Skip to main content
Log in

Constitutive modeling of brittle–ductile transition in porous rocks: formulation, identification and simulation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

A Correction to this article was published on 23 March 2023

This article has been updated

Abstract

This paper presents a two-surface elastoplastic model for brittle–ductile transition behaviors of porous rocks subjected to compressive stresses. Two plastic deformation mechanisms are taken into consideration: plastic shearing at low confining pressure and plastic pore collapse at high confining pressure. For loading in the brittle regime, a unified hardening/softening law is introduced into the Drucker–Prager-type yield criterion to describe the pre-peak hardening and post-peak softening behaviors. A non-associated flow rule is adopted to capture the volumetric compressibility–dilatancy phenomenon. For loading in the ductile regime, a monotonic strain hardening law as a function of hydrostatic stress is proposed and incorporated into the DiMaggio–Sandler-type yield criterion. A non-associated flow rule is used to realistically describe the plastic compaction response caused by non-hydrostatic stress. An analytical solution of stress–strain relations for shear surface is developed in the case of conventional triaxial compression. Based on the bifurcation analysis, the onset of strain localization along cap surface is predicted. Comparisons between numerical simulations and experimental data show that the proposed model is able to capture the main mechanical behaviors of the investigated porous rocks, Adamswiller sandstone and Bentheim sandstone, including strength nonlinearity, strong pressure sensitivity, strain hardening/softening, volumetric compaction/dilation, and brittle–ductile transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. Paterson, M.S., Wong, T.-F.: Experimental Rock Deformation-the Brittle Field. Springer, New York, US (2005)

    Google Scholar 

  2. Hadizadeh, J., Rutter, E.H.: The low temperature brittle-ductile transition in a quartzite and the occurrence of cataclastic flow in nature. Geol. Rundsch. 72(2), 493–509 (1983)

    Google Scholar 

  3. Rutter, E.H., Hadizadeh, J.: On the influence of porosity on the low-temperature brittle–ductile transition in siliciclastic rocks. J. Struct. Geol. 13(5), 609–614 (1991)

    Google Scholar 

  4. Wong, T.-F., David, C., Zhu, W.L.: The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J. Geophys. Res. Solid Earth 102(B2), 3009–3025 (1997)

    Google Scholar 

  5. Baud, P., Schubnel, A., Wong, T.-F.: Dilatancy, compaction, and failure mode in solnhofen limestone. J. Geophys. Res. Solid Earth 105(B8), 19289–19303 (2000)

    Google Scholar 

  6. Baud, P., Vajdova, V., Wong, T.-F.: Shear-enhanced compaction and strain localization: inelastic deformation and constitutive modeling of four porous sandstones. J. Geophys. Res. Solid Earth 111(B12), 1–17 (2006)

    Google Scholar 

  7. Brace, W.F., Paulding, B.W., Scholz, C.H.: Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. Solid Earth 71(16), 3939–3953 (1966)

    Google Scholar 

  8. Zoback, M.D., Byerlee, J.D.: The effect of microcrack dilatancy on the permeability of westerly granite. J. Geophys. Res. Solid Earth 80(5), 752–755 (1975)

    Google Scholar 

  9. Zhang, S.Q., Cox, S.F., Paterson, M.S.: The influence of deformation on porosity and permeability in calcite aggregates. J. Geophys. Res. Solid Earth 99(B8), 15761–15775 (1994)

    Google Scholar 

  10. Moore, D.E., Lockner, D.A.: The role of microcracking in shear-fracture propagation in granite. J. Struct. Geol. 17(1), 95–111 (1995)

    Google Scholar 

  11. Zhang, J.X., Wong, T.-F., Davis, D.M.: Micromechanics of pressure-induced grain crushing in porous rock. J. Geophys. Res. Solid Earth 95(B1), 341–352 (1990)

    Google Scholar 

  12. Hirth, G., Tullis, J.: The brittle-plastic transition in experimentally deformed quartz aggregates. J. Geophys. Res. Solid Earth 99(B6), 11731–11747 (1994)

    Google Scholar 

  13. Menéndez, B., Zhu, W.L., Wong, T.-F.: Micromechanics of brittle faulting and cataclastic flow in berea sandstone. J. Struct. Geol. 18(1), 1–16 (1996)

    Google Scholar 

  14. Zhu, W.L., Wong, T.-F.: The transition from brittle faulting to cataclastic flow: permeability evolution. J. Geophys. Res. Solid Earth 102(B2), 3027–3041 (1997)

    Google Scholar 

  15. Zhu, W., Baud, P., Wong, T.-F.: Micromechanics of cataclastic pore collapse in limestone. J. Geophys. Res. Solid Earth 115(B4), 1–17 (2010)

    Google Scholar 

  16. Shao, J.F., Jia, Y., Kondo, D., Chiarelli, A.S.: A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mech. Mater. 38(3), 218–232 (2006)

    Google Scholar 

  17. Chen, D., Shen, W.Q., Shao, J.F., Yurtdas, I.: Micromechanical modeling of mortar as a matrix-inclusion composite with drying effects. Int. J. Numer. Anal. Methods Geomech. 37(9), 1034–1047 (2013)

    Google Scholar 

  18. Nguyen, L.D., Fatahi, B., Khabbaz, H.: A constitutive model for cemented clays capturing cementation degradation. Int. J. Plast 56, 1–18 (2014)

    Google Scholar 

  19. Desai, C.S., Siriwardane, H.J.: Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials. Prentice-Hall, New Jersey (1984)

    MATH  Google Scholar 

  20. A. F. Fossum and J. T. Fredrich: Cap plasticity models and compactive and dilatant pre-failure deformation, in Proc. 4th North American Rock Mechanics Symposium, A. A. Balkema, Rotterdam, 2000, pp. 1169–1176

  21. Grueschow, E., Rudnicki, J.W.: Elliptic yield cap constitutive modeling for high porosity sandstone. Int. J. Solids Struct. 42(16), 4574–4587 (2005)

    MATH  Google Scholar 

  22. Schofield, A., Wroth, P.: Critical State Soil Mechanics. McGraw-Hill, New York, US (1968)

    Google Scholar 

  23. Dimaggio, F.L., Sandler, I.S.: Material model for granular soils. J. Eng. Mech. 97(3), 935–950 (1971)

    Google Scholar 

  24. Wood, D.M.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  25. Cuss, R.J., Rutter, E.H., Holloway, R.F.: The application of critical state soil mechanics to the mechanical behaviour of porous sandstones. Int. J. Rock Mech. Min. Sci. 40(6), 847–862 (2003)

    Google Scholar 

  26. Schultz, R.A., Siddharthan, R.: A general framework for the occurrence and faulting of deformation bands in porous granular rocks. Tectonophysics 411(1), 1–18 (2005)

    Google Scholar 

  27. Foster, C.D., Regueiro, R.A., Fossum, A.F., Borja, R.I.: Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials. Comput. Methods Appl. Mech. Eng. 194, 5109–5138 (2005)

    MATH  Google Scholar 

  28. Tamagnini, C., Ciantia, M.O.: Plasticity with generalized hardening: constitutive modeling and computational aspects. Acta Geotech. 11(3), 595–623 (2016)

    Google Scholar 

  29. Bennett, K.C., Borja, R.I.: Hyper-elastoplastic/damage modeling of rock with application to porous limestone. Int. J. Solids Struct. 143(3), 218–231 (2018)

    Google Scholar 

  30. Lv, Z.T., Luo, S.C., Xia, C.C., Zeng, X.T.: A thermal-mechanical coupling elastoplastic model of Freeze-Thaw deformation for porous rocks. Rock Mech. Rock Eng. 55(6), 3195–3212 (2022)

    Google Scholar 

  31. Fossum, A.F., Senseny, P.E., Pfeifle, T.W., Mellegard, K.D.: Experimental determination of probability distributions for parameters of a Salem limestone cap plasticity model. Mech. Mater. 21(2), 119–137 (1995)

    Google Scholar 

  32. Olsson, W.A.: Theoretical and experimental investigation of compaction bands in porous rock. J. Geophys. Res. Solid Earth 104(B4), 7219–7228 (1999)

    Google Scholar 

  33. Fossum, A.F., Fredrich, J.T.: Constitutive Models for the Etchegoin Sands, Belridge Diatomite, and Overburden Formations at the Lost Hills Oil Field, California, Technical Report SAND2000-0827. Sandia National Laboratories. Albuquerque, US (2000)

    Google Scholar 

  34. Desai, C.S.: A general basis for yield, failure and potential functions in plasticity. Int. J. Numer. Anal. Methods Geomech. 4(4), 361–375 (1980)

    MATH  Google Scholar 

  35. Shao, J.F., Henry, J.P.: Validation of an elastoplastic model for chalk. Comput. Geotech. 9(4), 257–272 (1990)

    Google Scholar 

  36. Shao, J.F., Henry, J.P.: Development of an elastoplastic model for porous rock. Int. J. Plast 7(1), 1–13 (1991)

    Google Scholar 

  37. Homand, S., Shao, J.F.: Mechanical behaviour of a porous chalk and water/chalk interaction. Oil Gas Sci. Technol. 55(6), 591–598 (2000)

    Google Scholar 

  38. Lin, J., Xie, S.Y., Shao, J.F., Kondo, D.: A micromechanical modeling of ductile behavior of a porous chalk: formulation, identification, and validation. Int. J. Numer. Anal. Methods Geomech. 36(10), 1245–1263 (2012)

    Google Scholar 

  39. Xie, S.Y., Shao, J.F.: Experimental investigation and poroplastic modelling of saturated porous geomaterials. Int. J. Plast 39, 27–45 (2012)

    Google Scholar 

  40. Jia, Y., Zhao, X.L., Bian, H.B., Wang, W., Shao, J.F.: Numerical modelling the influence of water content on the mechanical behaviour of concrete under high confining pressures. Mech. Res. Commun. 119(6), 103819 (2022)

    Google Scholar 

  41. Lade, P.V., Kim, M.K.: Single hardening constitutive model for soil, rock and concrete. Int. J. Solids Struct. 32(14), 1963–1978 (1995)

    MATH  Google Scholar 

  42. Ehlers, W.: A single-surface yield function for geomaterials. Arch. Appl. Mech. 65(4), 246–259 (1995)

    MATH  Google Scholar 

  43. Khoei, A.R., Azami, A.R.: A single cone-cap plasticity with an isotropic hardening rule for powder materials. Int. J. Mech. Sci. 47(1), 94–109 (2005)

    MATH  Google Scholar 

  44. Zhao, L.-Y., Shao, J.-F., Zhu, Q.-Z.: Analysis of localized cracking in quasi-brittle materials with a micro-mechanics based friction-damage approach. J. Mech. Phys. Solids 119, 163–187 (2018)

    MathSciNet  Google Scholar 

  45. Baud, P., Klein, E., Wong, T.-F.: Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity. J. Struct. Geol. 26(4), 603–624 (2004)

    Google Scholar 

  46. Vajdova, V., Zhu, W., Chen, T.M.N., Wong, T.-F.: Micromechanics of brittle faulting and cataclastic flow in tavel limestone. J. Struct. Geol. 32(8), 1158–1169 (2010)

    Google Scholar 

  47. Wong, T.-F., Baud, P.: The brittle–ductile transition in porous rock: a review. J. Struct. Geol. 44, 25–53 (2012)

    Google Scholar 

  48. Zhu, Q.Z.: Strength prediction of dry and saturated brittle rocks by unilateral damage-friction coupling analyses. Comput. Geotech. 73, 16–23 (2016)

    Google Scholar 

  49. Zhao, L.Y., Zhu, Q.Z., Shao, J.F.: A micro-mechanics based plastic damage model for quasi–brittle materials under a large range of compressive stress. Int. J. Plast 100, 156–176 (2018)

    Google Scholar 

  50. Zhao, L.Y., Zhang, W.L., Lai, Y.M., Niu, F.J., Zhu, Q.Z., Shao, J.F.: A heuristic elastoplastic damage constitutive modeling method for geomaterials: from strength criterion to analytical full-spectrum stress-strain curves. Int. J. Geomech. 21(2), 04020255 (2021)

    Google Scholar 

  51. Brace, W.F.: Volume changes during fracture and frictional sliding: A review. Pure Appl. Geophys. 116(4), 603–614 (1978)

    Google Scholar 

  52. Vajdova, V., Baud, P., Wong, T.-F.: Compaction, dilatancy, and failure in porous carbonate rocks. J. Geophys. Res. Solid Earth 109(B5), 1–16 (2004)

    Google Scholar 

  53. Wong, T.-F., Szeto, H., Zhang, J.: Effect of loading path and porosity on the failure mode of porous rocks. Appl. Mech. Rev. 45(8), 281–293 (1992)

    Google Scholar 

  54. Zhu, W., Baud, P., Vinciguerra, S., Wong, T.-F.: Micromechanics of brittle faulting and cataclastic flow in Alban hills tuff. J. Geophys. Res. Solid Earth 116(B6), 1–23 (2011)

    Google Scholar 

  55. Shen, W.Q., Shao, J.F.: An elastic–plastic model for porous rocks with two populations of voids. Comput. Geotech. 76, 194–200 (2016)

    Google Scholar 

  56. Han, B., Shen, W.Q., Xie, S.Y., Shao, J.F.: Plastic modeling of porous rocks in drained and undrained conditions. Comput. Geotech. 117, 103277 (2020)

    Google Scholar 

  57. Zhao, L.Y., Lai, Y.M., Shao, J.F.: A new incremental variational micro-mechanical model for porous rocks with a pressure-dependent and compression-tension asymmetric plastic solid matrix. Int. J. Rock Mech. Min. Sci. 153, 105059 (2022)

    Google Scholar 

  58. Rudnicki, J.W., Rice, J.R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23(6), 371–394 (1975)

    Google Scholar 

  59. Issen, K.A., Rudnicki, J.W.: Conditions for compaction bands in porous rock. J. Geophys. Res. Solid Earth 105(B9), 21529–21536 (2000)

    Google Scholar 

  60. Issen, K.A., Rudnicki, J.W.: Theory of compaction bands in porous rock. Phys. Chem. Earth Pt A 26(1–2), 95–100 (2001)

    Google Scholar 

  61. Tembe, S., Baud, P., Wong, T.-F.: Stress conditions for the propagation of discrete compaction bands in porous sandstone. J. Geophys. Res. Solid Earth 113(B9), 1–16 (2008)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 42001053), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lunyang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: ” plus the same explanatory text of the problem as in the erratum/correction article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, P., Hu, K. et al. Constitutive modeling of brittle–ductile transition in porous rocks: formulation, identification and simulation. Acta Mech 234, 2103–2121 (2023). https://doi.org/10.1007/s00707-023-03489-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03489-3

Navigation