google Scholar 

  31. Huang, B., Du, X.: Uncertainty analysis by dimension reduction integration and saddle point approximations. J. Mech. Des. 128(1), 1143–1152 (2006)

    Article  Google Scholar 

  32. Li, G., Zhang, K.: A combined reliability analysis approach with dimension reduction method and maximum entropy method. Struct. Multidiscip. Optim. 43, 121–134 (2011)

    Article  MATH  Google Scholar 

  33. Zellner, A., Highfield, R.A.: Calculation of maximum entropy distributions and approximation of marginal posterior distributions. J. Econom. 37(2), 195–209 (1988)

    Article  MathSciNet  Google Scholar 

  34. Du, X.: Unified uncertainty analysis by the first order reliability method. J. Mech. Des. 130(9), 091401 (2008)

    Article  Google Scholar 

  35. Huang, Z.L., Jiang, C., Zhang, Z., Fang, T., Han, X.: A decoupling approach for evidence-theory-based reliability design optimization. Struct. Multidiscip. Optim. 56(3), 647–661 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The study is partially supported by the National Natural Science Foundation of China (Grant No.: 51820105014, 51738001), China Scholarship Council (Grant No. 202006370005), and the 111 Project (Grant No. D21001). The supports are gratefully acknowledged.

Funding

The study was funded by the National Natural Science Foundation of China (Grant Nos. 51820105014, 51738001), China Scholarship Council (Grant No. 202006370005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hui Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Interval Monte Carlo simulation for estimating the bounds of statistical moments and CDF

Appendix: Interval Monte Carlo simulation for estimating the bounds of statistical moments and CDF

The IMCS method [22, 23] is substantially a double-loop strategy, and its detailed procedures are as follows:

  • Step 1: Generate NIMCS standard Uniform distribution sample points ri, i = 1, 2, …, NIMCS, in the outer loop.

  • Step 2: For each sample point ri, generate an interval sample point xi, whose lower and upper bounds \(\underline{{\mathbf{x}}}_{i}\) and \(\overline{{\mathbf{x}}}_{i}\) are obtained by the following inverse probability transformation operators:

    $$ \underline{{{\mathbf{x}}_{i} }} = \overline{F}_{{\mathbf{X}}}^{ - 1} ({\mathbf{r}}_{i} ), $$
    (61)
    $$ \overline{{{\mathbf{x}}_{i} }} = \underline{F}_{{\mathbf{X}}}^{ - 1} ({\mathbf{r}}_{i} ). $$
    (62)

    where \(\overline{F}_{{\mathbf{X}}}^{ - 1} ( \cdot )\) and \(\underline{F}_{{\mathbf{X}}}^{ - 1} ( \cdot )\) are the inverse functions of \(\overline{F}_{{\mathbf{X}}} ( \cdot )\) and \(\underline{F}_{{\mathbf{X}}} ( \cdot )\), respectively.

  • Step 3: For each interval sample point xi, compute the minimum and maximum of G(xi) in the inner loop:

    $$ \underline{G} ({\mathbf{x}}_{i} ) = \mathop {\min }\limits_{{{\mathbf{x}}_{i} \in [\underline{{{\mathbf{x}}_{i} }} ,\overline{{{\mathbf{x}}_{i} }} ]}} G({\mathbf{x}}_{i} ), $$
    (63)
    $$ \overline{G} ({\mathbf{x}}_{i} ) = \mathop {\max }\limits_{{{\mathbf{x}}_{i} \in [\underline{{{\mathbf{x}}_{i} }} ,\overline{{{\mathbf{x}}_{i} }} ]}} G({\mathbf{x}}_{i} ). $$
    (64)
  • Step 4: Estimate two bounds of FY(y) by:

    $$ \underline{F}_{Y} (y) = \frac{1}{{N_{IMCS} }}\sum\limits_{i = 1}^{{N_{IMCS} }} {I[\overline{G} ({\mathbf{x}}_{i} ) \le y]} , $$
    (65)
    $$ \overline{F}_{Y} (y) = \frac{1}{{N_{IMCS} }}\sum\limits_{i = 1}^{{N_{IMCS} }} {I[\underline{G} ({\mathbf{x}}_{i} ) \le y]} . $$
    (66)

    where I[·] is the indicator function, whose value is equal to one when the event in brackets occurs.

  • Step 5: Estimate two bounds of vkY by:

    $$ \underline{v}_{kY} = \frac{1}{{N_{IMCS} }}\sum\limits_{i = 1}^{{N_{IMCS} }} {\underline{{G({\mathbf{x}}_{i} )^{k} }} } , $$
    (67)
    $$ \overline{v}_{kY} = \frac{1}{{N_{IMCS} }}\sum\limits_{i = 1}^{{N_{IMCS} }} {\overline{{G({\mathbf{x}}_{i} )^{k} }} } . $$
    (68)

    where \(\underline{{G({\mathbf{x}}_{i} )^{k} }}\) and \(\overline{{G({\mathbf{x}}_{i} )^{k} }}\) for each specific interval sample point xi are obtained by the interval multiplication proposed in Sect. 3.4 such that the evaluations of \(\underline{G} ({\mathbf{x}}_{i} )\) and \(\overline{G} ({\mathbf{x}}_{i} )\) can be reused.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Lu, ZH. & Zhao, YG. An efficient interval moment method for uncertainty propagation analysis with non-parameterized probability-box. Acta Mech 234, 3321–3336 (2023). https://doi.org/10.1007/s00707-023-03563-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03563-w

Navigation