Skip to main content
Log in

Homogenization approaches for the effective characteristics of fractional visco-piezoelastic fibrous composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the effective coefficients for a two-phase visco-piezoelastic composite reinforced by cylindrical fibers embedded in a matrix are derived using the effective field and asymptotic homogenization approaches. The composite is characterized by an isotropic viscoelastic matrix reinforced by piezoelastic fibers, such that the fibers are oriented along the \(x_3\)-axis and their spatial distribution allows us to consider a hexagonal cell. Under these assumptions, closed formulas are obtained based on the Rabotnov’s fractional exponential kernel. Limit cases are reported as a validation of the model. Numerical implementation for the effective coefficients is carried out, and a comparison between both approaches is given. Electromechanical coupling coefficients for ultrasonic pulse-echo transducers in medical applications are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pallicity, T.D., Böhlke, T.: Effective viscoelastic behavior of polymer composites with regular periodic microstructures. Int. J. Solids Struct. 216, 167–181 (2021)

    Article  Google Scholar 

  2. He, Z., Pindera, M.-J.: Locally exact asymptotic homogenization of viscoelastic composites under anti-plane shear loading. Mech. Mater. 155, 103752 (2021)

    Article  Google Scholar 

  3. Sevostianov, I., Levin, V., Radi, E.: Effective properties of linear viscoelastic microcracked materials: Application of Maxwell homogenization scheme. Mech. Mater. 84, 28–43 (2015)

    Article  Google Scholar 

  4. Fakri, N., Azrar, L., El Bakkali, L.: Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40(2), 361–384 (2003)

    Article  MATH  Google Scholar 

  5. Odegard, G.M.: Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52(18), 5315–5330 (2004)

    Article  Google Scholar 

  6. Levin, V.M., Michelitsch, T., Sevostianov, I.: Spheroidal inhomogeneity in the transversely isotropic piezoelectric medium. Arch. Appl. Mech. 70, 673–693 (2000)

    Article  MATH  Google Scholar 

  7. Levin, V.: The effective properties of piezoactive matrix composite materials. J. Appl. Math. Mech. 60(2), 309 (1996)

    Article  MATH  Google Scholar 

  8. Guinovart-Díaz, R., Yan, P., Rodríguez-Ramos, R., López-Realpozo, J.C., Jiang, C.P., Bravo-Castillero, J., Sabina, F.J.: Effective properties of piezoelectric composites with parallelogram periodic cells. Inter. J. Eng. Sci. 53, 58–66 (2012)

    Article  Google Scholar 

  9. Jiang, B., Batra, R.C.: Effective electroelastic properties of a piezocomposite with viscoelastic and dielectric relaxing matrix. J. Intell. Mater. Syst. Struct. 12, 847 (2001)

    Article  Google Scholar 

  10. Li, J., Dunn, M.L.: Viscoelectroelastic behavior of heterogeneous piezoelectric solids. In: Lynch, C.S. (ed.) Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3992, pp. 331–340 (2000)

  11. Li, J., Dunn, M.L.: Viscoelectroelastic behavior of heterogeneous piezoelectric solids. J. Appl. Phys. 89, 2893 (2021)

    Article  Google Scholar 

  12. Azrar, L., El Ouafi, J., Aljinaidi, A.A.: Viscoelectroelastic closed form models for frequency and time dependent effective properties of reinforced viscoelectroelastic composites. Compos. Struct. 159, 842–865 (2017)

    Article  Google Scholar 

  13. Azrar, L., Bakkali, A., Aljinaidi, A.A.: Frequency and time viscoelectroelastic effective properties modeling of heterogeneous and multi-coated piezoelectric composite materials. Compos. Struct. 113, 281–297 (2014)

    Article  Google Scholar 

  14. Bakkali, A., Azrar, L., Aljinaidi, A.A.: Viscomagnetoelectroelastic effective properties modeling for multi-phase and multi-coated magnetoelectroelastic composites. J. Intell. Mater. Syst. Struct. 27(16), 2261–2286 (2016)

    Article  Google Scholar 

  15. Pandolfi, A., Gizzi, A., Vasta, M.: Visco-electro-elastic models of fiber-distributed active tissues. Meccanica 52, 3399–3415 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213 (1965)

    Article  Google Scholar 

  17. Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571 (1973)

    Article  Google Scholar 

  18. Willis, J.R.: A polarization approach to the scattering of elastic waves-i. scattering by a single inclusion. J. Mech. Phys. Solids 28, 287 (1980)

  19. Kanaun, S.K., Levin, V.M.: Self-Consistent Methods for Composites. Vol.1: Static Problems. Springer, Netherlands (2008)

  20. Bakhvalov, N.S., Panasenko, G.: Homogenisation: Averaging Processes in Peri- Odic Media: Mathematical Problems in the Mechanics of Composite Materials. Kluwer, Dordrecht (1989)

    MATH  Google Scholar 

  21. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  22. Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory. Springer, Berlin (1980)

    MATH  Google Scholar 

  23. Rodríguez-Ramos, R., Otero, J., Cruz-González, O., Guinovart-Díaz, R., Bravo-Castillero, J., Sabina, F., Padilla, P., Lebon, F., Sevostianov, I.: Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method. Int. J. Solids Struct. 190, 281–290 (2020)

    Article  Google Scholar 

  24. Otero, J., Rodríguez-Ramos, R., Guinovart-Díaz, R., Cruz-González, O.L., Sabina, F., Berger, H., Böhlke, T.: Asymptotic and numerical homogenization methods applied to fibrous viscoelastic composites using prony’s series. Acta Mech. 231(7), 2761–2771 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Markov, K.Z.: Elementary micromechanics of heterogeneous solids. In: Markov, K., Presioci, L. (eds.) Heterogeneous Media. Micromechanics Modeling Methods and Simulations. Birkhauser, Boston (2000)

    Chapter  MATH  Google Scholar 

  26. Levin, V.M., Sabina, F.J., Bravo-Castillero, J., Guinovart-Díaz, R., Rodríguez-Ramos, R., Valdiviezo-Mijangos, O.C.: Analysis of effective properties of electroelastic composites using the self-consistent and asymptotic homogenization methods. Int. J. Eng. Sci. 46, 818 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rabotnov, Y.N.: Equilibrium of an elastic medium with after-effects. J. Appl. Math. Mech. 12, 53 (1948)

    MathSciNet  Google Scholar 

  28. Cruz-González, O.L., Rodríguez-Ramos, R., Otero, J.A., Ramírez-Torres, A., Penta, R., Lebon, F.: On the effective behavior of viscoelastic composites in three dimensions. Int. J. Eng. Sci. 157, 103377 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Levin, V.M., Sevostianov, I.: Micromechanical modeling of the effective viscoelastic properties of inhomogeneous materials using fraction-exponential operators. Int. J. Fract. 134, 37–44 (2005)

    Article  Google Scholar 

  30. Rabotnov, Y.N.: Elements of Hereditary Solid Machanics. Mir, Moscow (1977)

    Google Scholar 

  31. Ramírez-Torres, A., Di Stefano, S., Grillo, A., Rodríguez-Ramos, R., Merodio, J., Penta, R.: An asymptotic homogenization approach to the microstructural evolution of heterogeneous media. Int. J. Non-Linear Mech. 106, 245–257 (2018)

    Article  Google Scholar 

  32. Ramírez-Torres, A., Penta, R., Grillo, A.: Two-scale, non-local diffusion in homogenized heterogeneous media. Arch. Appl. Mech. 92, 559–595 (2021)

    Article  Google Scholar 

  33. Cruz-González, O.L., Ramírez-Torres, A., Rodríguez-Ramos, R., Penta, R., Bravo- Castillero, J., Guinovart-Díaz, R., Merodio, J., Sabina, F.J., Lebon, F.: A hierarchical asymptotic homogenization approach for viscoelastic composites. Mech. Adv. Mater. Struct. 28(21), 2190–2201 (2020)

    Article  Google Scholar 

  34. Penta, R., Gerisch, A.: The asymptotic homogenization elasticity tensor properties for composites with material discontinuities. Continuum Mech. Thermodyn. 29, 187–207 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guinovart-Díaz, R., Bravo-Castillero, J., Rodríguez-Ramos, R., Sabina, F.J., Martínez-Rosado, F.R.: Overall properties of piezocomposite materials 1–3. Mater. Lett. 48, 93–98 (2001)

    Article  Google Scholar 

  36. Sabina, F.J., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R.: Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents-ii. Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solid 49, 1463–1479 (2001)

  37. Rodríguez-Ramos, R., Otero, J.A., Espinosa-Almeyda, Y., Sabina, F.J., Levin, V.: Closed-form expressions for the effective properties of piezoelastic composites reinforced with cylindrical fibers by maxwell scheme. Mech. Mater. 174, 104452 (2022). https://doi.org/10.1016/j.mechmat.2022.104452

    Article  Google Scholar 

  38. Penta, R., Gerisch, A.: Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study. Comput. Vis. Sci. 17, 185–201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Parnell, W.J., Abrahams, I.D.: Dynamic homogenization in periodic fibre reinforced media quasi-static limit for SH waves. Wave Motion 43(6), 474–498 (2006). https://doi.org/10.1016/j.wavemoti.2006.03.003

    Article  MathSciNet  MATH  Google Scholar 

  40. Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Rodríguez-Ramos, R.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents–ii. Piezoelectric and square symmetry. Mech. Mater. 33(4), 237–248 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

YEA gratefully acknowledges the CONACYT for the postdoctoral scholarship “Estancias Postdoctorales por México para la Formación y Consolidación de Investigadores por México” held at IIT, UACJ, 2022-2024. YEA also thanks for the financial support of the CONACYT Basic Science project Grant A1-S-37066 during 2021-2022. RRR thanks the L’école Centrale de Marseille for the support to his visit. FJS and RRR acknowledge the funding of PAPIIT-DGAPA-UNAM IN101822, 2022-2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Espinosa-Almeyda.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Coefficients in Eqs. (38)–(46) are given as follows:

$$\begin{aligned} F_{33}^{\left( 1\right) }= & {} \left( 1-c\right) \left( K_0+\frac{4}{3} \mu _0\right) -c \left( \frac{a_3}{3\,b_2}-n\right) ,\nonumber \\ F_{33}^{\left( 2\right) }= & {} (1-c)\frac{4}{3} \mu _0\lambda +c\,\frac{\left( c_3-b_3\beta +a_3 \beta ^2\right) }{3\,b_2\left( \gamma _1-\beta \right) },\nonumber \\ F_{33}^{\left( 3\right) }= & {} c\,\frac{\left( c_3-b_3\ \gamma _1+a_3\ \gamma _1^2\right) }{3\ b_2\ \left( \beta -\gamma _1\right) }, \end{aligned}$$
(A1)
$$\begin{aligned} F_{11}^{\left( 1\right) }= & {} K_0+\frac{4}{3}\mu _0+\frac{a_7}{3\,b_2}-\frac{2\,c\,b_4\,b_5\,\mu _0^2}{a_6},\nonumber \\ F_{11}^{\left( 2\right) }= & {} \frac{4}{3}\mu _0 \lambda +\frac{c_7-b_7\,\beta +a_7\,\beta ^2}{3\,b_2 \left( \gamma _1-\beta \right) }-\frac{2\,c\,b_4\,b_5\, \mu _0\left( \gamma _2-\beta \right) \left( \gamma _3-\beta \right) \lambda }{a_6\left( x_1-\beta \right) \left( x_2-\beta \right) },\nonumber \\ F_{11}^{\left( 3\right) }= & {} \frac{c_7-b_7\,\gamma _1+a_7\,\gamma _1^2}{3\,b_2\left( \beta -\gamma _1\right) },\nonumber \\ F_{11}^{\left( 4\right) }= & {} -\frac{2\,c\,b_4\,b_5\,\mu _0\left( \gamma _2-x_1\right) \left( \gamma _3-x_1\right) \left( \lambda +\beta -x_1\right) }{a_6\left( \beta -x_1\right) \left( x_2-x_1\right) },\nonumber \\ F_{11}^{\left( 5\right) }= & {} -\frac{2\,c\,b_4\,b_5\,\mu _0\left( \gamma _2-x_2\right) \left( \gamma _3-x_2\right) \left( \lambda +\beta -x_2\right) }{a_6\left( \beta -x_2\right) \left( x_1-x_2\right) }, \end{aligned}$$
(A2)
$$\begin{aligned} F_{12}^{\left( 1\right) }= & {} K_0-\frac{2}{3}\mu _0+\frac{a_7}{3\,b_2}+\frac{2\,c\,b_4\,b_5\,\mu _0^2}{a_6},\nonumber \\ F_{12}^{\left( 2\right) }= & {} -\frac{2}{3}\mu _0 \lambda +\frac{c_7-b_7\,\beta +a_7\,\beta ^2}{3\,b_2\left( \gamma _1-\beta \right) } +\frac{2\,c\,b_4\,b_5\,\mu _0\left( \gamma _2-\beta \right) \left( \gamma _3-\beta \right) \lambda }{a_6\left( x_1-\beta \right) \left( x_2-\beta \right) },\nonumber \\ F_{12}^{\left( 3\right) }= & {} F_{11}^{\left( 3\right) }, F_{12}^{\left( 4\right) }={-F}_{11}^{\left( 4\right) }, F_{12}^{\left( 5\right) }={-F}_{11}^{\left( 5\right) }, \end{aligned}$$
(A3)
$$\begin{aligned} F_{66}^{\left( 1\right) }= & {} \mu _0\Big (1-\frac{2c\,b_4\,b_5\,\mu _0}{a_6}\Big ),\nonumber \\ F_{66}^{\left( 2\right) }= & {} -\frac{2c\,{b}_4\,b_5\,\mu _0\left( \gamma _2-\beta \right) \left( \gamma _3-\beta \right) \lambda }{a_6\left( x_1-\beta \right) \left( x_2-\beta \right) },\nonumber \\ F_{66}^{\left( 3\right) }= & {} F_{11}^{\left( 4\right) }, F_{66}^{\left( 4\right) }=F_{11}^{\left( 5\right) }, \end{aligned}$$
(A4)
$$\begin{aligned} F_{44}^{\left( 1\right) }= & {} \mu _0\Big (1-\frac{2\,c\, b_8}{b_9}\Big ), F_{44}^{\left( 2\right) }=\mu _0\,\lambda \left( 1-\frac{2\,c\left( c_8-b_8\,\beta \right) }{b_9\left( \gamma _4-\beta \right) }\right) ,\nonumber \\ F_{44}^{\left( 3\right) }= & {} -\frac{2\,c\,\mu _0\left( c_8-b_8\ \gamma _4\right) \left( \lambda +\beta -\gamma _4\right) }{b_9\left( \beta -\gamma _4\right) }, \end{aligned}$$
(A5)
$$\begin{aligned} E_{31}^{\left( 1\right) }= & {} \frac{c{\,b}_4\,e_{31}}{b_2},\quad E_{31}^{\left( 2\right) }=\frac{{c\,e}_{31} \left( c_4-b_4\,\gamma _1\right) }{b_2}, \end{aligned}$$
(A6)
$$\begin{aligned} E_{15}^{\left( 1\right) }= & {} \frac{4\,c\,\mu _0\,{e}_{15}\,\eta ^0}{b_9},\quad E_{15}^{\left( 2\right) }=\frac{4\,c\,{\mu }_0\,e_{15}\, \eta ^0\left( \lambda +\beta -\gamma _4\right) }{b_9} \end{aligned}$$
(A7)
$$\begin{aligned} E_{33}^{\left( 1\right) }= & {} \frac{b_{10}\,c}{b_2},\quad E_{33}^{\left( 2\right) }=\frac{c\left( c_{10}-b_{10}\,\gamma _1\right) }{b_2}, \end{aligned}$$
(A8)
$$\begin{aligned} D_{11}^{\left( 1\right) }= & {} \eta ^0-\frac{2\,b_{11}\,\eta ^0\,c}{b_9},\quad D_{11}^{\left( 2\right) }=-\frac{2\,\eta ^0\,c\left( c_{11}-b_{11}\,\gamma _4\right) }{b_2}, \end{aligned}$$
(A9)
$$\begin{aligned} D_{33}^{\left( 1\right) }= & {} \left( 1-c\right) \eta ^0-c\Big (-\eta _{33}+3\frac{\left( -1+c\right) }{b_2}e_{31}^2\Big ), \nonumber \\ D_{33}^{\left( 2\right) }= & {} \frac{3e_{31}^2\left( -\gamma _1+\beta \right) \left( -1+c\right) }{b_2}. \end{aligned}$$
(A10)

In Eqs. (A1)–(A10) are denoted

$$\begin{aligned} a= & {} 3\,K_0\,\mu _0\left( 1+c\right) +2\,\mu _0^2\left( 1+7\, c\right) +7\,\mu \,\mu _0\left( 1-c\right) ,\nonumber \\ b= & {} 3\,K_0\,\mu _0\left( 1+c\right) +\mu _0^2\left( 1+7\, c\right) +\mu \left( 3\,K_0+7\,\mu _0\right) \left( 1-c\right) , \end{aligned}$$
(A11)
$$\begin{aligned} a_3= & {} \left( 1-c\right) \left( -3 K_0+2\,\mu _0+3\,l\right) ^2, \nonumber \\ b_3= & {} 2\left( 1-c\right) \left( -3\,K_0+2\,\mu _0+3\,l\right) \left( 2\,\lambda \,\mu _0-3\,K_0\,\beta +2\,\beta \,\mu _0+3\,\beta \,l\right) ,\nonumber \\ c_3= & {} \left( 1-c\right) \left( 2\,\lambda \,\mu _0-3\,K_0\, \beta +2\,\beta \,\mu _0+3\,\beta \,l\right) ^2, \end{aligned}$$
(A12)
$$\begin{aligned} b_4= & {} 3\,K_0+4\,\mu _0,\quad c_4=4\,\lambda \,\mu _0+\beta \left( 3\,K_0+4\,\mu _0\right) , \end{aligned}$$
(A13)
$$\begin{aligned} b_5= & {} \mu _0-\mu ,\quad c_5=\lambda \,\mu _0+\beta \left( \mu _0-\mu \right) , \end{aligned}$$
(A14)
$$\begin{aligned} a_6= & {} \mu _0\,\left( 3\,K_0+\mu _0\right) +\left( \mu -c\left( \mu -\mu _0\right) \right) \left( 3\,K_0+7\,\mu _0\right) ,\nonumber \\ b_6= & {} a\,\lambda +2\,b\,\beta ,\quad c_6=\mu _0^2\,\left( 1+7\,c\right) \,\lambda ^2+a\,\lambda \,\beta +b\,\beta ^2, \end{aligned}$$
(A15)
$$\begin{aligned} a_7= & {} -c\,\left( 3\,K_0+4\mu _0\right) \left( 3\,K_0+\mu _0-3k\right) ,\nonumber \\ b_7= & {} -c\,\left( 3\,K_0+4\mu _0\right) \left( \lambda \,\mu _0+3\,K_0\,\beta +\beta \,\mu _0-3\,\beta \,k\right) \nonumber \\{} & {} \quad -c\,\left( 3\,K_0+\mu _0-3k\right) \left( 4\,\lambda \,\mu _0+3\,K_0\,\beta +4\,\beta \,\mu _0\right) ,\nonumber \\ c_7= & {} 4\,\lambda \,\mu _0+\beta \left( 3\,K_0+4\mu _0\right) \end{aligned}$$
(A16)
$$\begin{aligned} b_8= & {} \left( \left( \mu _0-\mu \right) \left( \eta ^0-\eta _{11}\right) +e_{15}^2\right) c+\left( \mu _0- \mu \right) \left( \eta ^0+\eta _{11}\right) -e_{15}^2,\nonumber \\ c_8= & {} \left[ \left( \left( \lambda +\beta \right) \mu _0-\beta \,\mu \right) \left( \eta ^0-\eta _{11}\right) +\beta e_{15}^2\right] c\nonumber \\{} & {} +\quad \left( \left( \lambda +\beta \right) \mu _0-\beta \ \mu \right) \left( \eta ^0+\eta _{11}\right) -\beta e_{15}^2, \end{aligned}$$
(A17)
$$\begin{aligned} b_9= & {} \left( \left( \mu _0-\mu \right) \left( \eta ^0-\eta _{11}\right) +e_{15}^2\right) c^2+2 \left( \eta ^0 \mu _0-\eta _{11}\mu -e_{15}^2\right) c\nonumber \\{} & {} +\quad \left( \mu _0+\mu \right) \left( \eta ^0+\eta _{11}\right) +e_{15}^2,\nonumber \\ c_9= & {} \left( \left( \left( \lambda +\beta \right) \mu _0-\beta \mu \right) \left( \eta ^0-\eta _{11}\right) +\beta e_{15}^2\right) c^2\nonumber \\{} & {} +\quad 2\left( \left( \lambda +\beta \right) \mu _0\,\eta ^0-\beta \left( \mu \,\eta _{11}+e_{15}^2\right) \right) c\nonumber \\{} & {} +\quad \left( \left( \lambda +\beta \right) \mu _0+\beta \mu \right) \left( \eta ^0+\eta _{11}\right) +\beta e_{15}^2, \end{aligned}$$
(A18)
$$\begin{aligned} b_{10}= & {} \left[ 3\,K_0\left( e_{33}-e_{31}\right) +\mu _0\left( e_{33}+2 e_{31}\right) -3\,e_{33}\,k+3\,e_{31} l\right] c\nonumber \\{} & {} +\quad 3\,K_0\,e_{31}+ \mu _0\left( 3\,e_{33}-2\,e_{31}\right) +3\,e_{33}\,k-3\,e_{31}\,l,\nonumber \\ c_{10}= & {} 3\,K_0\,\beta \left( e_{33}-e_{31}\right) c+\lambda \,\mu _0\left( e_{33}+2e_{31}\right) c +\beta \,\mu _0\left( e_{33}+2e_{31}\right) c\nonumber \\{} & {} \quad -3\,\beta \left( e_{33}\,k-e_{31}\,l\right) c+ 3\,K_0\,\beta \,e_{31}+\lambda \,\mu _0\left( 3\,e_{33}-2\,e_{31}\right) \nonumber \\{} & {} +\quad \beta \mu _0\left( 3e_{33}-2e_{31}\right) +3\,\beta \left( e_{33}\,k-e_{31}\,l\right) , \end{aligned}$$
(A19)
$$\begin{aligned} b_{11}= & {} \left( \left( \mu _0-\mu \right) \left( \eta ^0-\eta _{11}\right) +e_{15}^2\right) c +\left( \mu _0+\mu \right) \left( \eta ^0-\eta _{11}\right) -e_{15}^2,\nonumber \\ c_{11}= & {} \left( \left( \left( \lambda +\beta \right) \mu _0-\beta \,\mu \right) \left( \eta ^0-\eta _{11}\right) +\beta \,e_{15}^2\right) c\nonumber \\{} & {} +\quad \left( \left( \lambda +\beta \right) \mu _0+\beta \,\mu \right) \left( \eta ^0-\eta _{11}\right) -\beta \,e_{15}^2, \end{aligned}$$
(A20)

and

$$\begin{aligned} \gamma _1=\frac{c_2}{b_2},\quad \gamma _2=\frac{c_4}{b_4},\quad \gamma _3=\frac{c_5}{b_5},\quad \gamma _4=\frac{c_9}{b_9},\quad \begin{matrix}x_{1,2}=\frac{b_6\mp \sqrt{{b_6}^2-4\,a_6\,c_6}}{2\,a_6}.\ \ \ \\ \end{matrix} \end{aligned}$$
(A21)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otero, J.A., Rodríguez-Ramos, R., Espinosa-Almeyda, Y. et al. Homogenization approaches for the effective characteristics of fractional visco-piezoelastic fibrous composites. Acta Mech 234, 2087–2101 (2023). https://doi.org/10.1007/s00707-023-03485-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03485-7

Navigation