Skip to main content
Log in

Axisymmetric thermoelastic contact vibration between a viscoelastic half-space and a rotating spherical punch

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The axisymmetric thermoelastic contact vibration of a rigid rotating spherical punch against a homogeneous half-space is investigated by considering dynamic deformation and frictional heat. Complex-value modulus is introduced to characterize the hysteretic damping of viscoelastic materials. Under the assumption of sufficiently small oscillating force, the dynamic contact pressure is derived with the unknown disturbance variable of the contact radius by employing the perturbation method. Dynamic normal displacement is obtained in the form of complex integral by using Hankel integral transformation. Dynamic contact stiffness (DCS) factor considering the frictional heat is discussed under the approximate dynamic boundary conditions. Illustrative examples are presented to clarify the influences of the rotational speed, friction coefficient, thermal expansion coefficient, thermal conductivity coefficient, contact radius, and damping ratio on the DCS factor and surface temperature. The obtained results indicate that the friction coefficient and rotational speed can increase the DCS and surface temperature in a certain frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Burton, R.A., Nerlikar, V., Kilaparti, S.R.: Thermoelastic instability in a seal-like configuration. Wear 24, 177–188 (1973)

    Google Scholar 

  2. Hills, D.A., Barber, J.R.: Steady motion of an insulating rigid flat-ended punch over a thermally conducting half-plane. Wear 102, 15–22 (1985)

    Google Scholar 

  3. Hills, D.A., Barber, J.R.: Steady sliding of a circular cylinder over a dissimilar thermally conducting half-plane. Int. J. Mech. Sci. 28, 613–622 (1986)

    MATH  Google Scholar 

  4. Chen, P.J., Chen, S.H.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids Struct. 50, 1108–1119 (2013)

    Google Scholar 

  5. Zelentsov, V.B., Mitrin, B.I.: Thermoelastic instability in the quasi-static coupled thermoelasticity problem dealt with the sliding contact with frictional heating. Mech. Solids 54, 58–69 (2019)

    Google Scholar 

  6. Zhou, Y.T., Zhang, C., Zhong, Z., Wang, L.: Transient thermo-electro-elastic contact analysis of a sliding punch acting on a functionally graded piezoelectric strip under non-Fourier heat conduction. Eur. J. Mech. A Solids 73, 90–100 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Zhang, X., Wang, Q.J.: Thermoelastic contact of layered materials with interfacial imperfection. Int. J. Mech. Sci. 186, 105904 (2020)

    Google Scholar 

  8. Çömez, İ: Thermoelastic contact problem of a magneto-electro-elastic layer indented by a rigid insulating punch. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1995087

    Article  Google Scholar 

  9. Ma, L., Zhang, X., Lv, C., Chen, Q., Li, X., Ding, S.: Steady state thermoelastic contact problem of one-dimensional hexagonal quasicrystals. J. Therm. Stress. 45, 214–233 (2022)

    Google Scholar 

  10. Baiz, O., Benaissa, H.: Finite element approximation and numerical analysis of thermoelectroelastic frictional contact problem with frictional heating. Comput. Appl. Math. 41, 1–25 (2022)

    MathSciNet  MATH  Google Scholar 

  11. Belhocine, A., Abdullah, O.I.: Finite element analysis (FEA) of frictional contact phenomenon on vehicle braking system. Mech. Based Des. Struct. Mech. 50, 2961–2996 (2022)

    Google Scholar 

  12. Jabbar, N.A., Hussain, I.Y., Abdullah, O.I.: Thermal and thermoelastic problems in dry friction clutch: a comprehensive review. Heat Transf. 50, 7855–7878 (2021)

    Google Scholar 

  13. Çömez, İ: Thermoelastic receding contact problem of a layer resting on a half plane with frictional heat generation. J. Therm. Stress. 44, 566–581 (2021)

    Google Scholar 

  14. Nili, A., Adibnazari, S., Karimzadeh, A.: Rolling contact mechanics of graded coatings involving frictional heating. Acta Mech. 230, 1981–1997 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Alinia, Y., Aali, A., Guler, M.A.: Thermoelastic rolling contact problem of an FGM layered elastic solid. Key Eng. Mater. 827, 434–439 (2020)

    Google Scholar 

  16. Yu, Y., Suh, J.: Numerical analysis of three-dimensional thermo-elastic rolling contact under steady-state conditions. Friction 10, 630–644 (2022)

    Google Scholar 

  17. Fu, P., Zhao, J., Zhang, X., Kang, G., Wang, P., Kan, Q.: Elastic shakedown analysis of two-dimensional thermo-elastic rolling/sliding contact for a functionally graded coating/substrate structure with arbitrarily varying thermo-elastic properties. Compos. Struct. 280, 114891 (2022)

    Google Scholar 

  18. Barber, J.R.: Thermoelastic contact of a rotating sphere and a half-space. Wear 35, 283–289 (1975)

    Google Scholar 

  19. Yevtushenko, A., Kulchytsky-Zhyhailo, R.D.: Thermoelastic contact problem of two rotating bodies with frictional heat generation in annular region. Arch. Appl. Mech. 68, 128–136 (1998)

    MATH  Google Scholar 

  20. Kulchytsky-Zhyhailo, R.D.: A simplified solution for three-dimensional contact problem with heat generation. Int. J. Eng. Sci. 39, 303–315 (2001)

    MATH  Google Scholar 

  21. Kulchytsky-Zhyhailo, R.D.: Contact stresses in rotating bodies with regard for heat generation and convective heat exchange. Mater. Sci. 41, 734–742 (2005)

    Google Scholar 

  22. Kulchytsky-Zhyhailo, R.D., Olesiak, Z.S.: Stress distribution in rotating solids with frictional heat excited over contact region. J. Therm. Stress. 29, 957–972 (2006)

    Google Scholar 

  23. Olesiak, Z.S., Kulchytsky-Zhyhailo, R.: Thermoelastic instability in contact problems for rotating solids with heat generation. Int. Appl. Mech. 43, 116–125 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Amassad, A., Kuttler, K.L., Rochdi, M., Shillor, M.: Quasi-static thermoviscoelastic contact problem with slip dependent friction coefficient. Math. Comput. Model. 36, 839–854 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Boukaroura, I., Djabi, S.: Analysis of a quasistatic contact problem with wear and damage for thermo-viscoelastic materials. Malaya J. Mat. 6, 299–309 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Liu, J., Ke, L.L., Zhang, C.Z.: Axisymmetric thermoelastic contact of an FGM-coated half-space under a rotating punch. Acta Mech. 232, 2361–2378 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Figueiredo, I., Trabucho, L.: A class of contact and friction dynamic problems in thermoelasticity and in thermoviscoelasticity. Int. J. Eng. Sci. 33, 45–66 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Olesiak, Z.S., Pyryev, Y.A.: A model of thermoelastic dynamic contact in conditions of frictional heat and wear. J. Theor. Appl. Mech. 36, 305–320 (1998)

    MATH  Google Scholar 

  29. Afferrante, L., Ciavarella, M., Barber, J.R.: Sliding thermoelastodynamic instability. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 2161–2176 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Afferrante, L., Ciavarella, M.: Thermo-elastic dynamic instability (TEDI)—a review of recent results. J. Eng. Math. 61, 285–300 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Belyankova, T.I., Kalinchuk, V.V., Suvorova, G.Y.: A dynamic contact problem for a thermoelastic prestressed layer. J. Appl. Math. Mech. 76, 537–546 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Szafraniec, P.: Dynamic nonsmooth frictional contact problems with damage in thermoviscoelasticity. Math. Mech. Solids. 21, 525–538 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Ogorzaly, J.: Dynamic contact problem with thermal effect. Georgian Math. J. 24, 591–607 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Howell, P.D.: Asymptotic analysis of a dynamical system arising in thermoelastic contact. SIAM J. Appl. Math. 78, 3145–3167 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Bouallala, M., Essoufi, E.H.: Analysis results for dynamic contact problem with friction in thermo-viscoelasticity. Methods Funct. Anal. Topol. 26, 317–326 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Cao-Rial, M.T., Castiñeira, G., Rodríguez-Arós, Á., Roscani, S.: Mathematical and asymptotic analysis of thermoelastic shells in normal damped response contact. Commun. Nonlinear Sci. Numer. Simul. 103, 105995 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Chadi, K., Selmani, M.: Dynamic frictional thermoviscoelastic contact problem with normal compliance and damage. Bull. Belg. Math. Soc. Simon Steven 28, 195–215 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Copetti, M.I.M., Fernández, J.R.: A dynamic contact problem in thermoviscoelasticity with two temperatures. Appl. Numer. Math. 77, 55–71 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Migórski, S., Ochal, A., Shillor, M., Sofonea, M.: Nonsmooth dynamic frictional contact of a thermoviscoelastic body. Appl. Anal. 97, 1228–1245 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Bartosz, K., Janiczko, T., Szafraniec, P., Shillor, M.: Dynamic thermoviscoelastic thermistor problem with contact and nonmonotone friction. Appl. Anal. 97, 1432–1453 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, X., Wang, Q.J., He, T.: Transient and steady-state viscoelastic contact responses of layer-substrate systems with interfacial imperfections. J. Mech. Phys. Solids 145, 104170 (2020)

    MathSciNet  Google Scholar 

  42. Cornejo Córdova, C.J.: Elastodynamics with Hysteretic Damping. PhD Dissertation, Delft University of Technology (2002)

  43. Richart, F.E., Hall, J.R., Woods, R.D.: Vibrations of Soils and Foundations. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  44. Lv, X., Ke, L.L., Su, J., Tian, J.Y.: Axisymmetric contact vibration analysis of a rigid spherical punch on a piezoelectric half-space. Int. J. Solids Struct. 210, 224–236 (2021)

    Google Scholar 

  45. Tian, J.Y., Ogi, H., Hirao, M.: Dynamic-contact stiffness at the interface between a vibrating rigid sphere and a semi-infinite viscoelastic solid. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1557–1563 (2004)

    Google Scholar 

  46. Tian, J.Y.: Anisotropy influence of cubic solid on dynamic Hertzian contact stiffness for a vibrating rigid indenter. Am. J. Eng. Appl. Sci. 3, 56–63 (2010)

    Google Scholar 

  47. Shi, Z.: Mechanical and Thermal Contact Analysis in Layered Elastic Solids. PhD Dissertation, University of Minnesota (2001)

  48. Sherief, H.H., Hamza, F.A., Abd El-Latief, A.M.: 2D problem for a half-space in the generalized theory of thermo-viscoelasticity. Mech. Time-Depend. Mater. 19, 557–568 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 11725207, 12021002 and 12192212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liao-Liang Ke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The expression of \({\bf{T}}_{1} \left( {s,z} \right)\) appearing in Eq. (42) is:

$${\varvec{T}}_{1} \left( {s,z} \right) = \left[ {T_{1i}^{a} \left( {s,z} \right),T_{2i}^{a} \left( {s,z} \right),T_{3i}^{a} \left( {s,z} \right),T_{4i}^{a} \left( {s,z} \right)} \right]^{\rm T} ,\;i = 1,2,$$
(A.1)

where

$$T_{1i}^{a} = e^{{m_{i} z}} ,$$
(A.2)
$$T_{2i}^{a} = a_{i} \left( s \right)e^{{m_{i} z}} ,$$
(A.3)
$$T_{3i}^{a} = \left[ {\lambda s + \left( {\lambda + 2\mu } \right)a_{i} \left( s \right)m_{i} } \right]e^{{m_{i} z}} ,$$
(A.4)
$$T_{4i}^{a} = \left[ {\mu m_{i} - \mu sa_{i} \left( s \right)} \right]e^{{m_{i} z}} .$$
(A.5)

The expression of \({\bf{T}}_{2} \left( {s,z} \right)\) appearing in Eq. (42) is:

$${\varvec{T}}_{2} \left( {s,z} \right) = \left[ {T_{1}^{b} \left( {s,z} \right),T_{2}^{b} \left( {s,z} \right),T_{3}^{b} \left( {s,z} \right),T_{4}^{b} \left( {s,z} \right)} \right]^{\rm T} ,$$
(A.6)

where

$$T_{1}^{b} = F_{1} \left( s \right)e^{sz} ,$$
(A.7)
$$T_{2}^{b} = F_{2} \left( s \right)e^{sz} ,$$
(A.8)
$$T_{3}^{b} = \left[ {\lambda sF_{1} \left( s \right) + \left( {\lambda + 2\mu } \right)sF_{2} \left( s \right) - \left( {3\lambda + 2\mu } \right)\alpha_{T} } \right]e^{sz} ,$$
(A.9)
$$T_{4}^{b} = \left[ { - \mu sF_{1} \left( s \right) - \mu sF_{2} \left( s \right)} \right]e^{sz} .$$
(A.10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Ke, LL. & El-Borgi, S. Axisymmetric thermoelastic contact vibration between a viscoelastic half-space and a rotating spherical punch. Acta Mech 234, 1991–2008 (2023). https://doi.org/10.1007/s00707-022-03464-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03464-4

Navigation