Skip to main content

Advertisement

Log in

Free vibration and nonlinear dynamic behaviors of the imperfect smart electric magnetic FG-laminated composite panel in a hygrothermal environments

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Piezoelectric and piezomagnetic layers are known to enhance material properties and increase load capacity. However, most studies focused on the effects of mechanical and thermal loads on these structures. This work aimed to investigate the complex external condition of uniformed load, thermal load, moisture parameter and electric–magnetic potentials of the smart electric magnetic panel using an analytical approach. The core of the panel is made of graphene platelets, and the two outer layers consist of barium titanate (BaTiO3) and cobalt ferric oxide (CoFe2O4). The Ready’s first-order shear deformation and Hamilton’s theory are proposed to govern the basic equation. After that, the stress function is introduced, and then apply the Galerkin method to determine the natural frequency and dynamic response of the panel. The final chapter analyzes the relationship between the natural frequency and amplitude of the electromagnetic panel with simplified assumptions. The numerical results are highlighted using the Runge–Kutta method, including the influence of the piezoelectric outer layer, geometry parameters, imperfection, elastic foundations, graphene volume fraction, thermal loads and electric and magnetic fields of the electromagnetic panel. The reliability of this computational theory is validated by other publications. In addition, the new influence of electrical and magnetic field parameters on the panel’s natural frequency is also emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dinzart, F., Sabar, H.: Magneto-electro-elastic coated inclusion problem and its application to magnetic-piezoelectric composite materials. Int. J. Solids Struct. 48, 2393–2401 (2011). https://doi.org/10.1016/J.IJSOLSTR.2011.04.010

    Article  Google Scholar 

  2. Siddharth Mangalasseri, A., Vinyas, M., Mahesh, V., Ponnusami, S.A., Harursampath, D.: Investigation on the interphase effects on the energy harvesting characteristics of three phase magneto-electro-elastic cantilever beam. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2062630

    Article  Google Scholar 

  3. Vinyas, M.: Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab6649

    Article  Google Scholar 

  4. Vinyas, M.: Nonlinear pyrocoupled deflection of viscoelastic sandwich shell with CNT reinforced magneto-electro-elastic facing subjected to electromagnetic loads in thermal environment. Eur. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01751-y

    Article  Google Scholar 

  5. Vinyas, M.: A numerical investigation on the nonlinear pyrocoupled dynamic response of blast loaded magnetoelectroelastic multiphase porous plates in thermal environment. Eur. Phys. J. Plus (2022). https://doi.org/10.1140/epjp/s13360-022-02795-4

    Article  Google Scholar 

  6. Ke, L.L., Wang, Y.S.: Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory. Phys. E Low Dimens. Syst. Nanostruct. 63, 52–61 (2014). https://doi.org/10.1016/J.PHYSE.2014.05.002

    Article  Google Scholar 

  7. Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22, 245703 (2011). https://doi.org/10.1088/0957-4484/22/24/245703

    Article  Google Scholar 

  8. Sahmani, S., Aghdam, M.M.: Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells. Compos. B Eng. 132, 258–274 (2018). https://doi.org/10.1016/J.COMPOSITESB.2017.09.004

    Article  Google Scholar 

  9. Sahmani, S., Aghdam, M.M.: Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch. Civ. Mech. Eng. 17, 623–638 (2017). https://doi.org/10.1016/J.ACME.2017.01.004

    Article  Google Scholar 

  10. Dat, N.D., Quan, T.Q., Mahesh, V., Duc, N.D.: Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int. J. Mech. Sci. 186, 105906 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105906

    Article  Google Scholar 

  11. Zhang, X.L., Xu, Q., Zhao, X., Li, Y.H., Yang, J.: Nonlinear analyses of magneto-electro-elastic laminated beams in thermal environments. Compos. Struct. 234, 111524 (2020). https://doi.org/10.1016/j.compstruct.2019.111524

    Article  Google Scholar 

  12. Sobhani, E., Masoodi, A.R.: On the frequencies of graphene nanoplatelet agglomerated nanocomposite paired paraboloidal-cylindrical shells under arbitrary boundary conditions. Aerosp. Sci. Technol. 128, 107782 (2022). https://doi.org/10.1016/J.AST.2022.107782

    Article  Google Scholar 

  13. Vinyas, M.: Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading. Mech. Adv. Mater. Struct. 29, 2707–2725 (2022). https://doi.org/10.1080/15376494.2021.1875086

    Article  Google Scholar 

  14. Vinyas, M., Kattimani, S.C., Ame, N., Yas, V.: Static behavior of thermally loaded multilayered magneto-electro-elastic beam (2017)

  15. Vinyas, M., Harursampath, D.: Large deflection analysis of functionally graded magneto-electro-elastic porous flat panels. Eng. Comput. 38, 1615–1634 (2022). https://doi.org/10.1007/s00366-020-01270-x

    Article  Google Scholar 

  16. Vinyas, M.: Nonlinear damping of auxetic sandwich plates with functionally graded magneto-electro-elastic facings under multiphysics loads and electromagnetic circuits. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2022.115523

    Article  Google Scholar 

  17. Shen, H.S.: Nonlinear analysis of functionally graded fiber reinforced composite laminated beams in hygrothermal environments, Part I: theory and solutions. Compos. Struct. 125, 698–705 (2015). https://doi.org/10.1016/J.COMPSTRUCT.2014.12.024

    Article  Google Scholar 

  18. Shen, H.S.: Hygrothermal effects on the postbuckling of shear deformable laminated plates. Int. J. Mech. Sci. 43, 1259–1281 (2001). https://doi.org/10.1016/S0020-7403(00)00058-8

    Article  MATH  Google Scholar 

  19. Chao, L.P., Shyu, S.L.: Nonlinear buckling of fiber-reinforced composite plates under hygrothermal effects. J. Chin. Inst. Eng. 19, 657–667 (2011). https://doi.org/10.1080/02533839.1996.9677831

    Article  Google Scholar 

  20. Boukhoulda, B.F., Adda-Bedia, E., Madani, K.: The effect of fiber orientation angle in composite materials on moisture absorption and material degradation after hygrothermal ageing. Compos. Struct. 74, 406–418 (2006). https://doi.org/10.1016/J.COMPSTRUCT.2005.04.032

    Article  Google Scholar 

  21. Attukur Nandagopal, R., Narasimalu, S., Chai, G.B.: Study of statistically significant strength degradation of hygrothermal aged CFRP and its weibull analysis. Compos. Commun. 23, 100566 (2021). https://doi.org/10.1016/J.COCO.2020.100566

    Article  Google Scholar 

  22. Mansouri, L., Djebbar, A., Khatir, S., Abdel Wahab, M.: Effect of hygrothermal aging in distilled and saline water on the mechanical behaviour of mixed short fibre/woven composites. Compos. Struct. 207, 816–825 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2018.09.067

    Article  Google Scholar 

  23. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field in atomically thin carbon films. Science 1979(306), 666–669 (2004). https://doi.org/10.1126/SCIENCE.1102896/SUPPL_FILE/NOVOSELOV.SOM.PDF

    Article  Google Scholar 

  24. Pan, H.H., Lai, T.Z., Chaipanich, A., Wittinanon, T.: Effect of graphene on the piezoelectric properties of cement-based piezoelectric composites. Sens. Actuators A Phys. 346, 113882 (2022). https://doi.org/10.1016/J.SNA.2022.113882

    Article  Google Scholar 

  25. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 1979(321), 385–388 (2008). https://doi.org/10.1126/SCIENCE.1157996/SUPPL_FILE/LEE-SOM.PDF

    Article  Google Scholar 

  26. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/NL0731872/ASSET/IMAGES/MEDIUM/NL-2007-031872_0005.GIF

    Article  Google Scholar 

  27. Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008(3), 491–495 (2008). https://doi.org/10.1038/nnano.2008.199

    Article  Google Scholar 

  28. de Guzmán, V.R., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55, 3025–3031 (2007). https://doi.org/10.1016/J.ACTAMAT.2007.01.007

    Article  Google Scholar 

  29. Esmaeili, H.R., Kiani, Y., Beni, Y.T.: Vibration characteristics of composite doubly curved shells reinforced with graphene platelets with arbitrary edge supports. Acta Mech. 233, 665–683 (2022). https://doi.org/10.1007/S00707-021-03140-Z/FIGURES/10

    Article  MathSciNet  MATH  Google Scholar 

  30. Cong, P.H., Duc, N.D.: New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment. Acta Mech. 229, 3651–3670 (2018). https://doi.org/10.1007/S00707-018-2178-3

    Article  MathSciNet  MATH  Google Scholar 

  31. Duc, N.D., Lam, P.T., Quan, T.Q., Quang, P.M., van Quyen, N.: Nonlinear post-buckling and vibration of 2D penta-graphene composite plates. Acta Mech. 231, 539–559 (2020). https://doi.org/10.1007/s00707-019-02546-0

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo, L.J., Mao, J.J., Zhang, W., Liu, Y.Z., Chen, J., Zhao, W.: Modeling and analyze of behaviors of functionally graded graphene reinforced composite beam with geometric imperfection in multiphysics. Aerosp. Sci. Technol. 127, 107722 (2022). https://doi.org/10.1016/J.AST.2022.107722

    Article  Google Scholar 

  33. Niu, Y., Yao, M.: Linear and Nonlinear Vibrations of Graphene Platelet Reinforced Composite Tapered Plates and Cylindrical Panels. Elsevier, Amsterdam (2021)

    Book  Google Scholar 

  34. Shen, H.S., Xiang, Y., Fan, Y.: Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments. Int. J. Mech. Sci. 135, 398–409 (2018). https://doi.org/10.1016/J.IJMECSCI.2017.11.031

    Article  Google Scholar 

  35. Zhao, S., Zhang, Y., Zhang, Y., Zhang, W., Yang, J., Kitipornchai, S.: Buckling of functionally graded hydrogen-functionalized graphene reinforced beams based on machine learning-assisted micromechanics models. Eur. J. Mech. A/Solids 96, 104675 (2022). https://doi.org/10.1016/J.EUROMECHSOL.2022.104675

    Article  MathSciNet  MATH  Google Scholar 

  36. Arefi, M., Mohammad-Rezaei Bidgoli, E., Rabczuk, T.: Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Eur. J. Mech. A/Solids 77, 103802 (2019). https://doi.org/10.1016/J.EUROMECHSOL.2019.103802

    Article  MathSciNet  MATH  Google Scholar 

  37. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017). https://doi.org/10.1016/J.COMPSTRUCT.2016.09.070

    Article  Google Scholar 

  38. Wu, H., Yang, J., Kitipornchai, S.: Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017). https://doi.org/10.1016/J.COMPSTRUCT.2016.12.001

    Article  Google Scholar 

  39. Mao, J.J., Zhang, W.: Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos. Struct. 216, 392–405 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2019.02.095

    Article  Google Scholar 

  40. Eringen, A.C., Wegner, J.L.: Nonlocal continuum field theories. Appl. Mech. Rev. 56, B20–B22 (2003). https://doi.org/10.1115/1.1553434

    Article  Google Scholar 

  41. Gholami, R., Ansari, R., Gholami, Y., Ansari, R., Gholami, R.: Nonlocal free vibration in the pre- and post-buckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions. Smart Mater. Struct. 25, 095033 (2016). https://doi.org/10.1088/0964-1726/25/9/095033

    Article  MATH  Google Scholar 

  42. Ansari, R., Gholami, R., Rouhi, H.: Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Compos. Struct. 126, 216–226 (2015). https://doi.org/10.1016/J.COMPSTRUCT.2015.02.068

    Article  Google Scholar 

  43. Vinyas, M.: A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos. B Eng. 158, 286–301 (2019). https://doi.org/10.1016/j.compositesb.2018.09.086

    Article  Google Scholar 

  44. Vinyas, M., Harursampath, D.: Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading. Mech. Adv. Mater. Struct. 29, 1047–1071 (2022). https://doi.org/10.1080/15376494.2020.1805059

    Article  Google Scholar 

  45. Vinyas, M., Mangalasseri, A.S.: Agglomeration effects of CNTs on the energy harvesting performance of multifield interactive magneto-electro-elastic/nanocomposite unimorph smart beam. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2144886

    Article  Google Scholar 

  46. Vinyas, M., Harursampath, D.: Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.112749

    Article  Google Scholar 

  47. Vinyas, M.: Active control of nonlinear coupled transient vibrations of multifunctional sandwich plates with agglomerated FG-CNTs core/magneto-electro-elastic facesheets. Thin-Walled Struct. (2022). https://doi.org/10.1016/j.tws.2022.109547

    Article  Google Scholar 

  48. Zhang, P., Qi, C., Fang, H., Sun, X.: A semi-analytical approach for the flexural analysis of in-plane functionally graded magneto-electro-elastic plates. Compos. Struct. 250, 112590 (2020). https://doi.org/10.1016/J.COMPSTRUCT.2020.112590

    Article  Google Scholar 

  49. Zhao, Y.-F., Zhang, S.-Q., Wang, X., Ma, S.-Y., Zhao, G.-Z., Kang, Z.: Nonlinear analysis of carbon nanotube reinforced functionally graded plates with magneto-electro-elastic multiphase matrix. Compos. Struct. 297, 115969 (2022). https://doi.org/10.1016/J.COMPSTRUCT.2022.115969

    Article  Google Scholar 

  50. Nie, B., Ren, S., Li, W., Zhou, L., Liu, C.: The hygro-thermo-electro-mechanical coupling edge-based smoothed point interpolation method for the response of functionally graded piezoelectric structure under hygrothermal environment. Eng. Anal. Bound Elem. 130, 29–39 (2021). https://doi.org/10.1016/J.ENGANABOUND.2021.05.004

    Article  MathSciNet  MATH  Google Scholar 

  51. Gholami, M., Afrasiab, H., Baghestani, A.M., Fathi, A.: A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials. Compos. Sci. Technol. 217, 109120 (2022). https://doi.org/10.1016/J.COMPSCITECH.2021.109120

    Article  Google Scholar 

  52. Wang, Y.L., Guo, X.Y., Huang, P.Y., Huang, K.N., Yang, Y., Chen, Z.B.: Finite element investigation of fatigue performance of CFRP-strengthened beams in hygrothermal environments. Compos. Struct. 234, 111676 (2020). https://doi.org/10.1016/J.COMPSTRUCT.2019.111676

    Article  Google Scholar 

  53. Li, M., Liu, M., Zhou, L.: The static behaviors study of magneto-electro-elastic materials under hygrothermal environment with multi-physical cell-based smoothed finite element method. Compos. Sci. Technol. 193, 108130 (2020). https://doi.org/10.1016/J.COMPSCITECH.2020.108130

    Article  Google Scholar 

  54. Vinyas, M., Kattimani, S.C.: Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory. Compos. Struct. 202, 1339–1352 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.06.069

    Article  Google Scholar 

  55. Vinyas, M., Ponnusami, S.A.: Nonlinear damped transient response of sandwich auxetic plates with porous magneto-electro-elastic facesheets. Eur. Phys. J. Plus. (2022). https://doi.org/10.1140/epjp/s13360-022-02756-x

    Article  Google Scholar 

  56. Vinyas, M., Kattimani, S.: Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates. J. Intell. Mater. Syst. Struct. 30, 1757–1771 (2019). https://doi.org/10.1177/1045389X19843674

    Article  Google Scholar 

  57. Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. Mech. Laminated Compos. Plates Shells (2003). https://doi.org/10.1201/B12409

    Article  Google Scholar 

  58. Singh, P.N., Sundararajan, V., Das, Y.C.: Large amplitude vibration of some moderately thick structural elements. J. Sound Vib. 36, 375–387 (1974). https://doi.org/10.1016/S0022-460X(74)80217-8

    Article  MATH  Google Scholar 

  59. Chen, L.W., Doong, J.L.: Large amplitude vibration of an initially stressed moderately thick plate. J. Sound Vib. 89, 499–508 (1983). https://doi.org/10.1016/0022-460X(83)90351-6

    Article  MATH  Google Scholar 

  60. Yifeng, Z., Yu, W.: A variational asymptotic approach for hygrothermal analysis of composite laminates. Compos. Struct. 93, 3229–3238 (2011). https://doi.org/10.1016/J.COMPSTRUCT.2011.06.003

    Article  Google Scholar 

  61. Bhimaraddi, A.: Large amplitude vibrations of imperfect antisymmetric angle-ply laminated plates. J. Sound Vib. 162, 457–470 (1993). https://doi.org/10.1006/JSVI.1993.1133

    Article  MATH  Google Scholar 

  62. Wang, Z.X., Shen, H.S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. B Eng. 43, 411–421 (2012). https://doi.org/10.1016/J.COMPOSITESB.2011.04.040

    Article  Google Scholar 

  63. Opelt, C.V., Paiva, J.M.F., Cândido, G.M., Rezende, M.C.: A fractographic study on the effects of hygrothermal conditioning on carbon fiber/epoxy laminates submitted to axial compression. Eng. Fail. Anal. 79, 342–350 (2017). https://doi.org/10.1016/J.ENGFAILANAL.2017.05.006

    Article  Google Scholar 

  64. Li, Y., Li, R., Huang, L., Wang, K., Huang, X.: Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Mater. Des. 99, 477–489 (2016). https://doi.org/10.1016/J.MATDES.2016.03.030

    Article  Google Scholar 

  65. Duc, N.D., Vuong, P.M.: Nonlinear vibration response of shear deformable FGM sandwich toroidal shell segments. Meccanica 57, 1083–1103 (2022). https://doi.org/10.1007/S11012-021-01470-9/FIGURES/26

    Article  MathSciNet  Google Scholar 

  66. Duc, N.D., Manh, D.T., Khoa, N.D., Nguyen, P.D.: Mechanical stability of eccentrically stiffened auxetic truncated conical sandwich shells surrounded by elastic foundations. Mech. Compos. Mater. 58, 365–382 (2022). https://doi.org/10.1007/S11029-022-10035-0

    Article  Google Scholar 

  67. Vinyas, M., Sunny, K.K., Harursampath, D., Nguyen-Thoi, T., Loja, M.A.R.: Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates. Compos. Struct. 226, 111254 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2019.111254

    Article  Google Scholar 

  68. Annigeri, A.R., Ganesan, N., Swarnamani, S.: Free vibrations of simply supported layered and multiphase magneto-electro-elastic cylindrical shells. Smart Mater. Struct. 15, 459 (2006). https://doi.org/10.1088/0964-1726/15/2/027

    Article  Google Scholar 

  69. Li, J.Y.: Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. Int. J. Eng. Sci. 38, 1993–2011 (2000). https://doi.org/10.1016/S0020-7225(00)00014-8

    Article  Google Scholar 

  70. van Quyen, N., Duc, N.D.: Vibration and nonlinear dynamic response of nanocomposite multi-layer solar panel resting on elastic foundations. Thin-Walled Struct. 177, 109412 (2022). https://doi.org/10.1016/J.TWS.2022.109412

    Article  Google Scholar 

  71. Zhang, L.X., Bai, Z.F., Zhao, Y., Cao, X.: Bin: Dynamic response of solar panel deployment on spacecraft system considering joint clearance. Acta Astronaut. 81, 174–185 (2012). https://doi.org/10.1016/J.ACTAASTRO.2012.07.020

    Article  Google Scholar 

  72. Wu, X., Li, Y., Cai, W., Guo, K., Zhu, L.: Dynamic responses and energy absorption of sandwich panel with aluminium honeycomb core under ice wedge impact. Int. J. Impact Eng. 162, 104137 (2022). https://doi.org/10.1016/J.IJIMPENG.2021.104137

    Article  Google Scholar 

  73. Shi, G., Araby, S., Gibson, C.T., Meng, Q., Zhu, S., Ma, J.: Graphene platelets and their polymer composites: fabrication, structure, properties, and applications. Adv. Funct. Mater. 28, 1706705 (2018). https://doi.org/10.1002/ADFM.201706705

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Project number CN.22.11 of VNU Hanoi – University of Engineeing and Technology. The author is grateful for this support. Also, the author acknowledges The University of Melbourne and the Melbourne Research Scholarship for doctoral degrees research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dinh Khoa.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\begin{aligned} & \overline{{A_{11} }} = A_{11}^{f} - \frac{{\left( {A_{13}^{f} } \right)^{2} }}{{A_{33}^{f} }},\overline{{A_{12} }} = A_{12}^{f} - \frac{{A_{13}^{f} A_{23}^{f} }}{{A_{33}^{f} }},\overline{{A_{22} }} = A_{22}^{f} - \frac{{\left( {A_{23}^{f} } \right)^{2} }}{{A_{33}^{f} }},\overline{{A_{44} }} = A_{44}^{f} ,\overline{{A_{55} }} = A_{55}^{f} , \\ & \overline{{A_{66} }} = A_{66}^{f} ,\overline{{e_{31} }} = e_{31}^{f} - \frac{{A_{13}^{f} e_{33}^{f} }}{{A_{33}^{f} }},\overline{{e_{32} }} = e_{32}^{f} - \frac{{A_{23}^{f} e_{33}^{f} }}{{A_{33}^{f} }},\overline{{e_{15} }} = e_{15}^{f} ,\overline{{e_{24} }} = e_{24}^{f} ,\overline{{q_{31} }} = q_{31}^{f} - \frac{{A_{13}^{f} q_{33}^{f} }}{{A_{33}^{f} }}, \\ & \overline{{q_{32} }} = q_{32}^{f} - \frac{{A_{23}^{f} q_{33}^{f} }}{{A_{33}^{f} }},\overline{{q_{15} }} = q_{15}^{f} ,\overline{{q_{24} }} = q_{24}^{f} ,\overline{{\mu_{11} }} = \mu_{11}^{f} ,\overline{{\mu_{22} }} = \mu_{22}^{f} ,\overline{{\mu_{33} }} = \mu_{33}^{f} + \frac{{\left( {q_{33}^{f} } \right)^{2} }}{{A_{33}^{f} }}, \\ & \overline{{\eta_{11} }} = \eta_{11}^{f} ,\overline{{\eta_{22} }} = \eta_{22}^{f} ,\overline{{\eta_{33} }} = \eta_{33}^{f} + \frac{{\left( {e_{33}^{f} } \right)^{2} }}{{A_{33}^{f} }},\overline{{m_{11} }} = m_{11}^{f} ,\overline{{m_{22} }} = m_{22}^{f} ,\overline{{m_{33} }} = m_{33}^{f} + \frac{{e_{33}^{f} q_{33}^{f} }}{{A_{33}^{f} }}, \\ & \overline{{\alpha_{1} }} = \alpha_{1}^{f} - \frac{{A_{13}^{f} \alpha_{3}^{f} }}{{A_{33}^{f} }},\overline{{\alpha_{2} }} = \alpha_{2}^{f} - \frac{{A_{23}^{f} \alpha_{3}^{f} }}{{A_{33}^{f} }},\overline{{\beta_{1} }} = \beta_{1}^{f} - \frac{{A_{13}^{f} \beta_{3}^{f} }}{{A_{33}^{f} }},\overline{{\beta_{2} }} = \beta_{2}^{f} - \frac{{A_{23}^{f} \beta_{3}^{f} }}{{A_{33}^{f} }}, \\ & \overline{{p_{1} }} = p_{1}^{f} ,\overline{{p_{2} }} = p_{2}^{f} ,\overline{{p_{3} }} = p_{3}^{f} + \frac{{e_{33}^{f} \alpha_{33}^{f} }}{{A_{33}^{f} }},\overline{{\lambda_{1} }} = \lambda_{1}^{f} ,\overline{{\lambda_{2} }} = \lambda_{2}^{f} ,\overline{{\lambda_{3} }} = \lambda_{3}^{f} + \frac{{q_{33}^{f} \alpha_{33}^{f} }}{{A_{33}^{f} }}, \\ & \overline{{\chi_{1} }} = \chi_{1}^{f} ,\overline{{\chi_{2} }} = \chi_{2}^{f} ,\overline{{\chi_{3} }} = \chi_{3}^{f} + \frac{{e_{33}^{f} \beta_{33}^{f} }}{{A_{33}^{f} }},\overline{{\zeta_{1} }} = \zeta_{1}^{f} ,\overline{{\zeta_{2} }} = \zeta_{2}^{f} ,\overline{{\zeta_{3} }} = \zeta_{3}^{f} + \frac{{q_{33}^{f} \beta_{33}^{f} }}{{A_{33}^{f} }}. \\ \end{aligned}$$

Appendix 2

$$\begin{aligned} & \left( {A_{ij} ,B_{ij} ,P_{ij} } \right) = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\overline{{A_{ij} }} } \left( {1,z,z^{2} } \right){\text{d}}z + \sum\limits_{k = 1}^{n} {\int\limits_{k - 1}^{k} {Q_{ij}^{c} } } \left( {1,z,z^{2} } \right){\text{d}}z + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\overline{{A_{ij} }} } \left( {1,z,z^{2} } \right){\text{d}}z,\quad ij = 11,12,\,22, \\ & A_{44} = K\left[ {\int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\frac{1}{2}\overline{{A_{44} }} } {\text{d}}z + \sum\limits_{k = 1}^{n} {\int\limits_{k - 1}^{k} {Q_{44}^{c} } } {\text{d}}z + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\frac{1}{2}\overline{{A_{44} }} } dz} \right],\, \\ & A_{55} = K\left[ {\int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\frac{1}{2}\overline{{A_{55} }} } {\text{d}}z + \sum\limits_{k = 1}^{n} {\int\limits_{k - 1}^{k} {Q_{55}^{c} } } {\text{d}}z + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\frac{1}{2}\overline{{A_{55} }} } {\text{d}}z} \right],\, \\ & \left( {A_{66} ,B_{66} ,P_{66} } \right) = \left[ {\int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\frac{1}{2}\overline{{A_{66} }} } \left( {1,z,z^{2} } \right){\text{d}}z + \sum\limits_{k = 1}^{n} {\int\limits_{k - 1}^{k} {Q_{66}^{c} } } \left( {1,z,z^{2} } \right){\text{d}}z + \int\limits_{{h_{c} /2}}^{{h_{c} /2 + h_{f} }} {\frac{1}{2}\overline{{A_{66} }} } \left( {1,z,z^{2} } \right){\text{d}}z} \right] \\ & \left( {\Gamma_{1} ,\,\Gamma_{3} } \right) = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\overline{{e_{31} }} \kappa \sin \left( {\kappa z} \right)} \left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{e_{31} }} \kappa \sin \left( {\kappa z} \right)\left( {1,z} \right)} {\text{d}}z, \\ & \left( {\Gamma_{2} ,\,\Gamma_{4} } \right) = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\overline{{e_{32} }} \kappa \sin \left( {\kappa z} \right)} \left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{e_{32} }} \kappa \sin \left( {\kappa z} \right)\left( {1,z} \right)} {\text{d}}z, \\ & \left( {H_{1} ,H_{3} } \right) = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\overline{{q_{31} }} \kappa \sin \left( {\kappa z} \right)} \left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{q_{31} }} \kappa \sin \left( {\kappa z} \right)\left( {1,z} \right)} {\text{d}}z, \\ & \left( {H_{2} ,H_{4} } \right) = \int\limits_{{ - h_{f} - h_{c} /2}}^{{ - h_{c} /2}} {\overline{{q_{32} }} \kappa \sin \left( {\kappa z} \right)} \left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{q_{32} }} \kappa \sin \left( {\kappa z} \right)\left( {1,z} \right)} {\text{d}}z, \\ & \left( {D_{1} ,\,D_{3} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{\alpha_{1}^{{}} }} \left( {1,z} \right){\text{d}}z + } \sum\limits_{k = 1}^{n} {\int\limits_{{h_{k - 1} }}^{{h_{k} }} {\alpha \left( {Q_{11}^{c} + Q_{12}^{c} } \right)} } \left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{\alpha_{1}^{{}} }} \left( {1,z} \right){\text{d}}z} , \\ & \left( {D_{2} ,\,D_{4} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{\alpha_{2}^{{}} }} \left( {1,z} \right){\text{d}}z + } \sum\limits_{k = 1}^{n} {\int\limits_{{h_{k - 1} }}^{{h_{k} }} {\alpha \left( {Q_{12}^{c} + Q_{22}^{c} } \right)} } \left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{\alpha_{2}^{{}} }} \left( {1,z} \right){\text{d}}z} ,\, \\ & \left( {E_{1} ,\,E_{3} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{\beta_{1}^{{}} }} \left( {1,z} \right){\text{d}}z + } \sum\limits_{k = 1}^{n} {\int\limits_{{h_{k - 1} }}^{{h_{k} }} {\beta_{c} } } \left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{\beta_{1}^{{}} }} \left( {1,z} \right){\text{d}}z} \\ & \left( {E_{2} ,\,E_{4} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{\beta_{2}^{{}} }} \left( {1,z} \right){\text{d}}z + } \sum\limits_{k = 1}^{n} {\int\limits_{{h_{k - 1} }}^{{h_{k} }} {\beta_{c} } } \left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{\beta_{2}^{{}} }} \left( {1,z} \right){\text{d}}z} \\ \end{aligned}$$
$$\begin{aligned} & \left( {F_{1} ,\,F_{3} } \right) = \left( {\int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{e_{31} }} } \frac{2}{h}\left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{e_{31}^{{}} }} \frac{2}{h}\left( {1,z} \right){\text{d}}z} } \right) \\ & \left( {F_{2} ,\,F_{4} } \right) = \left( {\int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{e_{32} }} } \frac{2}{h}\left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{e_{32}^{{}} }} \frac{2}{h}\left( {1,z} \right){\text{d}}z} } \right) \\ & \left( {G_{1} ,\,G_{3} } \right) = 2\left( {\int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{q_{31} }} } \frac{2}{h}\left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{q_{31}^{{}} }} \frac{2}{h}\left( {1,z} \right){\text{d}}z} } \right), \\ & \left( {G_{2} ,\,G_{4} } \right) = 2\left( {\int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{q_{32} }} } \frac{2}{h}\left( {1,z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{q_{32}^{{}} }} \frac{2}{h}\left( {1,z} \right){\text{d}}z} } \right), \\ & {\rm T}_{mn} = - K\left[ {\int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} \frac{1}{2} \overline{{e_{mn} }} \cos \left( {\kappa z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\frac{1}{2}\overline{{e_{mn} }} \cos \left( {\kappa z} \right)} {\text{d}}z} \right],\quad mn = 15,24 \\ & {\rm O}_{mn} = - K\left[ {\int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} \frac{1}{2} \overline{{q_{mn} }} \cos \left( {\kappa z} \right){\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\frac{1}{2}\overline{{q_{mn} }} \cos \left( {\kappa z} \right)} {\text{d}}z} \right],\quad mn = 15,24 \\ \end{aligned}$$

Appendix 3

$$\begin{aligned} & J_{11} \left( w \right) = A_{55} \frac{{\partial^{2} w}}{{\partial x^{2} }} + A_{44} \frac{{\partial^{2} w}}{{\partial y^{2} }} - k_{1} w + k_{2} \left( {\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{\partial^{2} w}}{{\partial y^{2} }}} \right),J_{12} \left( {\phi_{x} } \right) = A_{55} \frac{{\partial \phi_{x} }}{\partial x},J_{13} \left( {\phi_{y} } \right) = A_{44} \frac{{\partial \phi_{y} }}{\partial y}, \\ & J_{14} \left( f \right) = \frac{1}{{R_{x} }}\frac{{\partial^{2} f}}{{\partial x^{2} }},J_{15} \left( \Phi \right) = \left( {T_{15} \frac{{\partial^{2} }}{{\partial x^{2} }} + T_{24} \frac{{\partial^{2} }}{{\partial y^{2} }}} \right)\Phi ,J_{16} \left( \Psi \right) = \left( {O_{15} \frac{{\partial^{2} }}{{\partial x^{2} }} + O_{24} \frac{{\partial^{2} }}{{\partial y^{2} }}} \right)\Psi , \\ & O\left( {w,f} \right) = \frac{{\partial^{2} f}}{{\partial y^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }} - 2\frac{{\partial^{2} f}}{\partial x\partial y}\frac{{\partial^{2} w}}{\partial x\partial y} + \frac{{\partial^{2} f}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }}, \\ \end{aligned}$$
$$\begin{aligned} O^{*} (w^{*} ,f) & = A_{55} \frac{{\partial^{2} w^{*} }}{{\partial x^{2} }} + A_{44} \frac{{\partial^{2} w^{*} }}{{\partial y^{2} }} + \left( {\frac{{\partial^{2} f}}{{\partial y^{2} }}\frac{{\partial^{2} w^{*} }}{{\partial x^{2} }} - 2\frac{{\partial^{2} f}}{\partial x\partial y}\frac{{\partial^{2} w^{*} }}{\partial x\partial y} + \frac{{\partial^{2} f}}{{\partial x^{2} }}\frac{{\partial^{2} w^{*} }}{{\partial y^{2} }}} \right), \\ J_{21} (w^{*} ) & = - A_{55} \frac{\partial w*}{{\partial x}}, \\ J_{31} (w^{*} ) & = - A_{44} \frac{{\partial w^{*} }}{\partial y}, \\ \end{aligned}$$

Appendix 4

$$\begin{aligned} & l_{0} = - \left( {A_{55} \lambda_{m}^{2} + A_{44} \delta_{n}^{2} } \right), \\ & l_{1} = - \frac{1}{{R_{x} }}\lambda_{m}^{2} \overline{{I_{1} }} , \\ & l_{2} = - A_{55} \lambda_{m} - \frac{1}{{R_{x} }}\lambda_{m}^{2} \overline{{I_{2} }} ,\,l_{3} = - A_{44} \delta_{n} - \frac{1}{{R_{x} }}\lambda_{m}^{2} \overline{{I_{3} }} , \\ & l_{4} = - \left( {T_{15} \lambda_{m}^{2} + T_{24} \delta_{n}^{2} } \right) - \frac{1}{{R_{x} }}\lambda_{m}^{2} \overline{{I_{4} }} ,\,l_{5} = - \left( {O_{15} \lambda_{m}^{2} + O_{24} \delta_{n}^{2} } \right) - \frac{1}{{R_{x} }}\lambda_{m}^{2} \overline{{I_{5} }} , \\ & l_{6} = l_{0} - \left( {N_{x0} \lambda_{m}^{2} + N_{y0} \delta_{n}^{2} } \right) \\ & l_{7} = \frac{{32\lambda_{m}^{2} \delta_{n}^{2} }}{{3mn\pi^{2} }}\overline{{I_{1} }} ,\,\,l_{8} = \frac{{32\lambda_{m}^{2} \delta_{n}^{2} }}{{3mn\pi^{2} }}\overline{{I_{2} }} ,\,l_{9} = \frac{{32\lambda_{m}^{2} \delta_{n}^{2} }}{{3mn\pi^{2} }}\overline{{I_{3} }} , \\ & l_{10} = \frac{{32\lambda_{m}^{2} \delta_{n}^{2} }}{{3mn\pi^{2} }}\overline{{I_{4} }} ,\,\,l_{11} = \frac{{32\lambda_{m}^{2} \delta_{n}^{2} }}{{3mn\pi^{2} }}\overline{{I_{5} }} ,\,l_{12} = \frac{{2\delta_{n}^{2} }}{{3mn\pi^{2} \overline{{B_{2} }} R_{x} }}, \\ & l_{13} = - \frac{{\delta_{n}^{4} }}{{16\overline{{B_{2} }} }} - \frac{{\lambda_{m}^{4} }}{{16\overline{{A_{1} }} }},\,\,l_{14} = \frac{16}{{mn\pi^{2} }}, \\ \end{aligned}$$
$$\begin{aligned} & l_{21} = \left( { - D_{1} \delta_{n}^{2} + D_{10} \delta_{n}^{2} - D_{2} \lambda_{m}^{2} } \right)\lambda_{m} \overline{{I_{1} }} , \\ & l_{22} = - \left( {D_{3} \lambda_{m}^{2} + H_{10} \delta_{n}^{2} + A_{55} } \right) + \left( { - D_{1} \delta_{n}^{2} + D_{10} \delta_{n}^{2} - D_{2} \lambda_{m}^{2} } \right)\lambda_{m} \overline{{I_{2} }} , \\ & l_{23} = - \left( {D_{4} + H_{10} } \right)\lambda_{m} \delta_{n} + \left( { - D_{1} \delta_{n}^{2} + D_{10} \delta_{n}^{2} - D_{2} \lambda_{m}^{2} } \right)\lambda_{m} \overline{{I_{3} }} , \\ & l_{24} = \left( {D_{5} - T_{15} } \right)\lambda_{m} - \left( {D_{1} \delta_{n}^{2} - D_{10} \delta_{n}^{2} + D_{2} \lambda_{m}^{2} } \right)\lambda_{m} \overline{{I_{4} }} , \\ & l_{25} = \left( {D_{6} - O_{15} } \right)\lambda_{m} - \left( {D_{1} \delta_{n}^{2} - D_{10} \delta_{n}^{2} + D_{2} \lambda_{m}^{2} } \right)\lambda_{m} \overline{{I_{5} }} , \\ & l_{26} = - A_{55} \lambda_{m} ,l_{27} = \frac{{8\lambda_{m} \delta_{n}^{2} D_{2} }}{{3mn\pi^{2} \overline{{B_{2} }} }}, \\ \end{aligned}$$
$$\begin{aligned} & l_{31} = \left( {D_{10} \lambda_{m}^{2} - H_{1} \delta_{n}^{2} - H_{2} \lambda_{m}^{2} } \right)\delta_{n} \overline{{I_{1} }} , \\ & l_{32} = - \left( {H_{3} + H_{10} } \right)\lambda_{m} \delta_{n} + \left( {D_{10} \lambda_{m}^{2} - H_{1} \delta_{n}^{2} - H_{2} \lambda_{m}^{2} } \right)\delta_{n} \overline{{I_{2} }} , \\ & l_{33} = - \left( {H_{4} \delta_{n}^{2} + H_{10} \lambda_{m}^{2} + A_{44} } \right) + \left( {D_{10} \lambda_{m}^{2} - H_{1} \delta_{n}^{2} - H_{2} \lambda_{m}^{2} } \right)\delta_{n} \overline{{I_{3} }} , \\ & l_{34} = \left[ {\left( {H_{5} - T_{24} } \right) + \left( {D_{10} \lambda_{m}^{2} - H_{1} \delta_{n}^{2} - H_{2} \lambda_{m}^{2} } \right)\overline{{I_{4} }} } \right]\delta_{n} , \\ & l_{35} = \left[ {\left( {H_{6} - O_{24} } \right) + \left( {D_{10} \lambda_{m}^{2} - H_{1} \delta_{n}^{2} - H_{2} \lambda_{m}^{2} } \right)\overline{{I_{5} }} } \right]\delta_{n} , \\ & l_{36} = - A_{44} \delta_{n} , \\ & l_{37} = \frac{{8\lambda_{m}^{2} \delta_{n} H_{1} }}{{3mn\pi^{2} \overline{{A_{1} }} }}, \\ \end{aligned}$$

Appendix 5

$$\begin{aligned} & \overline{{a_{1} }} = \left( { - a_{1} \lambda_{m}^{2} - a_{2} \delta_{n}^{2} } \right) - \left( {a_{9} \lambda_{m}^{2} + a_{10} \delta_{n}^{2} } \right)\overline{{I_{1} }} , \\ & \overline{{a_{2} }} = - a_{3} \lambda_{m} - \left( {a_{9} \lambda_{m}^{2} + a_{10} \delta_{n}^{2} } \right)\overline{{I_{2} }} , \\ & \overline{{a_{3} }} = - a_{4} \delta_{n} - \left( {a_{9} \lambda_{m}^{2} + a_{10} \delta_{n}^{2} } \right)\overline{{I_{3} }} , \\ & \overline{{a_{4} }} = - \left( {a_{5} \lambda_{m}^{2} + a_{6} \delta_{n}^{2} - a_{11} } \right) - \left( {a_{9} \lambda_{m}^{2} + a_{10} \delta_{n}^{2} } \right)\overline{{I_{4} }} , \\ & \overline{{a_{5} }} = - \left( {a_{7} \lambda_{m}^{2} + a_{8} \delta_{n}^{2} - a_{12} } \right) - \left( {a_{9} \lambda_{m}^{2} + a_{10} \delta_{n}^{2} } \right)\overline{{I_{5} }} , \\ & \overline{{a_{6} }} = \frac{{2\delta_{n}^{2} a_{9} }}{{3mn\pi^{2} \overline{{B_{2} }} }} + \frac{{2\lambda_{m}^{2} a_{10} }}{{3mn\pi^{2} \overline{{A_{1} }} }}, \\ & \overline{{a_{7} }} = \frac{16}{{mn\pi^{2} }},\,\,\overline{{a_{8} }} = \frac{16}{{mn\pi^{2} }}a_{13} , \\ & \overline{{a_{9} }} = \frac{16}{{mn\pi^{2} }}a_{14} ,\,\overline{{a_{10} }} = \frac{16}{{mn\pi^{2} }}a_{15} ,\,\overline{{a_{11} }} = \frac{16}{{mn\pi^{2} }}a_{16} , \\ & \overline{{a_{21} }} = \left( { - a_{21} \lambda_{m}^{2} - a_{22} \delta_{n}^{2} } \right) - \left( {a_{29} \lambda_{m}^{2} + a_{30} \delta_{n}^{2} } \right)\overline{{I_{1} }} , \\ & \overline{{a_{22} }} = - a_{23} \lambda_{m} - \left( {a_{29} \lambda_{m}^{2} + a_{30} \delta_{n}^{2} } \right)\overline{{I_{2} }} , \\ & \overline{{a_{23} }} = - a_{24} \delta_{n} - \left( {a_{29} \lambda_{m}^{2} + a_{30} \delta_{n}^{2} } \right)\overline{{I_{3} }} , \\ & \overline{{a_{24} }} = - \left( {a_{25} \lambda_{m}^{2} + a_{26} \delta_{n}^{2} - a_{31} } \right) - \left( {a_{29} \lambda_{m}^{2} + a_{30} \delta_{n}^{2} } \right)\overline{{I_{4} }} , \\ & \overline{{a_{25} }} = - \left( {a_{27} \lambda_{m}^{2} + a_{28} \delta_{n}^{2} - a_{32} } \right) - \left( {a_{29} \lambda_{m}^{2} + a_{30} \delta_{n}^{2} } \right)\overline{{I_{5} }} , \\ & \overline{{a_{26} }} = \frac{{2\delta_{n}^{2} a_{29} }}{{3mn\pi^{2} \overline{{B_{2} }} }} + \frac{{2\lambda_{m}^{2} a_{30} }}{{3mn\pi^{2} \overline{{A_{1} }} }},\overline{{a_{27} }} = \frac{16}{{mn\pi^{2} }},\,\overline{{a_{28} }} = \frac{16}{{mn\pi^{2} }}a_{33} , \\ & \overline{{a_{29} }} = \frac{16}{{mn\pi^{2} }}a_{34} ,\,\,\overline{{a_{30} }} = \frac{16}{{mn\pi^{2} }}a_{35} ,\,\overline{{a_{31} }} = \frac{16}{{mn\pi^{2} }}a_{36} , \\ \end{aligned}$$
$$\begin{aligned} a_{1} &= \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{e_{15}^{{}} }} \cos (\kappa z)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{e_{15}^{{}} }} \cos (\kappa z)} {\text{d}}z, \\ a_{2} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{e_{24} }} \cos (\kappa z)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{e_{24} }} \cos (\kappa z)} {\text{d}}z, \\ a_{3} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left[ {\overline{{e_{15}^{{}} }} \cos (\kappa z) + \left( {\overline{{A_{3} }} \overline{{e_{31} }} + \overline{{B_{3} }} \overline{{e_{32} }} + \overline{{e_{31} }} z} \right)\kappa \sin (\kappa z)} \right]} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left[ {\overline{{e_{15}^{{}} }} \cos (\kappa z) + \left( {\overline{{A_{3} }} \overline{{e_{31} }} + \overline{{B_{3} }} \overline{{e_{32} }} + \overline{{e_{31} }} z} \right)\kappa \sin (\kappa z)} \right]} {\text{d}}z, \\ a_{4} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left[ {\overline{{e_{24} }} \cos (\kappa z) + \left( {\overline{{A_{4} }} \overline{{e_{31} }} + \overline{{B_{4} }} \overline{{e_{32} }} + \overline{{e_{32} }} z} \right)\kappa \sin (\kappa z)} \right]} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left[ {\overline{{e_{24} }} \cos (\kappa z) + \left( {\overline{{A_{4} }} \overline{{e_{31} }} + \overline{{B_{4} }} \overline{{e_{32} }} + \overline{{e_{32} }} z} \right)\kappa \sin (\kappa z)} \right]} {\text{d}}z, \\ a_{5} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{\eta_{11} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{\eta_{11} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z, \\ a_{6} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{\eta_{22}^{{}} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{\eta_{22}^{{}} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z, \\ a_{7} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{m_{11}^{{}} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{m_{11}^{{}} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z, \\ a_{8} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{m_{22}^{{}} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{m_{22}^{{}} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z, \\ \end{aligned}$$
$$\begin{aligned} a_{9} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{2} }} \overline{{e_{31} }} + \overline{{B_{2} }} \overline{{e_{32} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{2} }} \overline{{e_{31} }} + \overline{{B_{2} }} \overline{{e_{32} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ a_{10} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{1} }} \overline{{e_{31} }} + \overline{{B_{1} }} \overline{{e_{32} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{1} }} \overline{{e_{31} }} + \overline{{B_{1} }} \overline{{e_{32} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ a_{11} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left[ {\overline{{A_{5} }} \overline{{e_{31} }} + \overline{{B_{5} }} \overline{{e_{32} }} - \overline{{\eta_{33}^{{}} }} \kappa \sin \left( {\kappa z} \right)} \right]\kappa \sin (\kappa z)} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left[ {\overline{{A_{5} }} \overline{{e_{31} }} + \overline{{B_{5} }} \overline{{e_{32} }} - \overline{{\eta_{33}^{{}} }} \kappa \sin \left( {\kappa z} \right)} \right]\kappa \sin (\beta z)} {\text{d}}z, \\ a_{12} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left[ {\overline{{A_{7} }} \overline{{e_{31} }} + \overline{{B_{7} }} \overline{{e_{32} }} - \overline{{m_{33}^{{}} }} \kappa \sin \left( {\kappa z} \right)} \right]\kappa \sin (\kappa z)} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left[ {\overline{{A_{7} }} \overline{{e_{31} }} + \overline{{B_{7} }} \overline{{e_{32} }} - \overline{{m_{33}^{{}} }} \kappa \sin \left( {\kappa z} \right)} \right]\kappa \sin (\kappa z)} {\text{d}}z, \\ \end{aligned}$$
$$\begin{aligned} a_{13} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{9} }} \overline{{e_{31} }} + \overline{{B_{9} }} \overline{{e_{32} }} + \overline{{p_{3} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{9}^{{}} }} \overline{{e_{31} }} + \overline{{B_{9} }} \overline{{e_{32} }} + \overline{{p_{3} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ a_{14} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{9}^{*} }} \overline{{e_{31} }} + \overline{{B_{9}^{*} }} \overline{{e_{32} }} + \overline{{\chi_{3} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{9}^{*} }} \overline{{e_{31} }} + \overline{{B_{9}^{*} }} \overline{{e_{32} }} + \overline{{\chi_{3} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ \end{aligned}$$
$$\begin{aligned} a_{15} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{6} }} \overline{{e_{31} }} + \overline{{B_{6} }} \overline{{e_{32} }} - \overline{{\eta_{33}^{{}} }} \frac{2}{h}} \right)\kappa \sin (\kappa z)} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{6} }} \overline{{e_{31} }} + \overline{{B_{6} }} \overline{{e_{32} }} - \overline{{\eta_{33}^{{}} }} \frac{2}{h}} \right)} \kappa \sin (\kappa z){\text{d}}z, \\ a_{16} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{8}^{{}} }} \overline{{e_{31} }} + \overline{{B_{8}^{{}} }} \overline{{e_{32} }} - \overline{{m_{33}^{{}} }} \frac{2}{h}} \right)} \kappa \sin (\kappa z){\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{8}^{{}} }} \overline{{e_{31} }} + \overline{{B_{8}^{{}} }} \overline{{e_{32} }} - \overline{{m_{33}^{{}} }} \frac{2}{h}} \right)} \kappa \sin (\kappa z){\text{d}}z, \\ a_{21} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{q_{15} }} \cos (\kappa z)} dz + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{q_{15} }} \cos (\kappa z)} {\text{d}}z, \\ a_{22} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{q_{24} }} \cos (\kappa z)} dz + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{q_{24} }} \cos (\kappa z)} {\text{d}}z, \\ a_{23} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left[ {\overline{{q_{15} }} \cos (\kappa z) + \left( {\overline{{A_{3} }} \overline{{q_{31} }} + \overline{{B_{3} }} \overline{{q_{32} }} + \overline{{q_{31} }} z} \right)\kappa \sin (\kappa z)} \right]} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left[ {\overline{{q_{15} }} \cos (\kappa z) + \left( {\overline{{A_{3} }} \overline{{q_{31} }} + \overline{{B_{3} }} \overline{{q_{32} }} + \overline{{q_{31} }} z} \right)\kappa \sin (\kappa z)} \right]} {\text{d}}z, \\ a_{24} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left[ {\overline{{q_{24} }} \cos (\kappa z) + \left( {\overline{{A_{4} }} \overline{{q_{31} }} + \overline{{B_{4} }} \overline{{q_{32} }} + \overline{{q_{32} }} z} \right)\kappa \sin (\kappa z)} \right]} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left[ {\overline{{q_{24} }} \cos (\kappa z) + \left( {\overline{{A_{4} }} \overline{{q_{31} }} + \overline{{B_{4} }} \overline{{q_{32} }} + \overline{{q_{32} }} z} \right)\kappa \sin (\kappa z)} \right]} {\text{d}}z, \\ a_{25} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{m_{11} }} \cos^{2} \left( {\kappa z} \right)} dz + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{m_{11} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z, \\ \end{aligned}$$
$$\begin{aligned} a_{26} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{m_{22} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{m_{22} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z, \\ a_{27} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{\mu_{11} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{\mu_{11} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z, \\ a_{28} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\overline{{\mu_{22} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\overline{{\mu_{22} }} \cos^{2} \left( {\kappa z} \right)} {\text{d}}z, \\ a_{29} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{2} }} \overline{{q_{31} }} + \overline{{B_{2} }} \overline{{q_{32} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{2} }} \overline{{q_{31} }} + \overline{{B_{2} }} \overline{{q_{32} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ a_{30} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{1} }} \overline{{q_{31} }} + \overline{{B_{1} }} \overline{{q_{32} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{1} }} \overline{{q_{31} }} + \overline{{B_{1} }} \overline{{q_{32} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ a_{31} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left[ {\overline{{A_{5} }} \overline{{q_{31} }} + \overline{{B_{5} }} \overline{{q_{32} }} - \overline{{m_{33} }} \kappa \sin \left( {\kappa z} \right)} \right]\kappa \sin (\kappa z)} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left[ {\overline{{A_{5} }} \overline{{q_{31} }} + \overline{{B_{5} }} \overline{{q_{32} }} - \overline{{m_{33} }} \kappa \sin \left( {\kappa z} \right)} \right]\kappa \sin (\kappa z)} {\text{d}}z, \\ \end{aligned}$$
$$\begin{aligned} a_{32} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left[ {\overline{{A_{7} }} \overline{{q_{31} }} + \overline{{B_{7} }} \overline{{q_{32} }} - \overline{{\mu_{33} }} \kappa \sin \left( {\kappa z} \right)} \right]\kappa \sin (\kappa z)} {\text{d}}z \\ & + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left[ {\overline{{A_{7} }} \overline{{q_{31} }} + \overline{{B_{7} }} \overline{{q_{32} }} - \overline{{\mu_{33} }} \kappa \sin \left( {\kappa z} \right)} \right]\kappa \sin (\kappa z)} {\text{d}}z, \\ a_{33} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{9} }} \overline{{q_{31} }} + \overline{{B_{9} }} \overline{{q_{32} }} + \overline{{\lambda_{3} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z \\ & \quad + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{9} }} \overline{{q_{31} }} + \overline{{B_{9} }} \overline{{q_{32} }} + \overline{{\lambda_{3} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ a_{34} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{9}^{*} }} \overline{{q_{31} }} + \overline{{B_{9}^{*} }} \overline{{q_{32} }} + \overline{{\zeta_{3} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z \\ & + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{9}^{*} }} \overline{{q_{31} }} + \overline{{B_{9}^{*} }} \overline{{q_{32} }} + \overline{{\zeta_{3} }} } \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ a_{35} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{6} }} \overline{{q_{31} }} + \overline{{B_{6} }} \overline{{q_{32} }} - \overline{{m_{33} }} \frac{2}{h}} \right)\kappa \sin (\kappa z)} {\text{d}}z \\ & + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{6} }} \overline{{q_{31} }} + \overline{{B_{6} }} \overline{{q_{32} }} - \overline{{m_{33} }} \frac{2}{h}} \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ a_{36} & = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{f} }}^{{ - \frac{{h_{c} }}{2}}} {\left( {\overline{{A_{8} }} \overline{{q_{31} }} + \overline{{B_{8} }} \overline{{q_{32} }} - \overline{{\mu_{33} }} \frac{2}{h}} \right)\kappa \sin (\kappa z)} {\text{d}}z + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\left( {\overline{{A_{8} }} \overline{{q_{31} }} + \overline{{B_{8} }} \overline{{q_{32} }} - \overline{{\mu_{33} }} \frac{2}{h}} \right)\kappa \sin (\kappa z)} {\text{d}}z, \\ \end{aligned}$$

Appendix 6

\(\begin{aligned} l_{1}^{1} & = l_{1} + c_{1} l_{4} + c_{11} l_{5} , \\ l_{2}^{1} & = l_{2} + c_{2} l_{4} + c_{12} l_{5} , \\ l_{3}^{1} & = l_{3} + c_{3} l_{4} + c_{13} l_{5} , \\ l_{4}^{1} & = l_{0} + \\ & \quad + \left( {c_{7} l_{10} + c_{17} l_{11} } \right)\Delta T + \left( {c_{8} l_{10} + c_{18} l_{11} } \right)\Delta m \\ & \quad + \left( {c_{9} l_{10} + c_{19} l_{11} } \right)\phi_{0} + \left( {c_{10} l_{10} + c_{20} l_{11} } \right)\psi_{0} , \\ l_{5}^{1} & = c_{5} l_{10} + c_{15} l_{11} - \lambda_{m}^{2} , \\ l_{6}^{1} & = c_{6} l_{10} + c_{16} l_{11} - \delta_{n}^{2} , \\ l_{7}^{1} & = l_{7} + c_{1} l_{10} + c_{11} l_{11} , \\ l_{8}^{1} & = l_{8} + c_{2} l_{10} + c_{12} l_{11,} \\ l_{9}^{1} & = l_{9} + c_{3} l_{10} + c_{13} l_{11} , \\ l_{10}^{1} & = l_{12} + c_{4} l_{4} + c_{14} l_{5} , \\ l_{11}^{1} & = l_{13} + c_{4} l_{10} + c_{14} l_{11} , \\ l_{12}^{1} & = c_{5} l_{4} + c_{15} l_{5} , \\ l_{13}^{1} & = l_{14} \frac{1}{{R_{x} }} + c_{6} l_{4} + c_{16} l_{5} , \\ l_{14}^{1} & = \left( {c_{7} l_{4} + c_{17} l_{5} } \right)\Delta T + \left( {c_{8} l_{4} + c_{18} l_{5} } \right)\Delta m \\ & \quad + \left( {c_{9} l_{4} + c_{19} l_{5} } \right)\phi_{0} + \left( {c_{10} l_{4} + c_{20} l_{5} } \right)\psi_{0} , \\ \end{aligned}\)

\(\begin{aligned} l_{21}^{1} & = l_{21} + c_{1} l_{24} + c_{11} l_{25} , \\ l_{22}^{1} & = l_{22} + c_{2} l_{24} + c_{12} l_{25} , \\ l_{23}^{1} & = l_{23} + c_{3} l_{24} + c_{13} l_{25} , \\ l_{24}^{1} & = l_{27} + c_{4} l_{24} + c_{14} l_{25} , \\ l_{25}^{1} & = c_{5} l_{24} + c_{15} l_{25} , \\ l_{26}^{1} & = c_{6} l_{24} + c_{16} l_{25} , \\ l_{27}^{1} & = \left( {c_{7} l_{24} + c_{17} l_{25} } \right)\Delta T + \left( {c_{8} l_{24} + c_{18} l_{25} } \right)\Delta m \\ & \quad + \left( {c_{9} l_{24} + c_{19} l_{25} } \right)\phi_{0} + \left( {c_{10} l_{24} + c_{20} l_{25} } \right)\psi_{0} , \\ l_{31}^{1} & = l_{31} + c_{1} l_{34} + c_{11} l_{35,} \\ l_{32}^{1} & = l_{32} + c_{2} l_{34} + c_{12} l_{35} , \\ l_{33}^{1} & = l_{33} + c_{3} l_{34} + c_{13} l_{35} , \\ l_{34}^{1} & = l_{37} + c_{4} l_{34} + c_{14} l_{35} , \\ l_{35}^{1} & = c_{5} l_{34} + c_{15} l_{35} , \\ l_{36}^{1} & = c_{6} l_{34} + c_{16} l_{35} , \\ l_{37}^{1} & = \left( {c_{7} l_{34} + c_{17} l_{35} } \right)\Delta T + \left( {c_{8} l_{34} + c_{18} l_{35} } \right)\Delta m \\ & \quad + \left( {c_{9} l_{34} + c_{19} l_{35} } \right)\phi_{0} + \left( {c_{10} l_{34} + c_{20} l_{35} } \right)\psi_{0} , \\ \end{aligned}\)

\(\begin{aligned} & c_{0} = \overline{{a_{4} }} \overline{{a_{25} }} - \overline{{a_{5} }} \overline{{a_{24} }} , \\ & c_{1} = \frac{{\overline{{a_{5} }} \overline{{a_{21} }} - \overline{{a_{1} }} \overline{{a_{25} }} }}{{c_{0} }},\,c_{2} = \frac{{\overline{{a_{5} }} \overline{{a_{22} }} - \overline{{a_{2} }} \overline{{a_{25} }} }}{{c_{0} }}, \\ & c_{3} = \frac{{\overline{{a_{5} }} \overline{{a_{23} }} - \overline{{a_{3} }} \overline{{a_{25} }} }}{{c_{0} }},\,c_{4} = \frac{{\overline{{a_{5} }} \overline{{a_{26} }} - \overline{{a_{6} }} \overline{{a_{25} }} }}{{c_{0} }}, \\ & c_{5} = \frac{{\overline{{a_{5} }} \overline{{a_{27} }} a_{30} - \overline{{a_{7} }} \overline{{a_{25} }} a_{10} }}{{\overline{{a_{4} }} \overline{{a_{25} }} - \overline{{a_{5} }} \overline{{a_{24} }} }}, \\ & c_{6} = \frac{{\overline{{a_{5} }} \overline{{a_{27} }} a_{29} - \overline{{a_{7} }} \overline{{a_{25} }} a_{9} }}{{\overline{{a_{4} }} \overline{{a_{25} }} - \overline{{a_{5} }} \overline{{a_{24} }} }}, \\ & c_{7} = \frac{{\overline{{a_{5} }} \overline{{a_{28} }} - \overline{{a_{8} }} \overline{{a_{25} }} }}{{c_{0} }},\,c_{8} = \frac{{\overline{{a_{5} }} \overline{{a_{29} }} - \overline{{a_{9} }} \overline{{a_{25} }} }}{{c_{0} }}, \\ & c_{9} = \frac{{\overline{{a_{5} }} \overline{{a_{30} }} - \overline{{a_{10} }} \overline{{a_{25} }} }}{{c_{0} }},\,c_{10} = \frac{{\overline{{a_{5} }} \overline{{a_{31} }} - \overline{{a_{11} }} \overline{{a_{25} }} }}{{c_{0} }}, \\ \end{aligned}\)

\(\begin{aligned} & c_{11} = \frac{{\overline{{a_{1} }} \overline{{a_{24} }} - \overline{{a_{4} }} \overline{{a_{21} }} }}{{c_{0} }},\,c_{12} = \frac{{\overline{{a_{2} }} \overline{{a_{24} }} - \overline{{a_{4} }} \overline{{a_{22} }} }}{{c_{0} }}, \\ & c_{13} = \frac{{\overline{{a_{3} }} \overline{{a_{24} }} - \overline{{a_{4} }} \overline{{a_{23} }} }}{{c_{0} }},\,c_{14} = \frac{{\overline{{a_{6} }} \overline{{a_{24} }} - \overline{{a_{4} }} \overline{{a_{26} }} }}{{c_{0} }}, \\ & c_{15} = \frac{{\overline{{a_{7} }} \overline{{a_{24} }} a_{10} - \overline{{a_{4} }} \overline{{a_{27} }} a_{30} }}{{\overline{{a_{4} }} \overline{{a_{25} }} - \overline{{a_{5} }} \overline{{a_{24} }} }}, \\ & c_{16} = \frac{{\overline{{a_{7} }} \overline{{a_{24} }} a_{9} - \overline{{a_{4} }} \overline{{a_{27} }} a_{29} }}{{\overline{{a_{4} }} \overline{{a_{25} }} - \overline{{a_{5} }} \overline{{a_{24} }} }}, \\ & c_{17} = \frac{{\overline{{a_{8} }} \overline{{a_{24} }} - \overline{{a_{4} }} \overline{{a_{28} }} }}{{c_{0} }},\,c_{18} = \frac{{\overline{{a_{9} }} \overline{{a_{24} }} - \overline{{a_{4} }} \overline{{a_{29} }} }}{{c_{0} }}, \\ & c_{19} = \frac{{\overline{{a_{10} }} \overline{{a_{24} }} - \overline{{a_{4} }} \overline{{a_{30} }} }}{{c_{0} }},\,c_{20} = \frac{{\overline{{a_{11} }} \overline{{a_{24} }} - \overline{{a_{4} }} \overline{{a_{31} }} }}{{c_{0} }}, \\ \end{aligned}\)

Appendix 7

\(\begin{aligned} & \overline{{n_{0} }} = n_{1} n_{22} - n_{2} n_{21} ,\,\overline{{n_{1} }} = \frac{{n_{3} n_{22} - n_{2} n_{23} }}{{\overline{{n_{0} }} }} \\ & \overline{{n_{2} }} = \frac{{n_{4} n_{22} - n_{2} n_{24} }}{{\overline{{n_{0} }} }},\,\overline{{n_{3} }} = \frac{{n_{5} n_{22} - n_{2} n_{25} }}{{\overline{{n_{0} }} }} \\ & \overline{{n_{4} }} = \frac{{n_{6} n_{22} - n_{2} n_{26} }}{{\overline{{n_{0} }} }},\,\overline{{n_{5} }} = \frac{{n_{7} n_{22} - n_{2} n_{27} }}{{\overline{{n_{0} }} }} \\ & \overline{{n_{6} }} = \frac{{n_{8} n_{22} - n_{2} n_{28} }}{{\overline{{n_{0} }} }},\,\overline{{n_{7} }} = \frac{{n_{9} n_{22} - n_{2} n_{29} }}{{\overline{{n_{0} }} }} \\ & \overline{{n_{8} }} = \frac{{n_{10} n_{22} - n_{2} n_{30} }}{{\overline{{n_{0} }} }} \\ & n_{1} = 1 - c_{5} m_{4} - c_{15} m_{5} ,\,\, \\ & n_{2} = - \left( {c_{6} m_{4} + c_{16} m_{5} } \right), \\ & n_{3} = m_{1} + c_{1} m_{4} + c_{11} m_{5} , \\ & n_{4} = m_{2} + c_{2} m_{4} + c_{12} m_{5} , \\ & n_{5} = m_{3} + c_{3} m_{4} + c_{13} m_{5} , \\ & n_{6} = m_{6} + c_{4} m_{4} + c_{14} m_{5} , \\ & n_{7} = m_{8} + c_{8} m_{4} + c_{18} m_{5} , \\ & n_{8} = m_{8} + c_{8} m_{4} + c_{18} m_{5} , \\ & n_{9} = m_{9} + c_{9} m_{4} + c_{19} m_{5} , \\ & n_{10} = m_{10} + c_{10} m_{4} + c_{20} m_{5} , \\ \end{aligned}\)

\(\begin{gathered} \overline{{n_{21} }} = \frac{{n_{1} n_{23} - n_{3} n_{21} }}{{\overline{{n_{0} }} }},\,\,\,\,\,\overline{{n_{22} }} = \frac{{n_{1} n_{24} - n_{4} n_{21} }}{{\overline{{n_{0} }} }} \hfill \\ \overline{{n_{23} }} = \frac{{n_{1} n_{25} - n_{5} n_{21} }}{{\overline{{n_{0} }} }},\,\,\,\,\,\overline{{n_{24} }} = \frac{{n_{1} n_{26} - n_{6} n_{21} }}{{\overline{{n_{0} }} }} \hfill \\ \overline{{n_{25} }} = \frac{{n_{1} n_{27} - n_{7} n_{21} }}{{\overline{{n_{0} }} }},\,\,\,\,\,\overline{{n_{26} }} = \frac{{n_{1} n_{28} - n_{8} n_{21} }}{{\overline{{n_{0} }} }} \hfill \\ \overline{{n_{27} }} = \frac{{n_{1} n_{29} - n_{9} n_{21} }}{{\overline{{n_{0} }} }},\,\,\,\,\,\overline{{n_{28} }} = \frac{{n_{1} n_{30} - n_{10} n_{21} }}{{\overline{{n_{0} }} }} \hfill \\ n_{21} = - \left( {c_{5} m_{24} + c_{15} m_{25} } \right),\, \hfill \\ n_{22} = \left( {1 - c_{6} m_{24} - c_{16} m_{25} } \right) \hfill \\ n_{23} = m_{21} + c_{1} m_{24} + c_{11} m_{25} \hfill \\ n_{24} = m_{22} + c_{2} m_{24} + c_{12} m_{25} \hfill \\ n_{25} = m_{23} + c_{3} m_{24} + c_{13} m_{25} \hfill \\ n_{26} = m_{26} + c_{4} m_{24} + c_{14} m_{25} \hfill \\ n_{27} = m_{27} + c_{7} m_{24} + c_{17} m_{25} \hfill \\ n_{28} = m_{28} + c_{8} m_{24} + c_{18} m_{25} \hfill \\ n_{29} = m_{29} + c_{9} m_{24} + c_{19} m_{25} \hfill \\ n_{30} = m_{30} + c_{10} m_{24} + c_{20} m_{25} \hfill \\ \end{gathered}\)

\(\begin{aligned} & m_{0} = \overline{{A_{1} }} \overline{{B_{2} }} - \overline{{A_{2} }} \overline{{B_{1} }} , \\ & m_{1} = \frac{4}{{mn\pi^{2} }}\left( {\delta_{n}^{2} \overline{{I_{1} }} - \frac{{\overline{{B_{2} }} }}{{R_{x} m_{0} }}} \right), \\ & m_{2} = \frac{4}{{mn\pi^{2} }}\left[ {\delta_{n}^{2} \overline{{I_{2} }} + \frac{{\overline{{A_{3} }} \overline{{B_{2} }} - \overline{{A_{2} }} \overline{{B_{3} }} }}{{m_{0} }}\lambda_{m} } \right], \\ & m_{3} = \frac{4}{{mn\pi^{2} }}\left[ {\delta_{n}^{2} \overline{{I_{3} }} + \frac{{\overline{{A_{4} }} \overline{{B_{2} }} - \overline{{A_{2} }} \overline{{B_{4} }} }}{{m_{0} }}\delta_{n} } \right], \\ & m_{4} = \frac{4}{{mn\pi^{2} }}\left[ {\delta_{n}^{2} \overline{{I_{4} }} + \frac{{\overline{{A_{2} }} \overline{{B_{5} }} - \overline{{A_{5} }} \overline{{B_{2} }} }}{{m_{0} }}} \right], \\ & m_{5} = \frac{4}{{mn\pi^{2} }}\left[ {\delta_{n}^{2} \overline{{I_{5} }} + \frac{{\overline{{A_{2} }} \overline{{B_{7} }} - \overline{{A_{7} }} \overline{{B_{2} }} }}{{m_{0} }}} \right], \\ & m_{6} = \frac{1}{8}\frac{{\overline{{B_{2} }} \lambda_{m}^{2} - \overline{{A_{2} }} \delta_{n}^{2} }}{{m_{0} }},m_{7} = \frac{{\overline{{A_{2} }} \overline{{B_{9} }} - \overline{{A_{9} }} \overline{{B_{2} }} }}{{m_{0} }}, \\ & m_{8} = \frac{{\overline{{A_{2} }} \overline{{B_{9}^{*} }} - \overline{{A_{9}^{*} }} \overline{{B_{2} }} }}{{m_{0} }},m_{9} = \frac{{\overline{{A_{2} }} \overline{{B_{6} }} - \overline{{A_{6} }} \overline{{B_{2} }} }}{{m_{0} }}, \\ & m_{10} = \frac{{\overline{{A_{2} }} \overline{{B_{8} }} - \overline{{A_{8} }} \overline{{B_{2} }} }}{{m_{0} }}, \\ \end{aligned}\)

\(\begin{aligned} & m_{21} = \frac{4}{{mn\pi^{2} }}\left( {\lambda_{m}^{2} \overline{{I_{1} }} + \frac{{\overline{{B_{1} }} }}{{R_{x} m_{0} }}} \right), \\ & m_{22} = \frac{4}{{mn\pi^{2} }}\left[ {\lambda_{m}^{2} \overline{{I_{2} }} + \frac{{\overline{{A_{1} }} \overline{{B_{3} }} - \overline{{A_{3} }} \overline{{B_{1} }} }}{{m_{0} }}\lambda_{m} } \right], \\ & m_{23} = \frac{4}{{mn\pi^{2} }}\left[ {\lambda_{m}^{2} \overline{{I_{3} }} + \frac{{\overline{{A_{1} }} \overline{{B_{4} }} - \overline{{A_{4} }} \overline{{B_{1} }} }}{{m_{0} }}\delta_{n} } \right], \\ & m_{24} = \frac{4}{{mn\pi^{2} }}\left[ {\lambda_{m}^{2} \overline{{I_{4} }} + \frac{{\overline{{A_{5} }} \overline{{B_{1} }} - \overline{{A_{1} }} \overline{{B_{5} }} }}{{m_{0} }}} \right], \\ & m_{25} = \frac{4}{{mn\pi^{2} }}\left[ {\lambda_{m}^{2} \overline{{I_{5} }} + \frac{{\overline{{A_{7} }} \overline{{B_{1} }} - \overline{{A_{1} }} \overline{{B_{7} }} }}{{m_{0} }}} \right], \\ & m_{26} = \frac{1}{8}\frac{{\overline{{A_{1} }} \delta_{n}^{2} - \overline{{B_{1} }} \lambda_{m}^{2} }}{{m_{0} }},m_{27} = \frac{{\overline{{A_{9} }} \overline{{B_{1} }} - \overline{{A_{1} }} \overline{{B_{9} }} }}{{m_{0} }}, \\ & m_{28} = \frac{{\overline{{A_{9}^{*} }} \overline{{B_{1} }} - \overline{{A_{1} }} \overline{{B_{9}^{*} }} }}{{m_{0} }},m_{29} = \frac{{\overline{{A_{6} }} \overline{{B_{1} }} - \overline{{A_{1} }} \overline{{B_{6} }} }}{{m_{0} }}, \\ & m_{30} = \frac{{\overline{{A_{8} }} \overline{{B_{1} }} - \overline{{A_{1} }} \overline{{B_{8} }} }}{{m_{0} }}, \\ \end{aligned}\)

Appendix 8

\(\begin{aligned} & \overline{{p_{0} }} = p_{22} p_{33} - p_{23} p_{32} \\ & \overline{{p_{1} }} = \frac{{p_{23} p_{31} - p_{21} p_{33} }}{{p_{0} }} + \frac{{l_{36} p_{23} - l_{26} p_{33} }}{{p_{0} }}, \\ & \overline{{p_{2} }} = \frac{{p_{23} p_{34} - p_{24} p_{33} }}{{p_{0} }}, \\ & \overline{{p_{3} }} = \frac{{p_{23} p_{35} - p_{25} p_{33} }}{{p_{0} }}, \\ \end{aligned}\)

\(\begin{aligned} & \overline{{p_{21} }} = \frac{{p_{21} p_{32} - p_{22} p_{31} }}{{p_{0} }} + \frac{{l_{26} p_{32} - l_{36} p_{22} }}{{p_{0} }}, \\ & \overline{{p_{22} }} = \frac{{p_{24} p_{32} - p_{22} p_{34} }}{{p_{0} }}, \\ & \overline{{p_{23} }} = \frac{{p_{25} p_{32} - p_{22} p_{35} }}{{p_{0} }}, \\ \end{aligned}\)

\(\begin{aligned} p_{1} & = l_{1}^{1} + l_{12}^{1} \overline{{n_{1} }} + l_{13}^{1} \overline{{n_{21} }} \\ p_{2} & = l_{2}^{1} + l_{12}^{1} \overline{{n_{2} }} + l_{13}^{1} \overline{{n_{22} }} \\ p_{3} & = l_{3}^{1} + l_{12}^{1} \overline{{n_{3} }} + l_{13}^{1} \overline{{n_{23} }} \\ p_{4} & = l_{4}^{1} + \left( {l_{5}^{1} \overline{{n_{5} }} + l_{6}^{1} \overline{{n_{25} }} } \right)\Delta T\\ &\quad + \left( {l_{5}^{1} \overline{{n_{6} }} + l_{6}^{1} \overline{{n_{26} }} } \right)\Delta m \\ & \quad + \left( {l_{5}^{1} \overline{{n_{7} }} + l_{6}^{1} \overline{{n_{27} }} } \right)\phi_{0}\\ &\quad + \left( {l_{5}^{1} \overline{{n_{8} }} + l_{6}^{1} \overline{{n_{28} }} } \right)\psi_{0} \\ p_{5} & = l_{7}^{1} + l_{5}^{1} \overline{{n_{1} }} + l_{6}^{1} \overline{{n_{21} }} \\ p_{6} & = l_{8}^{1} + l_{5}^{1} \overline{{n_{2} }} + l_{6}^{1} \overline{{n_{22} }} \\ p_{7} & = l_{9}^{1} + l_{5}^{1} \overline{{n_{3} }} + l_{6}^{1} \overline{{n_{23} }} \\ p_{8} & = l_{10}^{1} + l_{12}^{1} \overline{{n_{4} }} + l_{13}^{1} \overline{{n_{24} }} \\ p_{9} & = l_{11}^{1} + l_{5}^{1} \overline{{n_{4} }} + l_{6}^{1} \overline{{n_{24} }} \\ p_{10} & = \left( {l_{12}^{1} \overline{{n_{5} }} + l_{13}^{1} \overline{{n_{25} }} } \right)\Delta T\\ &\quad + \left( {l_{12}^{1} \overline{{n_{6} }} + l_{13}^{1} \overline{{n_{26} }} } \right)\Delta m \\ & \quad + \left( {l_{12}^{1} \overline{{n_{7} }} + l_{13}^{1} \overline{{n_{27} }} } \right)\phi_{0}\\ &\quad + \left( {l_{12}^{1} \overline{{n_{8} }} + l_{13}^{1} \overline{{n_{28} }} } \right)\psi_{0} + l_{14}^{1} \\ \end{aligned}\)

\(\begin{gathered} p_{21} = l_{21}^{1} + l_{25}^{1} \overline{{n_{1} }} + l_{26}^{1} \overline{{n_{21} }} \hfill \\ p_{22} = l_{22}^{1} + l_{25}^{1} \overline{{n_{2} }} + l_{26}^{1} \overline{{n_{22} }} \hfill \\ p_{23} = l_{23}^{1} + l_{25}^{1} \overline{{n_{3} }} + l_{26}^{1} \overline{{n_{23} }} \hfill \\ p_{24} = l_{24}^{1} + l_{25}^{1} \overline{{n_{4} }} + l_{26}^{1} \overline{{n_{24} }} \hfill \\ p_{25} = \left( {l_{25}^{1} \overline{{n_{5} }} + l_{26}^{1} \overline{{n_{25} }} } \right)\Delta T\\ + \left( {l_{25}^{1} \overline{{n_{6} }} + l_{26}^{1} \overline{{n_{26} }} } \right)\Delta m \hfill \\ + \left( {l_{25}^{1} \overline{{n_{7} }} + l_{26}^{1} \overline{{n_{27} }} } \right)\phi_{0}\\ + \left( {l_{25}^{1} \overline{{n_{8} }} + l_{26}^{1} \overline{{n_{28} }} } \right)\psi_{0} \\ + l_{27}^{1} \hfill \\ \end{gathered}\) \(\begin{aligned} p_{31} & = l_{31}^{1} + l_{35}^{1} \overline{{n_{1} }} + l_{36}^{1} \overline{{n_{21} }} \\ p_{32} & = l_{32}^{1} + l_{35}^{1} \overline{{n_{2} }} + l_{36}^{1} \overline{{n_{22} }} \\ p_{33} & = l_{33}^{1} + l_{35}^{1} \overline{{n_{3} }} + l_{36}^{1} \overline{{n_{23} }} \\ p_{34} & = l_{34}^{1} + l_{35}^{1} \overline{{n_{4} }} + l_{36}^{1} \overline{{n_{24} }} \\ p_{35} & = \left( {l_{35}^{1} \overline{{n_{5} }} + l_{36}^{1} \overline{{n_{25} }} } \right)\Delta T\\ &\quad + \left( {l_{35}^{1} \overline{{n_{6} }} + l_{36}^{1} \overline{{n_{26} }} } \right)\Delta m \\ & \quad + \left( {l_{35}^{1} \overline{{n_{7} }} + l_{36}^{1} \overline{{n_{27} }} } \right)\phi_{0}\\ &\quad + \left( {l_{35}^{1} \overline{{n_{8} }} + l_{36}^{1} \overline{{n_{28} }} } \right)\psi_{0} + l_{37}^{1} \\ \end{aligned}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoa, N.D. Free vibration and nonlinear dynamic behaviors of the imperfect smart electric magnetic FG-laminated composite panel in a hygrothermal environments. Acta Mech 234, 2617–2658 (2023). https://doi.org/10.1007/s00707-023-03505-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03505-6

Navigation