Skip to main content
Log in

Micromechanical modeling for the thermo-elasto-plastic behavior of functionally graded composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

By gradually changing the compositions, functionally graded materials (FGMs) are constructed and possess comprehensive performance. In this paper, based on the micromechanics, the thermo-elasto-plastic behaviors of FGMs are studied with consideration of the pairwise particle interaction, where the graded microstructures of the FGMs are represented by employing a particular representative volume element (RVE). Based on the assumption that the matrix dominates the plastic behavior of the FGMs while the particles stay in their linearly elastic state, the von-Mises yield function is extended to solve FGMs problems. By employing the backward Euler’s method, the overall effective thermo-elasto-plastic behavior of FGMs can be numerically obtained. When eliminating the plastic or thermal effect, the proposed model can be downgraded to the thermoelastic model or the elastoplastic model of the FGMs, respectively. In addition, the proposed model is validated with available experimental results. Finally, the effects of temperature changes, particle distributions, volume fractions, and material properties on the effective thermo-elasto-plastic properties of FGMs are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aboudi, J., Pindera, M.-J., Arnold, S.M.: Higher-order theory for functionally graded materials. Compos. Part B Eng. 30, 777–832 (1999)

    Google Scholar 

  2. Amjadi, M., Fatemi, A.: Tensile behavior of high-density polyethylene including the effects of processing technique, thickness, temperature, and strain rate. Polymers 12, 1857 (2020)

    Google Scholar 

  3. Bohidar, S.K., Sharma, R., Mishra, P.R.: Functionally graded materials: a critical review. Int. J. Res. 1, 289–301 (2014)

    Google Scholar 

  4. Bouhamed, A., Jrad, H., Mars, J., Wali, M., Gamaoun, F., Dammak, F.: Homogenization of elasto-plastic functionally graded material based on representative volume element: application to incremental forming process. Int. J. Mech. Sci. 160, 412–420 (2019)

    Google Scholar 

  5. Budiansky, B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13, 223–227 (1965)

    Google Scholar 

  6. Chen, F., Yin, H.: Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel. Appl. Energy 177, 271–284 (2016)

    Google Scholar 

  7. Chen, F.L., He, X., Yin, H.M.: Manufacture and multi-physical characterization of aluminum/high-density polyethylene functionally graded materials for green energy building envelope applications. Energy Build. 116, 307–317 (2016)

    Google Scholar 

  8. Chen, H.-S., Acrivos, A.: The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. Int. J. Solids Struct. 14, 349–364 (1978)

    MATH  Google Scholar 

  9. Chen, H.-S., Acrivos, A.: The solution of the equations of linear elasticity for an infinite region containing two spherical inclusions. Int. J. Solids Struct. 14, 331–348 (1978)

    MATH  Google Scholar 

  10. Christensen, R.M., Lo, K.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    MATH  Google Scholar 

  11. Drescher, A., Kringos, N., Scarpas, T.: On the behavior of a parallel elasto-visco-plastic model for asphaltic materials. Mech. Mater. 42, 109–117 (2010)

    Google Scholar 

  12. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 252, 561–569 (1959)

    MathSciNet  MATH  Google Scholar 

  13. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 241, 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  14. Gasik, M.M.: Micromechanical modelling of functionally graded materials. Comput. Mater. Sci. 13, 42–55 (1998)

    Google Scholar 

  15. Gasik, M.M., Lilius, R.R.: Evaluation of properties of W–Cu functional gradient materials by micromechanical model. Comput. Mater. Sci. 3, 41–49 (1994)

    Google Scholar 

  16. Hashin, Z.: The differential scheme and its application to cracked materials. J. Mech. Phys. Solids 36, 719–734 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Google Scholar 

  18. Ishibashi, H., Tobimatsu, H., Hayashi, K., Matsumoto, T., Tomsia, A.P., Saiz, E.: Characterization of Mo–SiO2 functionally graded materials. Metall. Mater. Trans. A 31, 299–308 (2000)

    Google Scholar 

  19. Ji, J.P., Hu, R.X., Li, S.H.: Influence of substrate condictions on thermal-shocking property of Sm2Zr2O7/NiCoCrAlY graded thermal barrier coatings. In: Advanced Materials Research. Trans Tech Publ, pp. 1764–1767 (2012)

  20. Ju, J.W., Chen, T.-M.: Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites. ASME J. Eng. Mater. Technol. 116, 310–318 (1994)

    Google Scholar 

  21. Ju, J.W., Tseng, K.H.: Effective elastoplastic algorithms for ductile matrix composites. J. Eng. Mech. 123, 260–266 (1997)

    Google Scholar 

  22. Ju, J.W., Tseng, K.H.: Effective elastoplastic behavior of two-phase ductile matrix composites: a micromechanical framework. Int. J. Solids Struct. 33, 4267–4291 (1996)

    MATH  Google Scholar 

  23. Kesler, O., Matejicek, J., Sampath, S., Suresh, S., Gnaeupel-Herold, T., Brand, P.C., Prask, H.J.: Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings. Mater. Sci. Eng. A 257, 215–224 (1998)

    Google Scholar 

  24. Khor, K.A., Gu, Y.W.: Thermal properties of plasma-sprayed functionally graded thermal barrier coatings. Thin Solid Films 372, 104–113 (2000)

    Google Scholar 

  25. Kieback, B., Neubrand, A., Riedel, H.: Processing techniques for functionally graded materials. Mater. Sci. Eng. A 362, 81–106 (2003)

    Google Scholar 

  26. Lin, Q., Chen, F., Yin, H.: Experimental and theoretical investigation of the thermo-mechanical deformation of a functionally graded panel. Eng. Struct. 138, 17–26 (2017)

    Google Scholar 

  27. Lin, Q., Zhang, L., Chen, F., Yin, H.: Micromechanics-based elastoplastic modeling of functionally graded materials with pairwise particle interactions. J. Eng. Mech. 145, 04019033 (2019)

    Google Scholar 

  28. Mahl, M., Jelich, C., Baier, H.: On the temperature-dependent non-isosensitive mechanical behavior of polyethylene in a hydrogen pressure vessel. Procedia Manuf. 30, 475–482 (2019)

    Google Scholar 

  29. Mazarei, Z., Nejad, M.Z., Hadi, A.: Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials. Int. J. Appl. Mech. 8, 1650054 (2016)

    Google Scholar 

  30. McLaughlin, R.: A study of the differential scheme for composite materials. Int. J. Eng. Sci. 15, 237–244 (1977)

    MATH  Google Scholar 

  31. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Google Scholar 

  32. Naebe, M., Shirvanimoghaddam, K.: Functionally graded materials: a review of fabrication and properties. Appl. Mater. Today 5, 223–245 (2016)

    Google Scholar 

  33. Nguyen-Xuan, H., Tran, L.V., Nguyen-Thoi, T., Vu-Do, H.C.: Analysis of functionally graded plates using an edge-based smoothed finite element method. Compos. Struct. 93, 3019–3039 (2011)

    Google Scholar 

  34. Paulino, G.H., Yin, H.M., Sun, L.Z.: Micromechanics-based interfacial debonding model for damage of functionally graded materials with particle interactions. Int. J. Damage Mech. 15, 267–288 (2006)

    Google Scholar 

  35. Pitakthapanaphong, S., Busso, E.P.: Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. J. Mech. Phys. Solids 50, 695–716 (2002)

    MATH  Google Scholar 

  36. Rahimi, G.H., Arefi, M., Khoshgoftar, M.J.: Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads. Appl. Math. Mech. 32, 997–1008 (2011)

    MATH  Google Scholar 

  37. Reiter, T., Dvorak, G.J., Tvergaard, V.: Micromechanical models for graded composite materials. J. Mech. Phys. Solids 45, 1281–1302 (1997)

    Google Scholar 

  38. Shabana, Y.M., Noda, N.: Thermo-elasto-plastic stresses of functionally graded material plate with a substrate and a coating. J. Therm. Stress. 25, 1133–1146 (2002)

    Google Scholar 

  39. Shabana, Y.M., Noda, N.: Thermo–elasto–plastic stresses in functionally graded materials under consideration of the fabrication process. Arch. Appl. Mech. 71, 649–660 (2001)

    MATH  Google Scholar 

  40. Shabana, Y.M., Noda, N.: Thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses of the fabrication process into consideration. Compos. Part B Eng. 32, 111–121 (2001)

    Google Scholar 

  41. Song, G., Wang, L., Deng, L., Yin, H.M.: Mechanical characterization and inclusion based boundary element modeling of lightweight concrete containing foam particles. Mech. Mater. 91, 208–225 (2015)

    Google Scholar 

  42. Ueda, S., Gasik, M.: Thermal-elasto-plastic analysis of W–Cu functionally graded materials subjected to a uniform heat flow by micromechanical model. J. Therm. Stress. 23, 395–409 (2000)

    Google Scholar 

  43. Vaghefi, R., Hematiyan, M.R., Nayebi, A.: Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov–Galerkin method. Eng. Anal. Bound. Elem. 71, 34–49 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Vel, S.S., Batra, R.C.: Three-dimensional analysis of transient thermal stresses in functionally graded plates. Int. J. Solids Struct. 40, 7181–7196 (2003)

    MATH  Google Scholar 

  45. Wagih, A., Attia, M.A., AbdelRahman, A.A., Bendine, K., Sebaey, T.A.: On the indentation of elastoplastic functionally graded materials. Mech. Mater. 129, 169–188 (2019)

    Google Scholar 

  46. Wu, C., Zhang, L., Cui, J., Yin, H.: Three-dimensional elastic analysis of a bi-material system with a single domain boundary element method. Eng. Anal. Bound. Elem. 146, 17–33 (2023)

    MathSciNet  MATH  Google Scholar 

  47. Yang, J., Pickard, S.M., Cady, C., Evans, A.G., Mehrabian, R.: The stress/strain behavior of aluminum matrix composites with discontinuous reinforcements. Acta Metall. Mater. 39, 1863–1869 (1991)

    Google Scholar 

  48. Yin, H., Song, G., Zhang, L., Wu, C.: The inclusion-based boundary element method (iBEM). Academic Press (2022)

    Google Scholar 

  49. Yin, H.M., Paulino, G.H., Buttlar, W.G., Sun, L.Z.: Micromechanics-based thermoelastic model for functionally graded particulate materials with particle interactions. J. Mech. Phys. Solids 55, 132–160 (2007)

    MATH  Google Scholar 

  50. Yin, H.M., Sun, L.Z., Paulino, G.H.: Micromechanics-based elastic model for functionally graded materials with particle interactions. Acta Mater. 52, 3535–3543 (2004)

    Google Scholar 

  51. Yin, H.M., Yang, D.J., Kelly, G., Garant, J.: Design and performance of a novel building integrated PV/thermal system for energy efficiency of buildings. Sol. Energy 87, 184–195 (2013)

    Google Scholar 

  52. Zhang, L., Lin, Q., Chen, F., Zhang, Y., Yin, H.: Micromechanical modeling and experimental characterization for the elastoplastic behavior of a functionally graded material. Int. J. Solids Struct. 206, 370–382 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12102458, 11972365, and 12272402) and the China Agricultural University Education Foundation (No. 1101-2412001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangliang Zhang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Due to the existed of the particles (which is also called inhomogeneities), the local strain field \({{\varvec{\upvarepsilon}}}\) is equal to the superposition of the far field strain \({{\varvec{\upvarepsilon}}}^{0}\) and the disturbed strain \({\varvec{\upvarepsilon}}^{\prime}\), which is given as

$${{\varvec{\upvarepsilon}}} = {{\varvec{\upvarepsilon}}}^{0} + {\varvec{\upvarepsilon}}^{\prime},$$
(32)

where the far field strain \({{\varvec{\upvarepsilon}}}^{0} = \left( {{\mathbf{C}}_{0} } \right)^{ - 1} :{{\varvec{\upsigma}}}^{0} + \alpha_{0} T{{\varvec{\updelta}}}\) is caused by the external far field stress \({{\varvec{\upsigma}}}^{0}\) and the temperature change \(T\). In Eq. (42), \({\mathbf{C}}_{0}\) is the elastic material coefficients tensor of the matrix; \(\alpha_{0}\) is the CTE of the matrix; \({{\varvec{\updelta}}}\) is the Kronecker Delta tensor. The disturbed strain \({\varvec{\upvarepsilon}}^{\prime}\) is caused by the material mismatch. Using the Green’s function technique, the disturbed strain \({\varvec{\upvarepsilon}}^{\prime}\) is given as

$${\varvec{\upvarepsilon}}^{\prime} = - \mathop \int \limits_{{{\varvec{\Omega}}}}^{{}} {\mathbf{G}}\left( {{\mathbf{x}},{\mathbf{x^{\prime}}}} \right) \cdot {\mathbf{C}}_{0} :\left[ {{{\varvec{\upvarepsilon}}}^{*} \left( {{\mathbf{x^{\prime}}}} \right) + {{\varvec{\upvarepsilon}}}^{{\text{T}}} } \right]{\mathbf{dx^{\prime}}} = - {\mathbf{D}}^{{\Omega }} :{\mathbf{C}}_{0} :\left[ {{{\varvec{\upvarepsilon}}}^{*} \left( {{\mathbf{x^{\prime}}}} \right) + {{\varvec{\upvarepsilon}}}^{{\text{T}}} } \right],$$
(33)

where “\(\cdot\)” means the tensor contraction between two fourth-rank tensors, “\(:\)” represents the tensor contraction between fourth-rank and second rank tensors; \({{\varvec{\upvarepsilon}}}^{*}\) is the induced virtual elastic eigenstrain to refer the material mismatch of the elastic field; \({{\varvec{\upvarepsilon}}}^{{\text{T}}} = \left( {\alpha_{1} - \alpha_{0} } \right)T{{\varvec{\updelta}}}\) is the thermal eigenstrain caused by the thermal properties mismatch, where \(\alpha_{1}\) is the CTE of the particle; \({\mathbf{G}}\left( {{\mathbf{x}},{\mathbf{x}}^{\prime}} \right)\) is the modified Green’s function; \({{\varvec{\Omega}}}\) accounts for the certain particle domain; the fourth rank tensor \({\mathbf{D}}^{{{\varvec{\Omega}}}}\) which is the integral of \({\mathbf{G}}\left( {{\mathbf{x}},{\mathbf{x}}^{\prime}} \right)\) over the spherical particle domain, which can be found in Yin’s work (2007). According to EIM and equivalent condition in particle domain \({{\varvec{\Omega}}}\), the following equation is obtained as

$${\mathbf{C}}_{1} :\left[ {{{\varvec{\upvarepsilon}}}^{0} + {\varvec{\upvarepsilon}}^{\prime} - \alpha_{1} T{{\varvec{\updelta}}}} \right] = {\mathbf{C}}_{0} :\left[ {{{\varvec{\upvarepsilon}}}^{0} + {\varvec{\upvarepsilon}}^{\prime} - \alpha_{1} T{{\varvec{\updelta}}} - {{\varvec{\upvarepsilon}}}^{*} } \right],$$
(34)

where \({\mathbf{C}}_{1}\) is the elastic material coefficients tensor of the particle. Substituting Eq. (33) into Eq. (34), the eigenstrain \({{\varvec{\upvarepsilon}}}^{*}\) is derived as

$${{\varvec{\upvarepsilon}}}^{*} = {\mathbf{C}}_{0}^{ - 1} \cdot \left( {{\mathbf{D}}^{{\Omega }} - {\Delta }{\mathbf{C}}^{ - 1} } \right)^{ - 1} :\left( {{{\varvec{\upvarepsilon}}}^{0} - \alpha_{1} T{{\varvec{\updelta}}} - {\mathbf{D}}^{{\Omega }} \cdot {\mathbf{C}}_{0} :{{\varvec{\upvarepsilon}}}^{{\text{T}}} } \right),$$
(35)

where \({\Delta }{\mathbf{C}} = {\mathbf{C}}_{1} - {\mathbf{C}}_{0}\) is the stiffness difference.

By substituting the disturbed strain \({\varvec{\upvarepsilon}}^{\prime}\) and eigenstrain \({{\varvec{\upvarepsilon}}}^{*}\) in Eq. (33) and Eq. (35) into Eq. (32), the strain field in the particle domain induced by a single particle can be obtained as

$${\overline{\varvec{\upvarepsilon}}} = \alpha_{1} T{{\varvec{\updelta}}} + \left( {{\mathbf{I}} - {\mathbf{D}}^{{\Omega }} \cdot {\Delta }{\mathbf{C}}} \right)^{ - 1} :\left( {{{\varvec{\upvarepsilon}}}^{0} - \alpha_{1} T{{\varvec{\updelta}}} - {\mathbf{D}}^{{\Omega }} \cdot {\mathbf{C}}_{0} :{{\varvec{\upvarepsilon}}}^{{\text{T}}} } \right),$$
(36)

where \({\mathbf{I}}\) is the standard fourth rank unit tensor, the overbar of \({\overline{\varvec{\upvarepsilon}}}\) represents the presence of only one particle in the infinite matrix domain. To conduct the pairwise interaction, Yin et al. [49] obtained the averaged strain field induced by two particles as

$$\begin{aligned} \overline{\overline{{{\varvec{\upvarepsilon}}}}} & = \alpha_{1} T{{\varvec{\updelta}}} + \left\{ {{\mathbf{I}} - \left[ {{\mathbf{D}}^{{\Omega }} + {\mathbf{D}}\left( {{\mathbf{x}}_{1} } \right)} \right] \cdot {\Delta }{\mathbf{C}}} \right\}^{ - 1} \\ & \quad :\left\{ {{{\varvec{\upvarepsilon}}}^{0} - \alpha_{1} T{{\varvec{\updelta}}} - \left[ {{\mathbf{D}}^{{\Omega }} + {\mathbf{D}}\left( {{\mathbf{x}}_{1} } \right)} \right] \cdot {\mathbf{C}}_{0} :{{\varvec{\upvarepsilon}}}^{{\text{T}}} } \right\} + O\left( {\rho^{8} } \right). \\ \end{aligned}$$
(37)

The double overbar indicates the presence of two particles in the infinite matrix domain, \(\overline{\overline{{{\varvec{\upvarepsilon}}}}}\) is uniform strain inside the particle domain considering the interaction of the other particles. Subtracting Eq. (36) from Eq. (37), the average interaction between two particles is

$${\mathbf{d}}\left( {0,{\mathbf{x}}_{1} } \right) = \overline{\overline{{{\varvec{\upvarepsilon}}}}} - {\overline{\varvec{\upvarepsilon}}} = {\Delta }{\mathbf{C}}^{ - 1} \cdot {\mathbf{L}}\left( {0,{\mathbf{x}}_{1} } \right):\left( {{{\varvec{\upvarepsilon}}}^{0} - \alpha_{1} T{{\varvec{\updelta}}} - {\Delta }{\mathbf{C}}^{ - 1} \cdot {\mathbf{C}}_{0} :{{\varvec{\upvarepsilon}}}^{{\text{T}}} } \right) + O\left( {\rho^{8} } \right),$$
(38)

where \({\mathbf{L}}\left( {0,{\mathbf{x}}_{1} } \right)\) is the particle pairwise interaction tensor as

$${\mathbf{L}}\left( {0,{\mathbf{x}}_{1} } \right) = \left[ {\Delta {\mathbf{C}}^{ - 1} - {\mathbf{D}}^{{\Omega }} - {\mathbf{D}}\left( {{\mathbf{x}}_{1} } \right)} \right]^{ - 1} - \left( {\Delta {\mathbf{C}}^{ - 1} - {\mathbf{D}}^{{\Omega }} } \right)^{ - 1} .$$
(39)

When there are multiple particles \(P_{i} { }\left( {i = 2,3, \ldots } \right)\), each of them will generate an additional interaction on the central particle \({\Omega }_{0}\) as Eq. (38) dominated. Thus, the average strain of the central particle considering pairwise particle interaction is

$$\left\langle {{\varvec{\upvarepsilon}}} \right\rangle^{1} \left( 0 \right) = \alpha_{1} T{{\varvec{\updelta}}} + \left( {{\mathbf{I}} - {\mathbf{D}}^{{\Omega }} \cdot {\Delta }{\mathbf{C}}} \right)^{ - 1} :\left[ {\left\langle {{\varvec{\upvarepsilon}}} \right\rangle^{0} \left( 0 \right) - \alpha_{1} T{{\varvec{\updelta}}} - {\mathbf{D}}^{{\Omega }} \cdot {\mathbf{C}}_{0} :{{\varvec{\upvarepsilon}}}^{{\text{T}}} } \right] + \mathop \sum \limits_{i = 1}^{\infty } {\mathbf{d}}\left( {0,{\mathbf{x}}_{i} } \right),$$
(40)

where \(\left\langle {*} \right\rangle\) denotes the volume average over the material phase. By integrating pairwise interaction over all particles, the total particle interaction is obtained as

$$\begin{aligned} \left\langle {\mathbf{d}} \right\rangle \left( 0 \right) & = \mathop \sum \limits_{i = 1}^{\infty } {\Delta }{\mathbf{C}}^{ - 1} \cdot {\mathbf{L}}\left( {0,{\mathbf{x}}_{i} } \right):\left[ {\left\langle {{\varvec{\upvarepsilon}}} \right\rangle^{0} \left( {x_{3}^{i} } \right) - \alpha_{1} T{{\varvec{\updelta}}} - {\Delta }{\mathbf{C}}^{ - 1} \cdot {\mathbf{C}}_{0} :{{\varvec{\upvarepsilon}}}^{{\text{T}}} } \right] \\ & = \mathop \int \limits_{D}^{{}} P\left( {{\mathbf{x}}{|}0} \right){\Delta }{\mathbf{C}}^{ - 1} \cdot {\mathbf{L}}\left( {0,{\mathbf{x}}} \right):\left[ {\left\langle {{\varvec{\upvarepsilon}}} \right\rangle^{0} \left( 0 \right) + \left\langle {{\varvec{\upvarepsilon}}} \right\rangle_{,3}^{0} \left( 0 \right)x_{3} - \alpha_{1} T{{\varvec{\updelta}}} - {\Delta }{\mathbf{C}}^{ - 1} \cdot {\mathbf{C}}_{0} :{{\varvec{\upvarepsilon}}}^{{\text{T}}} } \right]d{\mathbf{x}}, \\ \end{aligned}$$
(41)

where \(\left\langle {{\varvec{\upvarepsilon}}} \right\rangle^{0} \left( {x_{3}^{i} } \right) = \left\langle {{\varvec{\upvarepsilon}}} \right\rangle^{0} \left( 0 \right) + \left\langle {{\varvec{\upvarepsilon}}} \right\rangle_{,3}^{0} \left( 0 \right)x_{3}\). And \(P\left( {{\mathbf{x}}{|}0} \right) = \frac{3g\left( x \right)}{{4\pi a^{3} }}\left[ {\phi \left( {X_{3} } \right) + e^{{ - \frac{{\mathbf{x}}}{\delta }}} \phi_{,3} \left( {X_{3} } \right)x_{3} } \right]\) is the particle number density function, where g(x) = 1 to insure the density of local field is unchanged [49], the \(X_{3}\) denotes the gradation direction, \(\phi \left( {X_{3} } \right)\) is the average volume fraction of particle at \(X_{3}\), \(\delta = \frac{e}{{\phi_{,3} \left( {X_{3}^{0} } \right)}}{\text{min}}\left( {\phi ,\phi^{c} - \phi } \right)\) denotes the attenuating rate of the gradation of the particle volume fraction in the far field, and \(\phi^{c}\) represents the maximum volume fraction of particles. Thus, the effect of particle distribution at the microscale can be integrated to reflect the effective material properties at the macroscale. Specifically, by plugging Eq. (41) into Eq. (40), the average particle strain considering pairwise interaction at \(X_{1} - X_{2}\) layer along the graded direction is obtained as

$$\begin{aligned} \left\langle {\upvarepsilon } \right\rangle^{1} \left( {{\text{X}}_{3} } \right) & = {\upalpha }_{1} {\text{T}}\updelta + \left( {{\text{I}} - {\text{D}}^{{\Omega }} \cdot \Delta {\text{C}}} \right)^{ - 1} :\left[ {\left\langle {\upvarepsilon } \right\rangle^{0} \left( {{\text{X}}_{3} } \right) - {\upalpha }_{1} {\text{T}}\updelta - {\text{D}}^{{\Omega }} \cdot {\text{C}}_{0} :{\upvarepsilon }^{{\text{T}}} } \right] \\ & \quad + \phi \Delta {\text{C}}^{ - 1} \cdot {\mathbf{\mathcal{D}}}:\left[ {\left\langle {\upvarepsilon } \right\rangle^{0} \left( {{\text{X}}_{3} } \right) - {\upalpha }_{1} {\text{T}}\updelta - \Delta {\text{C}}^{ - 1} \cdot {\text{C}}_{0} :{\upvarepsilon }^{{\text{T}}} } \right] \\ & \quad + \phi_{,3} \Delta {\text{C}}^{ - 1} \cdot {\mathbf{\mathcal{F}}}:\left\langle {\upvarepsilon } \right\rangle_{,3}^{0} \left( {{\text{X}}_{3} } \right), \\ \end{aligned}$$
(42)

where tensor \({\mathbf{\mathcal{D}}}\) represents the pairwise interaction, and tensor \({\mathbf{\mathcal{F}}}\) addresses the coupling effect of layers along the \(X_{3}\) direction [49].

$${\mathbf{\mathcal{D}}} = \mathop \int \limits_{D}^{{}} \frac{3}{{4\pi a^{3} }}{\mathbf{L}}\left( {0,{\mathbf{x}}} \right)d{\mathbf{x}},$$
(43)
$${\mathbf{\mathcal{F}}} = \mathop \int \limits_{D}^{{}} e^{{ - \frac{{\mathbf{x}}}{\delta }}} \frac{3}{{4\pi a^{3} }}{\mathbf{L}}\left( {0,{\mathbf{x}}} \right)x_{3}^{2} d{\mathbf{x}}.$$
(44)

Thus, at a certain \(X_{1} - X_{2}\) layer, the overall averaged stress and strain are expressed as

$$\langle{{\varvec{\upsigma}}}\left\rangle( {X_{3} } \right) = \phi \left( {X_{3} } \right)\langle{{\varvec{\upsigma}}}\rangle^{1} \left( {X_{3} } \right) + \left[ {1 - \phi \left( {X_{3} } \right)} \right]\langle{{\varvec{\upsigma}}}\rangle^{0} \left( {X_{3} } \right),$$
(45)
$$\langle{{\varvec{\upvarepsilon}}}\left\rangle( {X_{3} } \right) = \phi \left( {X_{3} } \right)\langle{{\varvec{\upvarepsilon}}}\rangle^{1} \left( {X_{3} } \right) + \left[ {1 - \phi \left( {X_{3} } \right)} \right]\langle{{\varvec{\upvarepsilon}}}\rangle^{0} \left( {X_{3} } \right),$$
(46)

where the averaged stress \(\langle{{\varvec{\upsigma}}}\rangle^{1}\) and \(\langle{{\varvec{\upsigma}}}\rangle^{0}\) for particle and matrix are

$$\langle{{\varvec{\upsigma}}}\rangle^{1} \left( {X_{3} } \right) = {\mathbf{C}}_{1} :\left[ \langle{{{\varvec{\upvarepsilon}}}\rangle^{1} \left( {X_{3} } \right) - \alpha_{1} T{{\varvec{\updelta}}}} \right],$$
(47)
$$\langle{{\varvec{\upsigma}}}\rangle^{0} \left( {X_{3} } \right) = {\mathbf{C}}_{0} :\left[ \langle{{{\varvec{\upvarepsilon}}}\rangle^{0} \left( {X_{3} } \right) - \alpha_{0} T{{\varvec{\updelta}}}} \right].$$
(48)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, J., Lin, Q., Zhang, L. et al. Micromechanical modeling for the thermo-elasto-plastic behavior of functionally graded composites. Acta Mech 234, 3287–3304 (2023). https://doi.org/10.1007/s00707-023-03547-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03547-w

Navigation