Skip to main content
Log in

A novel collocation beam element based on absolute nodal coordinate formulation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The computational efficiency has been largely hindering the application of the absolute nodal coordinate formulation (ANCF). To improve the computational efficiency of the absolute nodal coordinate formulation, the collocation strategy is employed to establish the ANCF beam element. A novel ANCF beam element based on multi-node collocation (ANCF_C) is proposed. Zero points of the second-order derivative of pth-order Legendre polynomial and the boundary points in the element domain are used as nodes to discretize the beam node-wisely. Accordingly, the \((p-1)\)th-order Lagrange interpolation is employed for the longitudinal displacement interpolation. The elastic force and stiffness matrix are deduced based on the enhanced continuum mechanics formulation (ECMF) to avoid the locking problem. By using p-point Lobatto quadrature for the numerical integration of the elastic force and the mass matrix, the quadrature points coincide with the discretized nodes in the element. The performance of the ANCF_C is verified by both static and dynamic examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. Auricchio, F., Beirao, D., Hughes, T.J., Reali, A., Sangalli, G.: Isogeometric collocation for elastostatics and explicit dynamics. Comput. Methods Appl. Mech. Eng. 249–252(1), 2–14 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boor de, C.: A practical guide to splines. Springer-Verlag, New York (1978)

    Book  MATH  Google Scholar 

  3. Cui, Y., Lan, P., Zhou, H., Yu, Z.: The rigid-flexible-thermal coupled analysis for spacecraft carrying large aperture paraboloid antenna. J. Comput. Nonlinear Dyn. 15(3), 031003 (2020)

    Article  Google Scholar 

  4. Du, X., Du, J., Bao, H., Sun, G.: Deployment analysis of deployable antennas considering cable net and truss flexibility. Aerosp. Sci. Technol. 82, 557–565 (2018)

    Article  Google Scholar 

  5. Ebel, H., Matikainen, M.K., Hurskainen, V.V., Mikkola, A.: Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dyn. 88(2), 1075–1091 (2017)

    Article  Google Scholar 

  6. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4), 359–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)

    Article  Google Scholar 

  8. Géradin, M., Cardona, A.: Flexible multibody dynamics a finite element approach (2001)

  9. Lan, P., Li, K., Yu, Z.: Computer implementation of piecewise cable element based on the absolute nodal coordinate formulation and its application in wire modeling. Acta Mech. 230(3), 1145–1158 (2019)

    Article  MathSciNet  Google Scholar 

  10. Li, P., Liu, C., Tian, Q., Hu, H., Song, Y.: Dynamics of a deployable mesh reflector of satellite antenna: form-finding and modal analysis. J. Comput. Nonlinear Dyn. 11(4), 041017 (2016)

    Article  Google Scholar 

  11. Liu, C., Tian, Q., Hu, H.: New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70(3), 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  12. Marino, E.: Isogeometric collocation for three-dimensional geometrically exact shear-deformable beams. Comput. Methods Appl. Mech. Eng. 307, 383–410 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nachbagauer, K.: State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21(3), 293–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  MATH  Google Scholar 

  15. Otsuka, K., Makihara, K., Sugiyama, H.: Recent advances in the absolute nodal coordinate formulation: literature review from 2012 to 2020. J. Comput. Nonlinear Dyn. 17(8), 080803 (2022)

    Article  Google Scholar 

  16. Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ancf finite elements. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230(1), 63–84 (2015)

    Google Scholar 

  17. Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. 229(7), 2923–2946 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)

    Article  MATH  Google Scholar 

  19. Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation. Aerosp. Sci. Technol. 29(1), 386–393 (2013)

    Article  Google Scholar 

  20. Simo, J.C., Tarnow, N., Doblare, M.: Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int. J. Numer. Methods Eng. 38(9), 1431–1473 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  22. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions : a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66(2), 125–161 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, Lei, Baeder, J.D.: Uniformly accurate finite difference schemes for p-refinement. SIAM J. Sci. Comput. 20(3), 1115–1131 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tang, Y., Hu, H., Tian, Q.: Model order reduction based on successively local linearizations for flexible multibody dynamics. Int. J. Numer. Methods Eng. 118(3), 159–180 (2018)

    MathSciNet  Google Scholar 

  25. Tang, Y., Hu, H., Tian, Q.: A condensed algorithm for adaptive component mode synthesis of viscoelastic flexible multibody dynamics. Int. J. Numer. Methods Eng. 122(2), 609–637 (2020)

    Article  MathSciNet  Google Scholar 

  26. Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118(2), 271–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2000)

    Article  Google Scholar 

  28. Zupan, D., Saje, M.: Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput. Methods Appl. Mech. Eng. 192(49/50), 5209–5248 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research was supported by the National Science and Technology Major Project (2019-VII-0004-0144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Liu.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, T., Bian, H. et al. A novel collocation beam element based on absolute nodal coordinate formulation. Acta Mech 234, 2695–2707 (2023). https://doi.org/10.1007/s00707-023-03509-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03509-2

Navigation