Skip to main content
Log in

On the derivation of a component-free scheme for Lagrangian fluid–structure interaction problems

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The main goal of this work is the resolution of fluid structure interaction problems described with the Lagrangian formalism by means of a consistently derived monolithic approach. The use of a component-free derivation leads to a straightforward implementation of the formulation where only vectors and second-order tensors in \({\mathbb {R}}^3\) are required. Therefore, no basis or components have to be imposed ab initio for the discrete variational formulation as occurs when Voigt notation is employed. The computational framework adopted is the local maximum-entropy material point method (LME-MPM), a mesh-free technique that combines the material point sampling of the MPM and the LME, a spatial approximation technique with basis functions of class \(C^{\infty }\). This framework sidesteps the use of expensive mesh refinement techniques, which are typically required when Lagrangian finite element method is employed. Finally, the effectiveness of this approach is illustrated against challenging fluid dynamic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. The ensuing cancellation of linear momentum automatically accounts for dynamic contacts of the seizing type.

  2. In the context of the numerical implementation of implicit-MPM based approaches, [9, 11, 12, 74].

  3. To reproduce weakly compressible fluids, the exponent n is set to 7.

  4. It is worth mentioning that although this projector has super-convergence attributes, when it is employed in the context of particle methods this property it is not strictly satisfied since particles are not located, in general, in the quadrature positions.

  5. Otherwise, an extra term must be added to the linearization to represent their variations with respect to \({\varphi }\).

  6. Lagrangian Q4 elements were adopted for the FEM simulation.

Abbreviations

J :

Jacobian of the deformation gradient tensor

W :

Strain energy function

\({{\nabla _{0}\cdot {\square }}}\) :

Divergence operator in the \({\mathcal {B}_0}\) configuration

\({{\nabla _{0}{\square }}}\) :

Gradient operator in the \({\mathcal {B}_0}\) configuration

\({{\nabla _{n}{\square }}}\) :

Gradient operator in the \({\mathcal {B}_n}\) configuration

\({{\Gamma _0}}\) :

Reference boundary

\({{\Gamma _{\sigma }}}\) :

Natural or Neumann boundary conditions over \(\Gamma _0\)

\({{\Gamma _{\varphi }}}\) :

Essential or Dirichlet boundary conditions over \(\Gamma _0\)

\({{\Psi }}\) :

Helmholtz free energy function

\({{\ddot{\square }}}\) :

Second material time derivative

\({{\dot{\square }}}\) :

First material time derivative

\({{\nabla _{*}{\square }}}\) :

Gradient operator which push-forwards the gradient from \({\mathcal {B}_{n}}\) to \({\mathcal {B}_{n+1}}\) during the iterations

\({{\nabla _{n+1}{\square }}}\) :

Gradient operator in the \({\mathcal {B}_{n+1}}\) configuration

\({{\kappa _f}}\) :

Water compressibility

\({{\textbf{X}}}\) :

Material coordinates

\({{\textbf{x}}}\) :

Spatial coordinates

\({{\mathcal {A}^p}}\) :

List of nodes for each particle

\({{\mathcal {B}_0}}\) :

Reference configuration

\({{\mathcal {B}}}\) :

Deformed configuration

\({{\mathcal {C}_{\varphi }}}\) :

Smooth manifold of admissible configurations

\({{\mathcal {D}^\textrm{int}}}\) :

Internal dissipation

\({{\mathcal {H}^1}}\) :

Vector Sobolev space of degree 1

\({{\mathcal {P}^\textrm{int}}}\) :

Stress power

\({{\mathcal {V}_{\psi }}}\) :

Space of the test functions \(\psi \)

\({{\texttt{B}}}\) :

Standard Voigt strain–displacement matrix

\({{\texttt{D}}}\) :

Standard Voigt constitutive matrix

\({{\mu }}\) :

Shear viscosity coefficient

\({{\nu }}\) :

Poisson ratio

\({{\psi }}\) :

Test functions

\({{\rho }}\) :

Describes the scalar density field

\({{\sigma }}\) :

Cauchy stress tensor

\(\textrm{skew}~({\square })\) :

Compute the skew-symmetric part of a tensor

\({{\square \cdot \square }}\) :

Single contraction operator

\({{\square \circ \square }}\) :

Function composition

\({{\square :\square }}\) :

Double contraction operator

\({{\square \otimes \square }}\) :

Dyadic operator

\({{\square ^I}}\) :

Nodal variable

\({{\square ^p}}\) :

Particle variable

\({{\square ^\textrm{dev}}}\) :

Deviatoric component of a tensor

\({{\square _n}}\) :

Time evaluation of a variable at \(t = n\)

\(\textrm{sym}({\square })\) :

Compute the symmetric part of a tensor

\({{{\textbf{C}}}}\) :

Right Cauchy–Green strain tensor

\({{{\textbf{F}}^*}}\) :

Cofactor matrix of the deformation gradient tensor

\({{{\textbf{F}}^+}}\) :

Incremental deformation gradient tensor

\({{{\textbf{F}}}}\) :

Deformation gradient tensor

\({{{\textbf{I}}}}\) :

Identity tensor

\({{{\textbf{I}}}}\) :

Second-order identity tensor

\({{{\textbf{P}}}}\) :

First Piola–Kirchhoff stress tensor

\({{{\textbf{S}}}}\) :

Second Piola–Kirchhoff stress tensor

\({{\dot{{\textbf{F}}}}}\) :

Rate of deformation gradient tensor

\({{{\mathbf {\tau }}}}\) :

Kirchhoff stress tensor \({\tau = J\sigma }\)

\({{{\textbf{d}}}}\) :

Spatial rate of deformation tensor

\({{{\textbf {a}}}}\) :

Acceleration field

\({{{\textbf {g}}}}\) :

Gravity field

\({{{\textbf {v}}}}\) :

Velocity field

\({{\varphi ^+}}\) :

Incremental configuration mapping

\({{\varphi }}\) :

Configuration mapping

\({{\widehat{\beta }}}\) :

Regularization or thermalization parameter of the LME\(_{\beta }\) Pareto set

m :

Mass [M]

CFD:

Computational fluid dynamics

CFL:

The Courant–Friedrich–Levy is defined as, CFL = \({\frac{\text {Cel}}{\Delta x / \Delta t}}\)

DBC:

Dirichlet boundary conditions

E :

Elastic modulus

Eu:

The Euler number shows the dominance of pressure terms over convective terms, Eu = \({\frac{\Delta p}{{\rho }{{\textbf {v}}}^2}}\)

FEM:

Finite element method

FLIP:

Fluid implicit particle

FSI:

Fluid–structure interaction

IBVP:

Initial boundary value problem

LME:

Local maximum entropy

LME-MPM:

Local maximum-entropy material point method

MPM:

Material point method

NB:

Newmark-\(\beta \)

OTM:

Optimal transportation meshfree

PFEM:

Particle finite element method

PIC:

Particle in cell

PPP:

Polynomial pressure projection

SPH:

Smoothed particle hydrodynamics

TL:

Total-Lagrangian

UL:

Updated-Lagrangian

References

  1. Agamloh, E.B., Wallace, A.K., Von Jouanne, A.: Application of fluid-structure interaction simulation of an ocean wave energy extraction device. Renew. Energy 33(4), 748–757 (2008)

    Article  Google Scholar 

  2. Antoci, C., Gallati, M., Sibilla, S.: Numerical simulation of fluid-structure interaction by SPH. Comput. Struct. 85(11–14), 879–890 (2007)

    Article  Google Scholar 

  3. Arroyo, M., Ortiz, M.: Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Numer. Methods Eng. (2006). https://doi.org/10.1002/nme.1534

    Article  MathSciNet  MATH  Google Scholar 

  4. Asai, M., Li, Y., Chandra, B., et al.: Fluid-rigid-body interaction simulations and validations using a coupled stabilized ISPH-dem incorporated with the energy-tracking impulse method for multiple-body contacts. Comput. Methods Appl. Mech. Eng. 377(113), 681 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Balay, S., Abhyankar, S., Adams, M.F., et al.: PETSc/TAO users manual. Tech. Rep. ANL-21/39 - Revision 3.17, Argonne National Laboratory (2022)

  6. Bergamaschi, L., Ferronato, M., Gambolati, G.: Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations. Comput. Methods Appl. Mech. Eng. 196(25), 2647–2656 (2007). https://doi.org/10.1016/j.cma.2007.01.013

    Article  MathSciNet  MATH  Google Scholar 

  7. Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139178938

    Book  MATH  Google Scholar 

  8. Brackbill, J., Kothe, D., Ruppel, H.: Flip: a low-dissipation, particle-in-cell method for fluid flow. Comput. Phys. Commun. 48(1), 25–38 (1988). https://doi.org/10.1016/0010-4655(88)90020-3

    Article  Google Scholar 

  9. Charlton, T.J., Coombs, W.M., Augarde, C.E.: iGIMP: an implicit generalised interpolation material point method for large deformations. Comput. Struct. 190, 108–125 (2017). https://doi.org/10.1016/j.compstruc.2017.05.004

    Article  Google Scholar 

  10. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963). https://doi.org/10.1007/BF01262690

    Article  MathSciNet  MATH  Google Scholar 

  11. Coombs, W.M., Charlton, T.J., Cortis, M., et al.: Overcoming volumetric locking in material point methods. Comput. Methods Appl. Mech. Eng. 333, 1–21 (2018). https://doi.org/10.1016/j.cma.2018.01.010

    Article  MathSciNet  MATH  Google Scholar 

  12. Coombs, W.M., Augarde, C.E., Brennan, A.J., et al.: On Lagrangian mechanics and the implicit material point method for large deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 358(112), 622 (2020). https://doi.org/10.1016/j.cma.2019.112622

    Article  MathSciNet  MATH  Google Scholar 

  13. Cosco, F., Greco, F., Desmet, W., et al.: GPU accelerated initialization of local maximum-entropy meshfree methods for vibrational and acoustic problems. Comput. Methods Appl. Mech. Eng. 366(113), 089 (2020). https://doi.org/10.1016/j.cma.2020.113089

    Article  MathSciNet  MATH  Google Scholar 

  14. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009)

    Google Scholar 

  15. de Vaucorbeil, A., Nguyen, V.P., Hutchinson, C.R.: A total-Lagrangian material point method for solid mechanics problems involving large deformations. Comput. Methods Appl. Mech. Eng. 360(112), 783 (2020). https://doi.org/10.1016/j.cma.2019.112783

    Article  MathSciNet  MATH  Google Scholar 

  16. de Vaucorbeil, A., Nguyen, V.P., Hutchinson, C.R.: aramelo: an open source parallel c++ package for the material point method. Comput. Part. Mech. (2021). https://doi.org/10.1007/s40571-020-00369-8

    Article  Google Scholar 

  17. Degroote, J., Bathe, K.J., Vierendeels, J.: erformance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 87(11):793–801 (2009). https://doi.org/10.1016/j.compstruc.2008.11.013. Fifth MIT Conference on Computational Fluid and Solid Mechanics

  18. Després, B., Mazeran, C.: Lagrangian gas dynamics in two dimensions and Lagrangian systems. Arch. Ration. Mech. Anal. 178(3), 327–372 (2005). https://doi.org/10.1007/s00205-005-0375-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Dettmer, W., Peric, D.: A new staggered scheme for fluid-structure interaction. Int. J. Numer. Methods Eng. (2013). https://doi.org/10.1002/nme.4370

    Article  MathSciNet  MATH  Google Scholar 

  20. Dettmer, W.G., Lovrić, A., Kadapa, C., et al.: New iterative and staggered solution schemes for incompressible fluid-structure interaction based on Dirichlet-Neumann coupling. Int. J. Numer. Methods Eng. 122(19), 5204–5235 (2021)

    Article  MathSciNet  Google Scholar 

  21. Doghri, I.: Mechanics of Deformable Solids: Linear, Nonlinear, Analytical and Computational Aspects. Springer, Berlin (2013)

    MATH  Google Scholar 

  22. Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Meth. Fluids 46(2), 183–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fan, J., Liao, H., Ke, R., et al.: A monolithic Lagrangian meshfree scheme for fluid-structure interaction problems within the OTM framework. Comput. Methods Appl. Mech. Eng. 337, 198–219 (2018). https://doi.org/10.1016/j.cma.2018.03.031

    Article  MathSciNet  MATH  Google Scholar 

  24. Farhat, C., Lesoinne, M.: Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput. Methods Appl. Mech. Eng. 182(3–4), 499–515 (2000)

    Article  MATH  Google Scholar 

  25. Franci, A., Oñate, E., Carbonell, J.: Unified updated Lagrangian formulation for the analysis of quasi and fully incompressible fluids and solids and their interaction via a partitioned scheme and the PFEM. CIMNE (2014)

  26. Franci, A., Oñate, E., Carbonell, J.M.: Unified Lagrangian formulation for solid and fluid mechanics and FSI problems. Comput. Methods Appl. Mech. Eng. 298, 520–547 (2016). https://doi.org/10.1016/j.cma.2015.09.023

    Article  MathSciNet  MATH  Google Scholar 

  27. Gilmanov, A., Acharya, S.: A hybrid immersed boundary and material point method for simulating 3D fluid-structure interaction problems. Int. J. Numer. Methods Fluids 56(12), 2151–2177 (2008). https://doi.org/10.1002/fld.1578

    Article  MATH  Google Scholar 

  28. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977). https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  29. González, D., Cueto, E., Chinesta, F., et al.: A natural element updated Lagrangian strategy for free-surface fluid dynamics. J. Comput. Phys. 223(1), 127–150 (2007). https://doi.org/10.1016/j.jcp.2006.09.002

    Article  MathSciNet  MATH  Google Scholar 

  30. Greco, F., Filice, L., Peco, C., et al.: A stabilized formulation with maximum entropy meshfree approximants for viscoplastic flow simulation in metal forming. Int. J. Mater. Formg 8, 341–353 (2015). https://doi.org/10.1007/s12289-014-1167-x

    Article  Google Scholar 

  31. Hamad, F.: Formulation of a dynamic material point method and applications to soil-water-geotextile systems. Inst. für Geotechnik (2014)

  32. Hammerquist, C.C., Nairn, J.A.: A new method for material point method particle updates that reduces noise and enhances stability. Comput. Methods Appl. Mech. Eng. 318, 724–738 (2017). https://doi.org/10.1016/j.cma.2017.01.035

    Article  MathSciNet  MATH  Google Scholar 

  33. Harlow, F.H.: The particle-in-cell method for numerical solution of problems in fluid dynamics (1962)

  34. Hsu, M.C., Bazilevs, Y.: Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem. Anal. Des. 47(6), 593–599 (2011). https://doi.org/10.1016/j.finel.2010.12.015

    Article  MathSciNet  Google Scholar 

  35. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola (2000)

    MATH  Google Scholar 

  36. Idelsohn, S., Oñate, E., Pin, F.D.: The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Methods Eng. 61(7), 964–989 (2004). https://doi.org/10.1002/nme.1096

    Article  MathSciNet  MATH  Google Scholar 

  37. Idelsohn, S., Marti, J., Limache, A., et al.: Unified lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM. Comput. Methods Appl. Mech. Eng. 197(19), 1762–1776 (2008). https://doi.org/10.1016/j.cma.2007.06.004. Computational Methods in Fluid-Structure Interaction

  38. Kan, L., Zhang, X.: An immersed MMALE material point method for FSI problems with structure fracturing. Comput. Methods Appl. Mech. Eng. 396(115), 099 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Kane, C., Marsden, J.E., Ortiz, M.: Symplectic-energy-momentum preserving variational integrators. J. Math. Phys. 40, 3353–3371 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Khayyer, A., Gotoh, H., Falahaty, H., et al.: An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput. Phys. Commun. 232, 139–164 (2018). https://doi.org/10.1016/j.cpc.2018.05.012

    Article  MathSciNet  Google Scholar 

  41. Kuhl, E., Steinmann, P.: A hyperelastodynamic ale formulation based on referential, spatial and material settings of continuum mechanics. Acta Mech. 174(3), 201–222 (2005). https://doi.org/10.1007/s00707-004-0200-4

    Article  MATH  Google Scholar 

  42. Kularathna, S., Soga, K.: Implicit formulation of material point method for analysis of incompressible materials. Comput. Methods Appl. Mech. Eng. 313, 673–686 (2017). https://doi.org/10.1016/j.cma.2016.10.013

    Article  MathSciNet  MATH  Google Scholar 

  43. Legay, A., Chessa, J., Belytschko, T.: An Eulerian–Lagrangian method for fluid-structure interaction based on level sets. Comput. Methods Appl. Mech. Eng. 195(17), 2070–2087 (2006) https://doi.org/10.1016/j.cma.2005.02.025. Fluid-Structure Interaction

  44. Li, B., Habbal, F., Ortiz, M.: Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int. J. Numer. Methods Eng. 83(12), 1541–1579 (2010). https://doi.org/10.1002/nme.2869

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, B., Stalzer, M., Ortiz, M.: A massively parallel implementation of the optimal transportation meshfree method for explicit solid dynamics. Int. J. Numer. Methods Eng. 100(1), 40–61 (2014). https://doi.org/10.1002/nme.4710

    Article  MATH  Google Scholar 

  46. Li, M.J., Lian, Y., Zhang, X.: An immersed finite element material point (IFEMP) method for free surface fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 393(114), 809 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Li, Z., Leduc, J., Nunez-Ramirez, J., et al.: A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion. Comput. Mech. 55(4), 697–718 (2015). https://doi.org/10.1007/s00466-015-1131-8

    Article  MathSciNet  MATH  Google Scholar 

  48. Lobovský, L., Botia-Vera, E., Castellana, F., et al.: Experimental investigation of dynamic pressure loads during dam break. J. Fluids Struct. 48, 407–434 (2014). https://doi.org/10.1016/j.jfluidstructs.2014.03.009

    Article  Google Scholar 

  49. Love, E., Sulsky, D.: An unconditionally stable, energy-momentum consistent implementation of the material-point method. Comput. Methods Appl. Mech. Eng. 195(33), 3903–3925 (2006). https://doi.org/10.1016/j.cma.2005.06.027

    Article  MathSciNet  MATH  Google Scholar 

  50. Macdonald, J.R.: Some simple isothermal equations of state. Rev. Mod. Phys. 38, 669–679 (1966). https://doi.org/10.1103/RevModPhys.38.669

    Article  Google Scholar 

  51. Michler, C., Hulshoff, S., van Brummelen, E., et al.: A monolithic approach to fluid-structure interaction. Comput. Fluids 33(5), 839–848 (2004). https://doi.org/10.1016/j.compfluid.2003.06.006. Applied Mathematics for Industrial Flow Problems

  52. Molinos, M.: The local maximum-entropy material point method. PhD thesis, School of Civil Engineers, Universidad Politécnica de Madrid (2021) https://doi.org/10.20868/UPM.thesis.69327

  53. Molinos, M., Martín Stickle, M., Navas, P., et al.: Towards a local maximum-entropy material point method at finite strain within a b-free approach. Int. J. Numer. Methods Eng. 122, 5594–5625 (2021). https://doi.org/10.1002/nme.6765

    Article  MathSciNet  Google Scholar 

  54. Molinos, M., Navas, P., Pastor, M., et al.: On the dynamic assessment of the Local-Maximum Entropy Material Point Method through an Explicit Predictor-Corrector Scheme. Comput. Methods Appl. Mech. Eng. 374(113), 512 (2021). https://doi.org/10.1016/j.cma.2020.113512

    Article  MathSciNet  MATH  Google Scholar 

  55. Molteni, D., Colagrossi, A.: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput. Phys. Commun. 180(6), 861–872 (2009). https://doi.org/10.1016/j.cpc.2008.12.004

    Article  MathSciNet  MATH  Google Scholar 

  56. Monaghan, J.: Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994). https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  57. Morikawa, D.S., Asai, M.: Coupling total Lagrangian SPH-EISPH for fluid-structure interaction with large deformed hyperelastic solid bodies. Comput. Methods Appl. Mech. Eng. 381(113), 832 (2021). https://doi.org/10.1016/j.cma.2021.113832

    Article  MathSciNet  MATH  Google Scholar 

  58. Murakami, S., Ha, B.H., NAKAO, H., et al.: Sph analysis on tsunami flow around bridge girder. J. Jpn. Soc. Civil Eng. Ser A1 (Struct. Eng. Earthq. Eng. (SE/EE)) 65(1), 914–920 (2009). https://doi.org/10.2208/jscejseee.65.914

    Article  Google Scholar 

  59. Navas, P., López-Querol, S., Yu, R.C., et al.: Optimal transportation meshfree method in geotechnical engineering problems under large deformation regime. Int. J. Numer. Methods Eng. (2018). https://doi.org/10.1002/nme.5841

    Article  MathSciNet  MATH  Google Scholar 

  60. Newmark, N.M.: A method of computation for structural dynamics. J .Eng. Mech. Div. 85, 67–94 (1959)

    Article  Google Scholar 

  61. NL-PartSol. Non-linear Particle Solver (2022). https://github.com/migmolper/NL-PartSol

  62. Oñate, E., Carbonell, J.M.: Updated Lagrangian mixed finite element formulation for quasi and fully incompressible fluids. Comput. Mech. 54(6), 1583–1596 (2014). https://doi.org/10.1007/s00466-014-1078-1

    Article  MathSciNet  MATH  Google Scholar 

  63. Planas, J., Romero, I., Sancho, J.: B free. Comput. Methods Appl. Mech. Eng. 217–220, 226–235 (2012). https://doi.org/10.1016/j.cma.2012.01.019

    Article  MATH  Google Scholar 

  64. Radovitzky, R., Ortiz, M.: Lagrangian finite element analysis of Newtonian fluid flows. Int. J. Numer. Methods Eng. 43(4), 607–619 (1998). https://doi.org/10.1002/(SICI)1097-0207(19981030)43:4<607::AID-NME399>3.0.CO;2-N

  65. Riemann, B.: Über die darstellbarkeit einer function durch eine trigonometrische reihe. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13, 87–138 (1854). https://doi.org/10.1016/j.cma.2017.09.022

    Article  Google Scholar 

  66. Rosolen, A., Arroyo, M.: Blending isogeometric analysis and local maximum entropy meshfree approximants. Comput. Methods Appl. Mech. Eng. 264, 95–107 (2013). https://doi.org/10.1016/j.cma.2013.05.015

    Article  MATH  Google Scholar 

  67. Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., et al.: A monolithic Lagrangian approach for fluid-structure interaction problems. Comput. Mech. 46(6), 883–899 (2010). https://doi.org/10.1007/s00466-010-0522-0

    Article  MathSciNet  MATH  Google Scholar 

  68. Simo, J., Tarnow, N., Wong, K.: Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods Appl. Mech. Eng. 100(1), 63–116 (1992). https://doi.org/10.1016/0045-7825(92)90115-Z

    Article  MathSciNet  MATH  Google Scholar 

  69. Simo, J.C., Tarnow, N.: The discrete energy-momentum method. conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 43 (1992). https://doi.org/10.1007/BF00913408

  70. Song, Y., Liu, Y., Zhang, X.: A non-penetration FEM-MPM contact algorithm for complex fluid-structure interaction problems. Comput. Fluids 213(104), 749 (2020)

    MathSciNet  MATH  Google Scholar 

  71. Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material point method (MPM). Int. J. Numer. Methods Eng. 76(6), 922–948 (2008). https://doi.org/10.1002/nme.2360

    Article  MathSciNet  MATH  Google Scholar 

  72. Stein, K.R., Tezduyar, T.E., Kumar, V., et al.: Numerical simulation of soft landing for clusters of cargo parachutes. Adv. Appl. Mech. 28, 1–44 (1992)

    Google Scholar 

  73. Stickle, M.M., Molinos, M., Navas, P., et al.: A component-free Lagrangian finite element formulation for large strain elastodynamics. Comput. Mech. (2022). https://doi.org/10.1007/s00466-021-02107-0

    Article  MathSciNet  MATH  Google Scholar 

  74. Sulsky, D., Kaul, A.: Implicit dynamics in the material-point method. Comput. Methods Appl. Mech. Eng. 193(12), 1137–1170 (2004). https://doi.org/10.1016/j.cma.2003.12.011

    Article  MathSciNet  MATH  Google Scholar 

  75. Sulsky, D.L., Schreyer, H., Chen, Z.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1), 179–196 (1994). https://doi.org/10.1016/0045-7825(94)90112-0

    Article  MathSciNet  MATH  Google Scholar 

  76. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells. Springer, Berlin (1959)

    MATH  Google Scholar 

  77. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1999). https://doi.org/10.1007/978-3-662-03915-1

    Book  MATH  Google Scholar 

  78. Vilar, F., Maire, P.H., Abgrall, R.: A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. J. Comput. Phys. 276, 188–234 (2014). https://doi.org/10.1016/j.jcp.2014.07.030

    Article  MathSciNet  MATH  Google Scholar 

  79. Walhorn, E., Kölke, A., Hübner, B., et al.: Fluid-structure coupling within a monolithic model involving free surface flows. Comput. Struct. 83(25), 2100–2111 (2005). https://doi.org/10.1016/j.compstruc.2005.03.010

    Article  Google Scholar 

  80. Willcox, K., Paduano, J., Peraire, J., et al.: Low order aerodynamic models for aeroelastic control of turbomachines. In: 40th Structures, Structural Dynamics, and Materials Conference and Exhibit, p. 1467 (1999)

  81. Wriggers, P.: Nonlinear Finite Element Methods, 1st edn. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-71001-1

    Book  MATH  Google Scholar 

  82. Wriggers, P., Simo, J.C.: A general procedure for the direct computation of turning and bifurcation points. Int. J. Numer. Methods Eng. 30(1), 155–176 (1990). https://doi.org/10.1002/nme.1620300110

    Article  MATH  Google Scholar 

  83. York, A.R., II., Sulsky, D., Schreyer, H.L.: Fluid-membrane interaction based on the material point method. Int. J. Numer. Methods Engi. 48(6), 901–924 (2000). https://doi.org/10.1002/(SICI)1097-0207(20000630)48:6<901::AID-NME910>3.0.CO;2-T

  84. Zhang, C., Rezavand, M., Hu, X.: A multi-resolution SPH method for fluid-structure interactions. J. Comput. Phys. 429(110), 028 (2021). https://doi.org/10.1016/j.jcp.2020.110028

    Article  MathSciNet  MATH  Google Scholar 

  85. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987). https://doi.org/10.1002/NME.1620240206

    Article  MathSciNet  MATH  Google Scholar 

  86. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992). https://doi.org/10.1002/nme.1620330702

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministerio de Ciencia e Innovación, under Grant Number, PID2019-105630GB-I00. M. Molinos appreciates the Fundación Entrecanales Ibarra for his PhD fellowship and thanks the Universidad Politécnica de Madrid for the financial support for his research stay in the University of California Berkeley. B. Chandra gratefully acknowledges the support from the Jane Lewis Fellowship of the University of California, Berkeley. Data Availability The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Molinos.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Auxiliary derivations

Lemma 1

Let \(\delta {\varphi }\) be the variation of the differentiable mapping \({\varphi }\); then, the linearization of the deformation gradient \({{\textbf{F}}}\) is given by:

$$\begin{aligned} \delta {{\textbf{F}}}\ =\ \nabla _{0}{D{\varphi }}. \end{aligned}$$
(A1)

Proof of Lemma 1

The linearization of the deformation gradient has the following structure:

$$\begin{aligned} \frac{d}{d\epsilon } \Bigg |_{\epsilon = 0}\ {{\textbf{F}}}({\varphi }_{n+1} + \epsilon D{\varphi })\ =\ \frac{\partial ({\varphi }_{n+1} + \epsilon D{\varphi })}{\partial {\textbf{X}}}\ =\ \nabla _{0}{D{\varphi }}. \end{aligned}$$
(A2)

\(\square \)

Lemma 2

The linearization of \({{\textbf{F}}}^{-1}\) reads as:

$$\begin{aligned} \delta {{\textbf{F}}}^{-1}\ =\ - {{\textbf{F}}}^{-1}\ \nabla _{0}{D{\varphi }}\ {{\textbf{F}}}^{-1}. \end{aligned}$$
(A3)

Remark

An immediate result of Lemma 2 is:

$$\begin{aligned} \delta {{\textbf{F}}}^{-T}\ =\ - {{\textbf{F}}}^{-T}\ \nabla _{0}{D{\varphi }}^{T}\ {{\textbf{F}}}^{-T}. \end{aligned}$$
(A4)

Proof of Lemma 2

Consider the relation \({\textbf{A}}^{-1}{\textbf{A}} = {{\textbf{I}}}\) as starting point:

$$\begin{aligned} \begin{aligned}&\delta {\textbf{A}}^{-1}\ {\textbf{A}}\ +\ {\textbf{A}}^{-1}\ \delta {\textbf{A}}\ =\ \delta {{\textbf{I}}}\ =\ 0\\&\delta {\textbf{A}}^{-1}\ {\textbf{A}}\ =\ - {\textbf{A}}^{-1}\ \delta {\textbf{A}}\\&\delta {\textbf{A}}^{-1}\ =\ - {\textbf{A}}^{-1}\ \delta {\textbf{A}}\ {\textbf{A}}^{-1} \end{aligned} \end{aligned}$$
(A5)

Therefore, the variation of the inverse for any non-singular tensor \({\textbf{A}}\) can be expressed as Eq. (A5). \(\square \)

Lemma 3

Let J be the determinant, or Jacobian, of the deformation gradient \({{\textbf{F}}}\) and \({{\textbf{F}}^*}\) the cofactor of \({{\textbf{F}}}\). Then, the linearization of J is:

$$\begin{aligned} \delta {J} = {{\textbf{F}}^*}: \nabla _{0}{D{\varphi }}. \end{aligned}$$
(A6)

Proof of Lemma 3

For a \({\mathbb {R}}^3 \times {\mathbb {R}}^3\) non-singular matrix \({\textbf{A}}\), i.e., one with nonzero determinant, the Cayley–Hamilton theorem states the following characteristic equation:

$$\begin{aligned} p({\textbf{A}})\ =\ {\textbf{A}}^3\ -\ tr({\textbf{A}}){\textbf{A}}^2\ +\ I_{2}{\textbf{A}}\ -\ det({\textbf{A}}){{\textbf{I}}}\ = {\textbf{0}}. \end{aligned}$$
(A7)

\(I_{2}\) is the second invariant of \({\textbf{A}}\). For the particular case of \({{\textbf{F}}}\) and rearranging the expression of the characteristic equation:

$$\begin{aligned} {J}\ {{\textbf{F}}}^{-1} = {{\textbf{F}}}^2 - tr({{\textbf{F}}}){{\textbf{F}}} + I_{2}{{\textbf{I}}}. \end{aligned}$$

Considering the result obtained in Lemma 1:

$$\begin{aligned} \begin{aligned} \frac{d}{d\epsilon } \Bigg |_{\epsilon = 0}\ {J}({\varphi }_{n+1} + \epsilon D{\varphi })&= \frac{\partial {J}}{\partial {{\textbf{F}}}}: \frac{d}{d\epsilon } \Bigg |_{\epsilon = 0}\ {{\textbf{F}}}({\varphi }_{n+1} + \epsilon D{\varphi })\\&= ({{\textbf{F}}}^2 - tr({{\textbf{F}}}){{\textbf{F}}} + I_2{{\textbf{I}}})^T: \nabla _{0}{D{\varphi }}\\&= {J} {{\textbf{F}}}^{-T}: \nabla _{0}{D{\varphi }}\\&= {{\textbf{F}}^*}: \nabla _{0}{D{\varphi }}. \end{aligned} \end{aligned}$$

\(\square \)

Lemma 4

The linearization of the cofactor of the deformation gradient \({{\textbf{F}}}\) is:

$$\begin{aligned} \delta {{\textbf{F}}^*}\ =\ \left[ ({{\textbf{F}}}^{-T}: \nabla _{0}{D{\varphi }}){{\textbf{I}}}\ -\ {{\textbf{F}}}^{-T}\nabla _{0}{D{\varphi }}^T \right] {{\textbf{F}}^*}. \end{aligned}$$
(A8)

Proof of Lemma 4

Following the definition of \({{\textbf{F}}^*}\), applying the chain rule over it and considering the intermediate results in Lemmas 1 and 3:

$$\begin{aligned} \begin{aligned} \delta {{\textbf{F}}^*}&= \delta {J}{{\textbf{F}}}^{-T}\ +\ {J}\delta {{\textbf{F}}}^{-T} \\&= {J} \left( {{\textbf{F}}}^{-T}: \nabla _{0}{D{\varphi }} \right) {{\textbf{F}}}^{-T}\ -\ {J}{{\textbf{F}}}^{-T}\ \nabla _{0}{D{\varphi }}^{T}\ {{\textbf{F}}}^{-T}\\&= \left[ ({{\textbf{F}}}^{-T}: \nabla _{0}{D{\varphi }}){{\textbf{I}}}\ -\ {{\textbf{F}}}^{-T}\nabla _{0}{D{\varphi }}^T \right] {{\textbf{F}}^*} \end{aligned} \end{aligned}$$

\(\square \)

Lemma 5

The linearization of the rate of the deformation gradient \({\dot{{\textbf{F}}}}\) is:

$$\begin{aligned} \delta {\dot{{\textbf{F}}}}\ = \ \alpha _4\nabla _{0}{D{\varphi }}. \end{aligned}$$
(A9)

Proof of Lemma 5

Taking as starting point the linearization of the deformation gradient obtained in Lemma 1 and having in mind the time discretization presented in Sect. 3.2:

$$\begin{aligned} \begin{aligned} \frac{d}{d\epsilon } \Bigg |_{\epsilon = 0}\ {\dot{{\textbf{F}}}}({\varphi }_{n+1} + \epsilon D{\varphi })&= \frac{d}{d\epsilon } \Bigg |_{\epsilon = 0}\ \alpha _4 \left( {\varphi }_{n + 1} + \epsilon D{\varphi } - {\varphi }_{n} \right) + \alpha _5 {{\textbf {v}}}_{n} + \alpha _6 {{\textbf {a}}}_{n}\ \\&= \alpha _4\nabla _{0}{D{\varphi }}. \end{aligned} \end{aligned}$$

\(\square \)

Lemma 6

The linearization of the material velocity gradient \(\nabla {{{\textbf {v}}}}\) is:

$$\begin{aligned} \delta \nabla {{{\textbf {v}}}}\ =\ \left( \alpha _4{{\textbf{I}}}\ -\ \nabla {{{\textbf {v}}}} \right) \nabla _{0}{D{\varphi }}{{\textbf{F}}}^{-1}. \end{aligned}$$
(A10)

Remark

By the application of Lemma 6, the linearization of \({{\textbf{d}}}\) is:

$$\begin{aligned} \delta {{\textbf{d}}}\ =\ \frac{1}{2}\ \left( \left( \alpha _4{{\textbf{I}}}\ -\ \nabla {{{\textbf {v}}}} \right) \nabla _{0}{D{\varphi }}{{\textbf{F}}}^{-1}\ +\ {{\textbf{F}}}^{-T}\nabla _{0}{D{\varphi }}^T\left( \alpha _4{{\textbf{I}}}\ -\ \nabla {{{\textbf {v}}}^T} \right) \right) . \end{aligned}$$
(A11)

Proof of Lemma 6

Considering the definition of \(\nabla {{{\textbf {v}}}}\) as in Eq. (5) and applying the intermediate results obtained in Lemma 2 and Lemma 5:

$$\begin{aligned} \begin{aligned} \delta \nabla {{{\textbf {v}}}}&= \delta {\dot{{\textbf{F}}}}{{\textbf{F}}}^{-1}\ +\ {\dot{{\textbf{F}}}}\delta {{\textbf{F}}}^{-1}\\&= \alpha _4\nabla _{0}{D{\varphi }}{{\textbf{F}}}^{-1}\ -\ {\dot{{\textbf{F}}}}{{\textbf{F}}}^{-1}\nabla _{0}{D{\varphi }}{{\textbf{F}}}^{-1}\\&=\ \left( \alpha _4{{\textbf{I}}}\ -\ \nabla {{{\textbf {v}}}} \right) \nabla _{0}{D{\varphi }}{{\textbf{F}}}^{-1}. \end{aligned} \end{aligned}$$

\(\square \)

Lemma 7

For any vectors \({{\textbf {v}}},{{\textbf {b}}},\delta {{\textbf {a}}} \in {\mathbb {R}}^{dim}\) and any fourth-order tensor \({\mathbb {T}}: \square \), the following relation is satisfied:

$$\begin{aligned} {\mathbb {T}} \{{{\textbf {v}}},{{\textbf {b}}} \}\ \delta {{\textbf {a}}}\ = \left[ {\mathbb {T}}: (\delta {{\textbf {a}}} \otimes {{\textbf {b}}}) \right] {{\textbf {v}}}. \end{aligned}$$
(A12)

This leads to the definition of the operator:

$$\begin{aligned} {\mathbb {T}} \{{\mathbb {R}}^{dim},{\mathbb {R}}^{dim}\}\ \rightarrow \ {\mathbb {R}}^{dim} \times {\mathbb {R}}^{dim}. \end{aligned}$$
(A13)

From this definition, it is a simple exercise to find the bilinear tensor form \({\mathbb {T}} \{\square ,\square \}\) for the various simple, but frequent, tensor-valued linear operations collected in Table 7.

Table 7 Expression of the tensor-valued bilinear form \({\mathbb {T}} \{{{\textbf {v}}},{{\textbf {b}}} \}\) for simple linear tensor transformations. Naming \(\delta {{\textbf {a}}} \otimes {{\textbf {b}}}\) as the displacement-gradient tensor \(\delta {{\textbf {H}}}\)

Remark

Consider as example of application \({{\textbf {v}}} = \nabla _{0}{N({{\textbf {x}}})}^{\beta }\), \({{\textbf {b}}} = \nabla _{0}{N({{\textbf {x}}})}^{\alpha }\), \(\delta {{\textbf {a}}} = D{\varphi }_{n+1}^{\beta }\), and \({\mathbb {T}}: \square = {\mathbb {A}}: \square \). We pretend to factorize out the variation of the displacement, \(D{\varphi }^{\beta }_{n+1}\), in the foregoing expression:

$$\begin{aligned} \begin{aligned}&\Big [{\psi }^{\alpha } \otimes \nabla _{0}{N({\textbf{x}})^{\alpha }}\Big ]\,\ \Big [{\mathbb {A}}: \left[ D{\varphi }_{n+1}^{\beta } \otimes \nabla _{0}{N({\textbf{x}})^{\beta }} \right] \Big ]\\&\quad = {\psi }^{\alpha }\ \cdot \Big [{\mathbb {A}}: \left[ D{\varphi }_{n+1}^{\beta } \otimes \nabla _{0}{N({\textbf{x}})^{\beta }} \right] \Big ]\ \cdot \ \nabla _{0}{N({\textbf{x}})^{\alpha }}. \end{aligned} \end{aligned}$$
(A14)

By the application of Lemma 7:

$$\begin{aligned} {\psi }^{\alpha }\ \cdot \ {\mathbb {A}} \big \{ \nabla _{0}{N({\textbf{x}})^{\alpha }},\ \nabla _{0}{N({\textbf{x}})^{\beta }} \big \}\ \cdot \ D{\varphi }^{I}_{n+1}. \end{aligned}$$
(A15)

Proof of Lemma 7

See Planas et al. [63]. \(\square \)

Appendix B Linearization of the variational equation for the solid phase

The component-free expression of the tangent density \({\mathbb {A}} \big \{\square ,\square \big \}\) for a general isotropic hyperelastic material whose strain energy density function W is function of the principal invariants of \({{\textbf{C}}}\) is given by Stickle et al. [73]:

$$\begin{aligned} \begin{aligned}&{\mathbb {A}} \big \{\nabla _{0}{N({\textbf{x}})^{\alpha }},\ \nabla _{0}{N({\textbf{x}})^{\beta }} \big \}\ \\&\quad = {{\textbf{S}}}: (\nabla _{0}{N({\textbf{x}})^{\alpha }} \otimes \nabla _{0}{N({\textbf{x}})^{\beta }}){{\textbf{I}}}\ +\ {{\textbf{F}}} {\mathbb {C}} \big \{ \nabla _{0}{N({\textbf{x}})^{\alpha }},\ \nabla _{0}{N({\textbf{x}})^{\beta }} \big \} {{\textbf{F}}}^T, \end{aligned} \end{aligned}$$
(B16)

where

$$\begin{aligned} {\mathbb {C}} \big \{{{\textbf {v}}},{{\textbf {b}}}\big \}= & {} \Gamma _1 ({{\textbf{C}}}^{-1}{{\textbf {v}}}\ \otimes \ {{\textbf{C}}}^{-1}{{\textbf {b}}})\ +\ \Gamma _2 ({{\textbf {v}}}\ \otimes \ {{\textbf{C}}}^{-1}{{\textbf {b}}})\nonumber \\{} & {} + \Gamma _2 ({{\textbf{C}}}^{-1}{{\textbf {v}}}\ \otimes \ {{\textbf {b}}})\ +\ \Gamma _3 ({{\textbf{C}}}{{\textbf {v}}}\ \otimes \ {{\textbf{C}}}^{-1}{{\textbf {b}}})\nonumber \\{} & {} + \Gamma _3 ({{\textbf{C}}}^{-1}{{\textbf {v}}}\ \otimes \ {{\textbf{C}}}{{\textbf {b}}})\ +\ \Gamma _4 ({{\textbf {v}}}\ \otimes \ {{\textbf {b}}})\nonumber \\{} & {} + \Gamma _5 ({{\textbf {v}}}\ \otimes \ {{\textbf{C}}}{{\textbf {b}}})\ +\ \Gamma _5 ({{\textbf{C}}}{{\textbf {v}}}\ \otimes \ {{\textbf {b}}})\nonumber \\{} & {} + \frac{\Gamma _7}{2}( ({{\textbf {v}}} \cdot {{\textbf {b}}}){{\textbf{I}}}\ +\ ({{\textbf {v}}}\ \otimes \ {{\textbf {b}}}))\nonumber \\{} & {} + \frac{\Gamma _8}{2}(({{\textbf{C}}}^{-1}{{\textbf {b}}} \cdot {{\textbf {v}}}){{\textbf{C}}}^{-1}\ +\ ({{\textbf{C}}}^{-1}{{\textbf {b}}}\ \otimes \ {{\textbf{C}}}^{-1}{{\textbf {v}}})). \end{aligned}$$
(B17)

The coefficients \(\Gamma _i\) are scalar functions of the principal invariants of \({{\textbf{C}}}\), see Doghri [21]. The full development of Eq. (B17) has been omitted for the sake of clarity. Interested readers are recommended to refer to Stickle et al. [73] for the detailed derivation. For the particular case of a Neo-Hookean material, these coefficients \(\Gamma _i\) are:

$$\begin{aligned} \begin{aligned} \Gamma _1&= \Lambda {J}^2, \quad \Gamma _8\ =\ -\Lambda ({J}^2 - 1)\ +\ 2G\\ \Gamma _i&= 0 \quad \text {for} \quad i\ =\ 2,\ldots ,7. \end{aligned} \end{aligned}$$
(B18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinos, M., Chandra, B., Stickle, M.M. et al. On the derivation of a component-free scheme for Lagrangian fluid–structure interaction problems. Acta Mech 234, 1777–1809 (2023). https://doi.org/10.1007/s00707-022-03459-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03459-1

Navigation