Skip to main content
Log in

Dual-solver research based on the coupling of flux reconstruction and finite volume methods

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Accurate simulation of vortex-dominated flows has been an important issue for numerical methods in computational fluid dynamics. The recently proposed dual-solver framework provides an attracting direction for complex vortex structure resolving. In current research, we develop a dual-solver fluid solving system, in which the near-body region uses traditional finite volume method for complex geometries treatment, and apply high-order flux reconstruction (FR) method in off-body region to capture the evolution of vortex structures effectively. The parallel overset grid method is adopted in mesh assembly and data exchange process between solvers. The FR solver is developed under the framework of open-source adaptive mesh refinement (AMR) library p4est, which manages h-refinement efficiently. Cartesian cell with AMR is used in FR scheme to improve solving performance. The time marching method of coupled solvers is investigated. All modules in current system are verified, respectively. In the simulations where flow is dominated by vortex, we choose NACA0015 and S76 rotor wake resolving to verify the proposed system. The results reveal that the flow solver accurately resolves the vortex, the mesh distribution with AMR is reasonable. The results confirm the efficacy of proposed dual-solver framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Sitaraman, J., Potsdam, M., Wissink, A., et al.: Rotor loads prediction using Helios: a multisolver framework for rotorcraft aeromechanics analysis. J. Aircr. 50, 478–492 (2013)

    Article  Google Scholar 

  2. Wissink, A.M., Jayaraman, B., Sitaraman, J.: An assessment of the dual-mesh paradigm using different near-body solvers in Helios. In: AIAA-2017-0287

  3. Lakshminarayan, V., Sitaraman, J., Wissink, A.: Sensitivity of rotorcraft hover predictions to mesh resolution in strand grid framework. AIAA J. 56, 1–12 (2018)

    Google Scholar 

  4. Kirby, A.C., Brazell, M., Yang, Z., et al.: Wind farm simulations using an overset hp-adaptive approach with blade-resolved turbine models. In: AIAA-2017-3958

  5. Kara, K., Brazell, M.J., Kirby, A.C., et al.: Hover predictions using a high-order discontinuous Galerkin off-body discretization. In: AIAA 2020-0771. AIAA Scitech 2020 Forum. January 2020

  6. Abras, J., Hariharan, N.S.: Comparison of CFD hover predictions on the S-76 rotor. In: AIAA 2015-1711. 53rd AIAA Aerospace Sciences Meeting. January 2015

  7. Wissink, A.M., Jude, D., Jayaraman, B., et al.: New capabilities in CREATE-AV Helios version 11. In: AIAA 2021-0235. AIAA Scitech 2021 Forum. January 2021

  8. Witherden, F.D., Jameson, A.: Future directions in computational fluid dynamics. In: AIAA-2017-3791

  9. Galbraith, M.C., Benek, J.A., Orkwis, P.D., et al.: A discontinuous Galerkin chimera scheme. Comput. Fluids 98, 27–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, L., Yang, A.: Implementation of spectral difference method on overset grids for compressible inviscid flows. Comput. Fluids 140, 500–511 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brazell, M.J., Kirby, A.C., Mavriplis, D.: A high-order discontinuous-Galerkin octree-based AMR solver for overset simulations. In: AIAA-2017-3944

  12. Merrill, B.E., Peet, Y.T., Fischer, P.F., et al.: A spectrally accurate method for over-lapping grid solution of incompressible Navier–Stokes equations. J. Comput. Phys. 307, 60–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirby, A.C., Yang, Z., Mavriplis, D.J., et al.: Visualization and data analytics challenges of large-scale high-fidelity numerical simulations of wind energy applications. In: AIAA-2018-1171

  14. Huynh, H.T.: A Flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: AIAA-2007-4079

  15. Asthana, K., Watkins, J., Jameson, A.: On the rate of convergence of flux reconstruction for steady-state problems. SIAM J. Numer. Anal. 54, 2910–2937 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47, 50–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Williams, D.M., Castonguay, P., Vincent, P.E., et al.: Energy stable flux reconstruction schemes for advection-diffusion problems on triangles. J. Comput. Phys. 250, 53–76 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Williams, D.M., Jameson, A.: Energy stable flux reconstruction schemes for advection- diffusion problems on tetrahedra. J. Sci. Comput. 59, 721–759 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z.J., Li, Y., Jia, F., et al.: Towards industrial large eddy simulation using the FR/CPR method. Comput. Fluids 156, 579–589 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vermeire, B.C., Witherden, F.D., Vincent, P.E.: On the utility of GPU accelerated high-order methods for unsteady flow simulations: a comparison with industry-standard tools. J. Comput. Phys. 334, 497–521 (2017)

    Article  MathSciNet  Google Scholar 

  21. Vermeire, B.C., Vincent, P.E.: On the behavior of fully-discrete flux reconstruction schemes. Comput. Methods Appl. Mech. Eng. 315, 1053–1079 (2017)

    Article  MATH  Google Scholar 

  22. Crabill, J.A., Sitaraman, J., Jameson, A.: A high-order overset method on moving and deforming grids. In: AIAA-2016-3225

  23. Duan, Z., Wang, Z.J.: High order FR/CPR method for overset meshes. In: AIAA-2017-3094

  24. Park, J.S., Witherden, F.D., Vincent, P.E.: High-order implicit large-eddy simulations of flow over a NACA0021 aerofoil. AIAA J. 55, 2186–2197 (2017)

    Article  Google Scholar 

  25. Bull, J.R., Jameson, A.: Simulation of the Taylor–Green vortex using high-order flux reconstruction schemes. AIAA J. 53, 2750–2761 (2015)

    Article  Google Scholar 

  26. Xia, J., Fu, H., Tian, S.L., Chen, L.: Highly efficient wall-distance-based parallel unstructured overset grid assembly. AIAA J. 59(12), 5347–5359 (2021)

    Article  Google Scholar 

  27. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    Article  MATH  Google Scholar 

  29. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamics flows. In: AIAA-92-0439 (1992)

  30. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  31. Jameson, A.: Time-dependent calculations using multigrid with applications to unsteady flows past airfoils and wings. In: AIAA-91-1596 (1991)

  32. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Arndt, D., Bangerth, W., Davydov, D., et al.: The deal. II finite element library: design, features, and insights. Comput. Math. Appl. 81(3), 407–422 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA aerospace sciences meeting and exhibit, Reno, Nevada (2006)

  35. Gottlieb, S.: On high order strong stability preserving Runge–Kutta and multi step time discretizations. J. Sci. Comput. 25(1), 105–128 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bonet, J., Peraire, J.: An alternating digital tree algorithm for 3D geometric searching and intersection problems. Int. J. Numer. Methods Eng. 31, 31–17 (1991)

    Article  MATH  Google Scholar 

  38. Rober, L.M.: On the spatial a temporal accuracy of overset grid methods for moving body problems. In: AIAA-94-1925 (1994)

  39. May, G., Weide, E., Jameson, A., Shankaran, S., Martinelli, L.: Drag prediction of the DLR-F6 configuration. In: AIAA 2004-396. 42nd AIAA Aerospace Sciences Meeting and Exhibit (2004)

  40. Ueno, M., Akatsuka, J., Hidaka, A.: Drag decomposition analysis of CFD data of the DLR-F6 model. In: AIAA 2008-6903. 26th AIAA applied aerodynamics conference (2008)

  41. Wang, Z.J., Fidkowski, K., Abgrall, R., et al.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. van Rees, V.M., Leonard, A., Pullin, D., Koumoutsakos, P.: A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. J. Comput. Phys. 230, 2794–2805 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. McAlister, K.W., Takahashi, R.: NACA 0015 wing pressure and trailing vortex measurements. Tech. rep., DTIC Document (1991)

  44. Hariharan, N., Egolf, A., Sankar, L.: Simulation of rotor in hover: current state, challenges and standardized evaluation. In: 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics (2014). https://doi.org/10.2514/6.2014-0041

  45. Garcia, A.J., Barakos, G.N.: CFD analysis of hover performance of rotors at full- and model-scale conditions. Aeronaut. J. 120(1231), 1386–1424 (2016). https://doi.org/10.1017/aer.2016.58

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge for the sponsorship of National Numerical Wind Tunnel Project (Grant No. NNW2018-ZT1B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Xia, J., Tian, S. et al. Dual-solver research based on the coupling of flux reconstruction and finite volume methods. Acta Mech 234, 3173–3196 (2023). https://doi.org/10.1007/s00707-023-03551-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03551-0

Navigation