Skip to main content
Log in

Development of a less-dissipative hybrid AUSMD scheme for multi-component flow simulations

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this study, a less-dissipative hybrid AUSMD scheme considering the linearized approximated solution around the material interfaces of compressible multi-component flows is proposed. A high-resolution reconstruction scheme, so-called MUSCL + THINC, has been devised by combining the MUSCL method with the Tangent of Hyperbola for Interface Capturing technique (THINC) under the boundary variation diminishing concept, which is used to determine the cell-interface values to evaluate the AUSMD flux. Several perfect gas and multi-component flow problems are selected as the benchmark test cases. The flow models we use here are the perfect gas Euler equations and the multi-phase five-equation flow model. We compared the proposed MUSCL + THINC-type AUSMD scheme with the original MUSCL-type AUSMD scheme to verify its capability of capturing shock waves, expansion fans, and material interfaces, which are identified as a well-defined sharp jump in volume fraction. Numerical results of all benchmark tests show that the MUSCL + THINC-type AUSMD solver is superior to the original MUSCL-type AUSMD in resolving shock waves, expansion fans, and interfaces. In particular, the solution quality for expansion fans and interfaces on coarse grids is greatly improved by the MUSCL + THINC-type AUSMD scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Sound speed

E :

Total mixture energy

F :

Inviscid flux

H :

Enthalpy

M :

Mach number

p :

Pressure

p :

Pressure-like constant

Q :

Conserved variable

u :

Mixture velocity

U :

Conserved variable flux

α :

Volume fraction

ρ :

Fluid density

γ :

Specific heat ratio

i + 1/2:

Cell interface

L:

Left state of cell interface

R:

Right state of cell interface

References

  1. Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987). https://doi.org/10.1017/S0022112087002003

    Article  Google Scholar 

  2. Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 318, 129–163 (1996). https://doi.org/10.1017/S0022112096007069

    Article  MATH  Google Scholar 

  3. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002). https://doi.org/10.1006/jcph.2002.7143

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouillette, M.B.: The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002). https://doi.org/10.1146/annurev.fluid.34.090101.162238

    Article  MathSciNet  MATH  Google Scholar 

  5. Giordano, J., Burtschell, Y.: Richtmyer–Meshkov instability induced by shock–bubble interaction: Numerical and analytical studies with experimental validation. Phys. Fluids 18, 036102 (2006). https://doi.org/10.1063/1.2185685

    Article  Google Scholar 

  6. Ranjan, D., Niederhaus, J.H.J., Oakley, J.H., Anderson, M.H., Bonazza, R., Greenough, J.A.: Shock–bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20, 036101 (2008). https://doi.org/10.1063/1.2840198

    Article  MATH  Google Scholar 

  7. Layes, G., Jourdan, G., Houas, L.: Experimental study on a plane shock wave accelerating a gas bubble. Phys. Fluids 21, 074102 (2009). https://doi.org/10.1063/1.3176474

    Article  MATH  Google Scholar 

  8. Kreeft, J.J., Koren, B.: A new formulation of Kapila’s five-equation model for compressible two-fluid flow, and its numerical treatment. J. Comput. Phys. 229, 6220–6242 (2010). https://doi.org/10.1016/j.jcp.2010.04.025

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhai, Z., Si, T., Luo, X., Yang, J.: On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23, 084104 (2011). https://doi.org/10.1063/1.3623272

    Article  Google Scholar 

  10. Si, T., Zhai, Z., Yang, J., Luo, X.: Experimental investigation of reshocked spherical gas interfaces. Phys. Fluids 24, 054101 (2012). https://doi.org/10.1063/1.4711866

    Article  Google Scholar 

  11. Wang, X., Yang, D., Wu, J., Luo, X.: Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids 27, 064104 (2015). https://doi.org/10.1063/1.4922613

    Article  Google Scholar 

  12. Zhai, Z., Zou, L., Wu, Q., Luo, X.: Review of experimental Richtmyer–Meshkov instability in shock tube: From simple to complex. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232(16), 2830–2849 (2018). https://doi.org/10.1177/0954406217727305

    Article  Google Scholar 

  13. Stewart, H.B., Wendroff, B.: Two-phase flow: Models and methods. J. Comput. Phys. 56, 363–409 (1984). https://doi.org/10.1016/0021-9991(84)90103-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirt, W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  15. Ubbink, O., Issa, R.I.: A method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys. 153, 26–50 (1999). https://doi.org/10.1006/jcph.1999.6276

    Article  MathSciNet  MATH  Google Scholar 

  16. Puckett, E., Almgren, A., Bell, J., Marcus, D., Rider, W.: A high-order projection method for tracking fluid interfaces in variable density incompressible flows. J. Comput. Phys. 130, 269–282 (1997). https://doi.org/10.1006/jcph.1996.5590

    Article  MATH  Google Scholar 

  17. Pilliot, J., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199, 465–502 (2004). https://doi.org/10.1016/j.jcp.2003.12.023

    Article  MathSciNet  MATH  Google Scholar 

  18. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998). https://doi.org/10.1006/jcph.1998.5930

    Article  MathSciNet  MATH  Google Scholar 

  19. Xiao, F., Honma, Y., Kono, T.: A simple algebraic interface capturing scheme using hyperbolic tangent function. Int. J. Numer. Methods Fluids 48, 1023–1040 (2005). https://doi.org/10.1002/fld.975

    Article  MATH  Google Scholar 

  20. Yokoi, K.: Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm. J. Comput. Phys. 226, 1985–2002 (2007). https://doi.org/10.1016/j.jcp.2007.06.020

    Article  MathSciNet  MATH  Google Scholar 

  21. Cassidy, D.A., Edwards, J.R., Tian, M.: An investigation of interface sharpening schemes for multi-phase mixture flows. J. Comput. Phys. 228(16), 5628–5649 (2009). https://doi.org/10.1016/j.jcp.2009.02.028

    Article  MathSciNet  MATH  Google Scholar 

  22. Niu, Y.-Y.: Simple conservative flux splitting for multi-component flow calculations. Numer. Heat Transf. B 38(2), 203–222 (2000). https://doi.org/10.1080/104077900750034670

    Article  Google Scholar 

  23. Johnsen, E., Colonius, T.: Implementation of WENO schemes incompressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006). https://doi.org/10.1016/j.jcp.2006.04.018

    Article  MathSciNet  MATH  Google Scholar 

  24. Coralic, V., Colonius, T.: Finite-volume WENO scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95–121 (2014). https://doi.org/10.1016/j.jcp.2014.06.003

    Article  MathSciNet  MATH  Google Scholar 

  25. Niu, Y.-Y.: Computations of two-fluid models based on a simple and robust hybrid primitive variable Riemann solver with AUSMD. J. Comput. Phys. 308, 389–410 (2016). https://doi.org/10.1016/j.jcp.2015.12.045

    Article  MathSciNet  MATH  Google Scholar 

  26. Haimovich, O., Frankel, S.H.: Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method. Comput. Fluids 146, 105–116 (2017). https://doi.org/10.1016/j.compfluid.2017.01.012

    Article  MathSciNet  MATH  Google Scholar 

  27. Leveque, R.J., Shyue, K.M.: Two-dimensional front tracking based on high resolution wave propagation methods. J. Comput. Phys. 123, 354–368 (1996). https://doi.org/10.1006/jcph.1996.0029

    Article  MathSciNet  MATH  Google Scholar 

  28. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions of incompressible two-phase flows. J. Comput. Phys. 114, 146–159 (1994). https://doi.org/10.1006/jcph.1994.1155

    Article  MATH  Google Scholar 

  29. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996). https://doi.org/10.1073/pnas.93.4.1591

    Article  MathSciNet  MATH  Google Scholar 

  30. Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341–372 (2003). https://doi.org/10.1146/annurev.fluid.35.101101.161105

    Article  MathSciNet  MATH  Google Scholar 

  31. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210, 225–246 (2005). https://doi.org/10.1016/j.jcp.2005.04.007

    Article  MathSciNet  MATH  Google Scholar 

  32. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow II. J. Comput. Phys. 225, 785–807 (2007). https://doi.org/10.1016/j.jcp.2006.12.027

    Article  MathSciNet  MATH  Google Scholar 

  33. Sussman, M., Puckett, E.G.: A coupled level set and Volume-of-Fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000). https://doi.org/10.1006/jcph.2000.6537

    Article  MathSciNet  MATH  Google Scholar 

  34. Son, G.: Efficient implementation of a coupled level-set and volume-of-fluid method for three-dimensional incompressible two-phase flows. Numer. Heat Transf. B Fundam. 43(6), 549–565 (2003). https://doi.org/10.1080/713836317

    Article  Google Scholar 

  35. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, Z., Inaba, S., Xiao, F.: Boundary Variation Diminishing (BVD) reconstruction: A new approach to improve Godunov schemes. J. Comput. Phys. 322, 309–325 (2016). https://doi.org/10.1016/j.jcp.2016.06.051

    Article  MathSciNet  MATH  Google Scholar 

  37. Deng, X., Inaba, S., Xie, B., Shyue, K.M., Xiao, F.: High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces. J. Comput. Phys. 371, 945–966 (2018). https://doi.org/10.1016/j.jcp.2018.03.036

    Article  MathSciNet  Google Scholar 

  38. Shyue, K.M., Xiao, F.: An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach. J. Comput. Phys. 268, 326–354 (2014). https://doi.org/10.1016/j.jcp.2014.03.010

    Article  MathSciNet  MATH  Google Scholar 

  39. Van Leer, B.: Towards the ultimate conservative difference, V: A second order sequel to Godunov’s method. J. Comput. Phys. 32, 179–186 (1979). https://doi.org/10.1016/0021-9991(79)90145-1

    MATH  Google Scholar 

  40. Wada, Y., Liou, M.S.: A flux splitting scheme with high-resolution and robustness for discontinuities. 32nd Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, NV, AIAA Paper 94-0083 (1994). https://doi.org/10.2514/6.1994-83

  41. Liou, M.S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993). https://doi.org/10.1006/jcph.1993.1122

    Article  MathSciNet  MATH  Google Scholar 

  42. Liou, M.S.: A sequel to AUSM: AUSM+. J. Comput. Phys. 129, 364–382 (1996). https://doi.org/10.1006/jcph.1996.0256

    Article  MathSciNet  MATH  Google Scholar 

  43. Niu, Y., Liou, M.S.: Numerical simulation of dynamic stall using an improved advection upwind splitting method. AIAA J. 37(11), 1386–1892 (1999). https://doi.org/10.2514/2.637

    Article  Google Scholar 

  44. Van Leer, B.: Flux Vector Splitting for the Euler Equations. Lecture Notes in Physics, vol. 170, pp. 507–508. Springer, New York (1982). https://doi.org/10.1007/3-540-11948-5_66

    Google Scholar 

  45. Chang, C.-H., Liou, M.-S.: A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme. J. Comput. Phys. 225(1), 840–873 (2007). https://doi.org/10.1016/j.jcp.2007.01.007

    Article  MathSciNet  MATH  Google Scholar 

  46. Toro, F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, New York (2009). https://doi.org/10.1007/b79761

    Book  MATH  Google Scholar 

  47. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994). https://doi.org/10.1007/BF01414629

    Article  MATH  Google Scholar 

  48. Sod, G.A.: Survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978). https://doi.org/10.1016/0021-9991(78)90023-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge the financial support sponsored by the National Science Council of Taiwan, ROC under Contract MOST 103-2221-E-032-024-MY3. The first author also appreciates late Meng-Sing Liou’s fruitful discussions about the development of AUSMD scheme since 1997. The first author also cherishes the unreserved sharing of his life experiences and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-Y. Niu.

Additional information

Communicated by C.-H. Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, YY., Chen, YC., Yang, TY. et al. Development of a less-dissipative hybrid AUSMD scheme for multi-component flow simulations. Shock Waves 29, 691–704 (2019). https://doi.org/10.1007/s00193-018-0872-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0872-7

Keywords

Navigation